GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run

Authors

R. Abbott, California Institute of Technology
T. D. Abbott, Louisiana State University
F. Acernese, Università degli Studi di Salerno
K. Ackley, Monash University
C. Adams, LIGO Livingston
N. Adhikari, University of Wisconsin-Milwaukee
R. X. Adhikari, California Institute of Technology
V. B. Adya, The Australian National University
C. Affeldt, Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
D. Agarwal, Inter-University Centre for Astronomy and Astrophysics India
M. Agathos, University of Cambridge
K. Agatsuma, University of Birmingham
N. Aggarwal, Northwestern University
O. D. Aguiar, Instituto Nacional de Pesquisas Espaciais
L. Aiello, Cardiff University
A. Ain, Istituto Nazionale di Fisica Nucleare, Sezione di Pisa
P. Ajith, Tata Institute of Fundamental Research, Mumbai
S. Akcay, Friedrich-Schiller-Universität Jena
T. Akutsu, National Institutes of Natural Sciences - National Astronomical Observatory of Japan
S. Albanesi, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
A. Allocca, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
P. A. Altin, The Australian National University
A. Amato, Université Claude Bernard Lyon 1
C. Anand, Monash University
S. Anand, California Institute of Technology
A. Ananyeva, California Institute of Technology
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
M. Ando, The University of Tokyo
T. Andrade, Universitat de Barcelona
N. Andres, Université Grenoble Alpes

Document Type

Article

Publication Date

10-1-2023

Abstract

The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin pastro>0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with pastro>0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star-black-hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron-star-black-hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with pastro>0.5 across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars.

Journal Title

Physical Review X

Volume

13

Issue

4

DOI

10.1103/PhysRevX.13.041039

This document is currently not available here.

Share

COinS