Authors

B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. D. Abbott, Louisiana State University
S. Abraham, Inter-University Centre for Astronomy and Astrophysics India
F. Acernese, Università di Salerno
K. Ackley, Monash University
C. Adams, LIGO Livingston
V. B. Adya, The Australian National University
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
M. Agathos, Friedrich Schiller Universität Jena
K. Agatsuma, University of Birmingham
N. Aggarwal, LIGO, Massachusetts Institute of Technology
O. D. Aguiar, Instituto Nacional de Pesquisas Espaciais
L. Aiello, Gran Sasso Science Institute
A. Ain, Inter-University Centre for Astronomy and Astrophysics India
P. Ajith, Tata Institute of Fundamental Research, Mumbai
G. Allen, University of Illinois at Urbana-Champaign
A. Allocca, Università di Pisa
M. A. Aloy, University of Valencia
P. A. Altin, The Australian National University
A. Amato, IN2P3 Institut National de Physique Nucleaire et de Physique des Particules
S. Anand, California Institute of Technology
A. Ananyeva, California Institute of Technology
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
S. V. Angelova, University of Strathclyde
S. Antier, APC - AstroParticule et Cosmologie
S. Appert, California Institute of Technology
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
J. S. Areeda, California State University, Fullerton
Tiffany Summerscales, Andrews UniversityFollow

Document Type

Article

Publication Date

1-16-2020

Keywords

compact object mergers, gravitational wave astronomy, neutron star equation of state, neutron stars

Abstract

© 2020 IOP Publishing Ltd. GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05M⊙, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67M⊙ for the case that the merger results in a hypermassive neutron star.

Journal Title

Classical and Quantum Gravity

Volume

37

Issue

4

DOI

https://doi.org/10.1088/1361-6382/ab5f7c

First Department

Physics

Acknowledgements

Retrieved January 11, 2021 from https://iopscience.iop.org/article/10.1088/1361-6382/ab5f7c/pdf

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS