Document Type

Article

Publication Date

9-1-2020

Keywords

Biomass, Biorefinery, Humins, Levulinic acid, Optimization, Sugarcane bagasse

Abstract

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. Levulinic acid (LA) is currently one of the most promising chemicals derived from biomass. However, its large-scale production is hampered by the challenges in biomass hydrolysis and the poor selectivity due to the formation of humins (HUs). This study addresses these challenges using the biorefinery concept of biomass fractionation. A three-step process (pretreatment, delignification, and acid-catalyzed conversion) was optimized to produce LA from SCB considering the yield (YLA), efficiency (ELA), and concentration of LA (CLA) as functions of temperature, reaction time, acid concentration, and solids loading. By means of a multi-response optimization, values of YLA (20.9 ± 1.25 g/100gISF-D), ELA (37.5 ± 2.24 mol%), and CLA (25.1 ± 1.50 g/L) were obtained at 180 °C, 75 min, 7.0% w/v H2SO4, and 12.0% w/v of solids loading. Six scenarios for production of LA were analyzed in terms of yields of LA, HUs, lignin, and other sugar-derived products considering one-, two-, or three-step processes. The economic analysis indicated that the three-step scenario delivers better economic figures given that other valuable biomass fractions (hemicellulosic sugars and lignin) are better used and contribute to the overall economic performance of the process. The results also demonstrate the burden of HUs in the economics of the process because it was shown that the largest production of LA is also linked to the largest formation of HUs, which does not necessarily yield the best economic results. These findings indicate the importance of added value by-products for the profitable production of LA in biorefineries.

Journal Title

Bioenergy Research

Volume

13

Issue

3

First Page

757

Last Page

774

DOI

10.1007/s12155-020-10124-9

First Department

Engineering

Acknowledgements

Retrieved January 14, 2021 from https://link.springer.com/article/10.1007/s12155-020-10124-9

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS