Search for Gravitational Waves from Binary Black Hole Inspiral, Merger, and Ringdown

Authors

J. Abadie, California Institute of Technology
B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
M. Abernathy, University of Glasgow
T. Accadia, Université Savoie Mont Blanc
F. Acernese, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
C. Adams, LIGO Livingston
R. Adhikari, California Institute of Technology
P. Ajith, California Institute of Technology
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
G. S. Allen, Stanford University
E. Amador Ceron, University of Wisconsin-Milwaukee
R. S. Amin, Louisiana State University
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
F. Antonucci, Istituto Nazionale di Fisica Nucleare - INFN
M. A. Arain, University of Florida
M. C. Araya, California Institute of Technology
M. Aronsson, California Institute of Technology
Y. Aso, California Institute of Technology
S. M. Aston, University of Birmingham
P. Astone, Istituto Nazionale di Fisica Nucleare - INFN
D. Atkinson, LIGO Hanford
P. Aufmuth, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. Babak, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
P. Baker, Montana State University
G. Ballardin, European Gravitational Observatory (EGO)
T. Ballinger, Carleton College, USA
S. Ballmer, California Institute of Technology
D. Barker, LIGO Hanford
Tiffany Z. Summerscales, Andrews UniversityFollow

Document Type

Article

Publication Date

6-6-2011

Abstract

We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99Mȯ and total masses of 25-100Mȯ. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19Mȯ≤m1, m 2≤28Mȯ binary black-hole systems with negligible spin to be no more than 2.0Mpc-3Myr-1 at 90% confidence. © 2011 American Physical Society.

Journal Title

Physical Review D - Particles, Fields, Gravitation and Cosmology

Volume

83

Issue

12

DOI

10.1103/PhysRevD.83.122005

First Department

Physics

Share

COinS