Document Type
Article
Publication Date
8-2019
Abstract
A hybrid gyrofluid‐kinetic electron model is adapted and used to simulate poloidal standing modes for different electron temperatures and azimuthal mode numbers. As in previous studies of toroidal standing modes, mirror force effects lead to increased parallel potential drops, monoenergetic electron energization, and wave energy dissipation as the ambient electron temperature is increased. A similar trend is also observed when the electron temperature is held fixed and the azimuthal mode number increased—owing to the narrowing of the azimuthal flux tube width, which necessitates more electron energization to carry the increased parallel current density. In both cases, the increase in electron energization eventually leads to more rapid decreases in the parallel current with time because of the dissipation of wave energy.
Journal Title
Journal of Geophysical Research: Space Physics
Volume
124
Issue
8
First Page
6691
Last Page
6700
DOI
https://doi.org/10.1029/2019JA026849
First Department
Engineering
Recommended Citation
Damiano, P. A., Kim, E.‐H., Johnson, J. R., & Porazik, P. (2019). Electron energization by parallel electric fields in poloidal standing waves. Journal of Geophysical Research: Space Physics, 124, 6691– 6700. https://doi.org/10.1029/2019JA026849
Acknowledgements
Retrieved 8/25/2020 from https://agupubs.onlinelibrary.wiley.com/action/showCitFormats?doi=10.1029%2F2019JA026849