Untangling the Solar Wind Drivers of Radiation Belt: An Information Theoretical Approach
Document Type
Contribution to Book
Publication Date
2018
Keywords
Radiation belt, Relativistic electrons, Solar wind drivers, Nonlinear relationships, Information theory, Triangle distribution, Untangling drivers
Abstract
The solar wind-magnetosphere system is nonlinear. The solar wind drivers of geosynchronous electrons with an energy range of 1.8–3.5 MeV are investigated using mutual information (MI), conditional mutual information (CMI), and transfer entropy (TE). These information theoretical tools can establish linear and nonlinear relationships, as well as information transfer. The information transfer from solar wind velocity (Vsw) to geosynchronous MeV electron flux (Je) peaks with a lag time (τ) of 2 days. As previously reported, Je is anticorrelated with solar wind density (nsw) with a lag of 1 day. However, this lag time and anticorrelation can be attributed at least partly to the Je(t + 2 days) correlation with Vsw(t) and nsw(t + 1 day) anticorrelation with Vsw(t). Analyses of solar wind driving of the magnetosphere need to consider the large lag times, up to 3 days, in the (Vsw, nsw) anticorrelation. Using CMI to remove the effects of Vsw, the response of Je to nsw is 30% smaller and has a lag time of h, suggesting that the MeV electron loss mechanism due to nsw or solar wind dynamic pressure has to start operating in nsw transfers about 36% as much information as Vsw (the primary driver) to Je. Nonstationarity in the system dynamics is investigated using windowed TE. When the data is ordered according to high or low TE, it is possible to understand details of the triangle distribution that has been identified between Je(t + 2 days) versus Vsw(t).
First Page
150
Last Page
176
Book Title
Machine Learning Techniques for Space Weather
Editor
Camporeale, Enrico, Simon Wing, and Jay Johnson
Publisher
Elsevier
City
Cambridge, MA
Edition
1st
ISBN
9780128117880
DOI
https://doi.org/10.1016/B978-0-12-811788-0.00006-8
First Department
Engineering
Recommended Citation
Wing, Simon; Johnson, Jay R.; Camporeale, Enrico; and Reeves, Geoffrey D., "Untangling the Solar Wind Drivers of Radiation Belt: An Information Theoretical Approach" (2018). Faculty Publications. 796.
https://digitalcommons.andrews.edu/pubs/796