Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data
Document Type
Article
Publication Date
9-20-2017
Keywords
LIGO data, Gravitational waves, Neutron stars
Abstract
We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range 25–, spanning the current observationally constrained range of binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at , with comparable limits set across the most sensitive frequency range from 100 to . At this frequency, the 95% upper limit on the signal amplitude h 0 is marginalized over the unknown inclination angle of the neutron star's spin, and assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3–4 stronger than those set by other analyses of the same data, and a factor of ~7 stronger than the best upper limits set using data from Initial LIGO science runs. In the vicinity of , the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on the inclination angle; if the most likely inclination angle of 44° is assumed, they are within a factor of 1.7.
Journal Title
Astrophysical Journal
Volume
847
Issue
1
First Page
47
Last Page
66
DOI
https://doi.org/10.3847/1538-4357/aa86f0
First Department
Physics
Recommended Citation
Summerscales, Tiffany and LIGO Scientific Collaboration and the Virgo Collaboration, "Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data" (2017). Faculty Publications. 725.
https://digitalcommons.andrews.edu/pubs/725