Document Type

Article

Publication Date

1-1-2004

Abstract

Seabirds move throughout the day in changing, patchy environments as they engage in various behaviors. We studied the diurnal abundance dynamics of Glaucous-winged Gulls (Larus glaucescens) in a habitat patch dedicated to loafing in the Strait of Juan de Fuca, Washington. We constructed three differential equation models as alternative hypotheses and then used model selection techniques to choose the one that most accurately described the system. We validated the model on an independent data set, made a priori model predictions, and conducted a field test of the predictions. Clear dynamic patterns emerged in the abundance of loafing gulls, even though individuals moved in and out of the loafing area more or less continuously throughout the day. Temporal patterns in aggregate loafing behavior are predicted by three environmental factors: day of the year, height of the tide, and solar elevation. This result is important for several reasons: (1) it reduces the aggregate behavior of complicated vertebrates to a simple mathematical equation, (2) it gives an example of a field system in which animal abundances are determined largely by low dimensional exogenous forces, and (3) it provides an example of accurate quantitative prediction of animal numbers in the field. From the point of view of conservation biology and resource management, the result is important because of the pervasive need to explain and predict numbers of organisms in time and space.

Journal Title

Auk

Volume

121

Issue

2

First Page

380

Last Page

390

DOI

10.2307/4090402

First Department

Mathematics

Second Department

Biology

Acknowledgements

Free article retrieved March 16, 2021 from https://academic.oup.com/auk/article/121/2/380/5562258#154842416

Included in

Ornithology Commons

Share

COinS