Real-space Mapping of Nanoplasmonic Hotspots Via Optical Antenna-gap Loading
Document Type
Article
Publication Date
9-24-2012
Abstract
Plasmonic hotspots located in the nanogaps of infrared optical antennas are mapped in the near-field. The enhanced evanescent field resonance is shown to depend strongly on excitation wavelength, the excitation and detection laser polarization, and gap size. In addition, we demonstrate that in nanogap hotspot imaging using scattering probes, the probe tip can be considered as a load in the gap of the antenna, and the impedance of the load can then be tuned from inductive to capacitive or vice versa by changing the dielectric value of the tip load. Experimental results are in agreement with finite-difference time-domain simulations. © 2012 American Institute of Physics.
Journal Title
Applied Physics Letters
Volume
101
Issue
13
DOI
https://doi.org/10.1063/1.4754534
First Department
Physics
Recommended Citation
Mastel, S.; Grefe, S. E.; Cross, G. Brendan; Taber, A.; Dhuey, S.; Cabrini, S.; Schuck, P. J.; and Abate, Y., "Real-space Mapping of Nanoplasmonic Hotspots Via Optical Antenna-gap Loading" (2012). Faculty Publications. 1697.
https://digitalcommons.andrews.edu/pubs/1697