An Elliptic Nonlinear System of Two Functions with Application

Document Type

Article

Publication Date

2023

Keywords

Competition system, coexistence state

Abstract

The purpose of this paper is to give a sufficient conditions for the existence and uniqueness of positive solutions to a rather general type of elliptic system of the Dirichlet problem on a bounded domain Ω" role="presentation" style="box-sizing: border-box; font-size: 20px; display: inline-block; line-height: 0; overflow-wrap: normal; text-wrap: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgb(44, 44, 44); font-family: Helvetica; position: relative;">ΩΩ in Rn." role="presentation" style="box-sizing: border-box; font-size: 20px; display: inline-block; line-height: 0; overflow-wrap: normal; text-wrap: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgb(44, 44, 44); font-family: Helvetica; position: relative;">Rn.����. Also considered are the effects of perturbations on the coexistence state and uniqueness. The techniques used in this paper are super-sub solutions method, eigenvalues of operators, maximum principles, spectrum estimates, inverse function theory, and general elliptic theory. The arguments also rely on some detailed properties for the solution of logistic equations. These results yield an algebraically computable criterion for the positive coexistence of competing species of animals in many biological models.

Journal Title

Journal of Partial Differential Equations

Volume

36

Issue

2

First Page

122

Last Page

146

DOI

https://doi.org/10.4208/jpde.v36.n2.2

First Department

Mathematics

Share

COinS