Authors

B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. D. Abbott, Louisiana State University
S. Abraham, Inter-University Centre for Astronomy and Astrophysics India
F. Acernese, Università di Salerno
K. Ackley, Monash University
C. Adams, LIGO Livingston
R. X. Adhikari, California Institute of Technology
V. B. Adya, The Australian National University
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
M. Agathos, Friedrich Schiller Universität Jena
K. Agatsuma, University of Birmingham
N. Aggarwal, LIGO, Massachusetts Institute of Technology
O. D. Aguiar, Instituto Nacional de Pesquisas Espaciais
L. Aiello, Gran Sasso Science Institute
A. Ain, Inter-University Centre for Astronomy and Astrophysics India
P. Ajith, Tata Institute of Fundamental Research, Mumbai
G. Allen, University of Illinois at Urbana-Champaign
A. Allocca, Università di Pisa
M. A. Aloy, University of Valencia
P. A. Altin, The Australian National University
A. Amato, IN2P3 Institut National de Physique Nucleaire et de Physique des Particules
S. Anand, California Institute of Technology
A. Ananyeva, California Institute of Technology
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
S. V. Angelova, University of Strathclyde
S. Antier, APC - AstroParticule et Cosmologie
S. Appert, California Institute of Technology
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
Tiffany Z. Summerscales, Andrews UniversityFollow

Document Type

Article

Publication Date

3-20-2020

Abstract

© 2020. The Author(s). Published by the American Astronomical Society.. On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810.

Journal Title

Astrophysical Journal Letters

Volume

892

Issue

1

DOI

https://doi.org/10.3847/2041-8213/ab75f5

First Department

Physics

Acknowledgements

Retrieved January 13, 2021 from https://iopscience.iop.org/article/10.3847/2041-8213/ab75f5/pdf

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS