Authors

B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
R. Adhikari, California Institute of Technology
P. Ajith, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
G. Allen, Stanford University
R. S. Amin, Louisiana State University
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
M. A. Arain, University of Florida
M. Araya, California Institute of Technology
H. Armandula, California Institute of Technology
P. Armor, University of Wisconsin-Milwaukee
Y. Aso, California Institute of Technology
S. Aston, University of Birmingham
P. Aufmuth, Gottfried Wilhelm Leibniz Universität Hannover
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. Babak, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
P. Baker, Montana State University
S. Ballmer, California Institute of Technology
C. Barker, LIGO Hanford
D. Barker, LIGO Hanford
B. Barr, University of Glasgow
P. Barriga, The University of Western Australia
L. Barsotti, Massachusetts Institute of Technology
M. A. Barton, California Institute of Technology
I. Bartos, Columbia University in the City of New York
R. Bassiri, University of Glasgow
M. Bastarrika, University of Glasgow
B. Behnke, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
M. Benacquista, University of Texas at Brownsville and Texas Southmost College
Tiffany Z. Summerscales, Andrews UniversityFollow

Document Type

Article

Publication Date

11-11-2009

Abstract

We present the results obtained from an all-sky search for gravitational-wave (GW) bursts in the 64-2000 Hz frequency range in data collected by the LIGO detectors during the first year (November 2005-November 2006) of their fifth science run. The total analyzed live time was 268.6 days. Multiple hierarchical data analysis methods were invoked in this search. The overall sensitivity expressed in terms of the root-sum-square (rss) strain amplitude hrss for gravitational-wave bursts with various morphologies was in the range of 6×10-22Hz-1/2 to a few×10-21Hz-1/2. No GW signals were observed and a frequentist upper limit of 3.75 events per year on the rate of strong GW bursts was placed at the 90% confidence level. As in our previous searches, we also combined this rate limit with the detection efficiency for selected waveform morphologies to obtain event rate versus strength exclusion curves. In sensitivity, these exclusion curves are the most stringent to date. © 2009 The American Physical Society.

Journal Title

Physical Review D - Particles, Fields, Gravitation and Cosmology

Volume

80

Issue

10

DOI

https://doi.org/10.1103/PhysRevD.80.102001

First Department

Physics

Acknowledgements

Retrieved March 5, 2021 from https://arxiv.org/pdf/0905.0020.pdf

Share

COinS