Machine learning analysis for phenolic compound monitoring using a mobile phone-based ecl sensor

Document Type

Article

Publication Date

9-1-2021

Keywords

ECL, Low-cost sensor, Mobile phone-based sensor

Abstract

Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimen-sionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regres-sion, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3 ]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations.

Journal Title

Sensors

Volume

21

Issue

18

DOI

https://doi.org/10.3390/s21186004

This document is currently not available here.

Share

COinS