Authors

J. Abadie, California Institute of Technology
B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
M. Abernathy, University of Glasgow
T. Accadia, Université Savoie Mont Blanc
F. Acernese, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
C. Adams, LIGO Livingston
R. Adhikari, California Institute of Technology
P. Ajith, California Institute of Technology
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
G. Allen, Stanford University
E. Amador Ceron, University of Wisconsin-Milwaukee
R. S. Amin, Louisiana State University
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
F. Antonucci, Istituto Nazionale di Fisica Nucleare - INFN
M. A. Arain, University of Florida
M. Araya, California Institute of Technology
M. Aronsson, California Institute of Technology
K. G. Arun, Laboratoire de l'Accélérateur Linéaire
Y. Aso, California Institute of Technology
S. Aston, University of Birmingham
P. Astone, Istituto Nazionale di Fisica Nucleare - INFN
D. E. Atkinson, LIGO Hanford
P. Aufmuth, Gottfried Wilhelm Leibniz Universität Hannover
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. Babak, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
P. Baker, Montana State University
G. Ballardin, European Gravitational Observatory (EGO)
T. Ballinger, Carleton College, USA
S. Ballmer, California Institute of Technology
Tiffany Z. Summerscales, Andrews UniversityFollow

Document Type

Article

Publication Date

11-5-2010

Abstract

We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M□. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10⊃- 3yr⊃-1L10-1, 2.2×10⊃-3yr⊃-1L10-1, and 4.4×10⊃- 4yr⊃-1L10-1, respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations. © 2010 The American Physical Society.

Journal Title

Physical Review D - Particles, Fields, Gravitation and Cosmology

Volume

82

Issue

10

DOI

10.1103/PhysRevD.82.102001

First Department

Physics

Acknowledgements

Retrieved March 5, 2021 from https://arxiv.org/pdf/1005.4655.pdf

Share

COinS