Document Type

Article

Publication Date

9-4-2019

Abstract

We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1  M during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6+3.2−0.7  M and 84.4+15.8−11.1  M and range in distance between 320+120−110 and 2840+1400−1360  Mpc. No neutron star–black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110−3840  Gpc−3 y−1 for binary neutron stars and 9.7−101  Gpc−3 y−1 for binary black holes assuming fixed population distributions and determine a neutron star–black hole merger rate 90% upper limit of 610  Gpc−3 y−1.

Journal Title

Physical Review X

Volume

9

Issue

031040

DOI

https://doi.org/10.1103/PhysRevX.9.031040

First Department

Physics

Acknowledgements

Retrieved 8/19/2020 from https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.031040

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS