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ABSTRACT

Systems that exhibit discrete dynamics can be well described and reconstructed by considering the set of time intervals between the
discrete events of the system. The Kepler satellite has cataloged light curves for many Sun-like stars, and these light curves show
strong bursts in intensity that are associated with stellar flares. The waiting time between these flares describes the fundamental
dynamics of the stars and is driven by physical processes, such as flux emergence. While it is rather straightforward to identify
large flares, the identification of weaker flares can be challenging because of the presence of noise. A common practice is to limit
flare identification to events stronger than a threshold value that significantly exceeds the noise level (kσ), where σ is the standard
deviation of the fluctuations about the detrended light curve. However, the selection of the k-value is normally made based on an
empirical rule (typically k = 3), which can lead to a biased threshold level. This study examines the information content in the waiting
time sequence of enhancements in the light curve of a solar-type star (KIC 7985370) as a function of threshold. Information content
is quantified by the mutual information between successive flare waiting times. It is found that the information content increases as
the threshold is reduced from k = 3 to k = 1.56, in contrast with the notion that low amplitude enhancements are simply random
noise. However, below k = 1.56 the information content dramatically decreases, consistent with shot noise. The information that is
detected at k = 1.56 and above is similar to that of solar flares and indicates a significant relationship between the low amplitude
enhancements, suggesting that many of those events are likely flares. We suggest that mutual information could be used to identify
a threshold that maximizes the information content of the flare sequence, making it possible to extract more flare information from
stellar light curves.

Key words. stars: flare – stars: solar-type – methods: statistical

1. Introduction

The Kepler mission (Borucki et al. 2010) has opened a new
era in the study of flares (Yang & Liu 2019). The flare cata-
log (Davenport 2016; Yang & Liu 2019) now includes at least
3400 flare stars with over 160 000 flare events. These flares
provide an excellent context for understanding flare dynam-
ics at the Sun and how it may be evolving. Considering that
stellar flares most likely result from the same mechanism as
solar flares, the study of solar-type stars makes it possible to
understand whether the Sun can really serve as a reliable cal-
ibrator of stellar evolution, or whether it instead is an out-
lier among stars of its age and mass (Fabbian et al. 2017).
Typical flare profiles and the occurrence frequency are sim-
ilar to those the Sun (Maehara et al. 2012; Shibayama et al.
2013; Yang et al. 2017). However, there can be substantial dif-
ferences in terms of their typical energy, mean flaring rate, and
spectra.

A key task in studying stellar flares is the identification of
flares in the Kepler light curves. The catalogs that have been
compiled typically use a specific set of criteria (Davenport 2016;
Yang & Liu 2019). Flares are generally identified as impulsive,
sustained, large amplitude excursions in the Kepler light curve
relative to background fluctuations. The process of flare identifi-
cation typically involves detrending and filtering the data and
then identifying candidate flares whose amplitude exceeds a

threshold based on the background noise level. Candidate events
below this threshold are discarded as indistinguishable from
noise. To be entered into the catalog, the flares must also pass
additional selection criteria to remove artifacts such as pulsating
stars (Aerts et al. 2010; Balona et al. 2011) or instrumental error
(Yang et al. 2018).

In the procedure for the selection of flare candidates, the
threshold condition is somewhat arbitrary, but a 3σ rule is
most commonly applied (Mossoux & Grosso 2017; Oláh et al.
2021). Nevertheless, the use of 2σ has also been reported
(Stelzer et al. 2020). Other studies of solar flares have required
the peak flux of a flare to exceed an arbitrary threshold
value, for example class C1 and above (Wheatland & Litvinenko
2002; Snelling et al. 2020), to reflect the difficulty of detect-
ing flares below class C1. Methods based on machine learning
models have been tested as well (Vida & Roettenbacher 2018;
Feinstein et al. 2020) to better automate flare detection; how-
ever, their performance is highly dependent on the quality of data
available for training the models.

In this paper we explore how the choice of threshold can
affect flare identification using information theory, and in par-
ticular we show that many significant events discarded as noise
based on an arbitrary threshold have characteristics that are very
different from noise. It is possible that these events are actually
real flares of relatively low amplitude, as typically found at the
Sun (Hannah et al. 2011).
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2. Data – KIC 7985370

For this study we considered the solar-type star KIC 7985370,
an active early-G-type main-sequence star that has previously
been studied in detail (Fröhlich et al. 2012). This star is reported
to be a young star, with an age of about 100–200 Myr, that
has a faster rotation period (2.84–3.09 days; Fröhlich et al. 2012;
Reinhold et al. 2013) than the Sun and a high level of chromo-
spheric activity. The activity level, spot distribution, and differ-
ential rotation have been studied in detail.

The short cadence (1 min resolution) light curve of
KIC 7985370 was extracted using the LightKurve1 package for
the period 2009 May (Quarter 1) to 2010 August (Quarter 6).
While long cadence data are available over a longer time period,
the 30 min resolution of the long cadence data is not adequate
for resolving flare events.

Figure 1 shows a ten-day segment of the light curve for
KIC 7985370. The light curve exhibits a prominent quasi-
periodic three-day rotational modulation due to the transit of
persistent stellar magnetic features (i.e., dark spots and bright
faculae) over the visible stellar hemisphere (Berdyugina 2005;
Strassmeier 2009). Longer segments of the same light curve (see
Fig. 8 of Fröhlich et al. 2012) show the same three-day rotational
modulation as well as longer modulations associated with the
time variability of starspots due to differential rotation and the
magnetic activity cycle.

To compensate for these underlying trends and periodicities,
we followed a similar procedure as Li et al. (2018) to impose
a threshold as follows: (a) the data were first separated into
segments without any significant data gaps, (b) each segment
was detrended and passed through a smoothing filter (moving
median) with a 1 hour window, (c) the residual (high pass fil-
tered) time series was then obtained by subtracting the detrended
data from the stellar intensity data. Flares were identified in the
residual time series using the MATLAB2 findpeaks function
with the requirement that flares have a minimum separation of
10 min and the peak prominence is kσ, where σ is the standard
deviation and k is a positive real number.

Because strong flare events skew the distribution of the resid-
uals, we excluded outlier events when computing σ by (a) first
computing the standard deviation of the detrended light curve,
(b) excluding all events exceeding 3σ, and (c) recomputing the
standard deviation after the outlier data were excluded. Follow-
ing this procedure, we constructed data sets with values of k less
than 3. The number of flares identified increased from 654 at
k = 3 to 7213 at k = 1.56 and 16 724 at k = 0.5, consistent
with an expected increase in the number of flares identified as
the threshold is reduced.

In Fig. 1 flare events identified by the flare selection crite-
ria with a threshold of k = 1.56 are shown. It is apparent that
there are some groups of flares that occur in close proximity. A
zoomed-in view of the group of flares shows how the clusters
of flares are resolved on a shorter timescale. It should be noted
that all peaks must be separated by at least 10 min so that the
last light curve elevation is not considered a separate event. Sev-
eral of the events in this box are well below the 3σ criterion. As
the threshold increases, it is obvious that fewer candidate flares
would be identified.

Because the time between flares is generally much greater
than the duration of flares, it is a common practice to con-
sider a sequence of discrete flare events occurring at times
(t1, t2, . . . , tn, . . . , tNflare ), which are equivalently described by the
1 https://docs.lightkurve.org/
2 https://www.mathworks.com/

Fig. 1. Light curve for KIC 7985370. (a) Application of our flare selec-
tion criteria applied to the data with k = 1.56; flare events are shown
as open orange circles. (b) Zoomed-in view of the group of flares in the
red shaded box.

waiting time between events (∆1,∆2, . . . ,∆n, . . . ,∆N), where
∆n = tn+1 − tn. The underlying system dynamics is then cap-
tured in this sequence of waiting times and is reflected in the
hierarchy of the probability distributions p(∆n), p(∆n,∆n+m),
p(∆n,∆n+m,∆n+q), . . . In this notation, p(∆n) is the probability
distribution of waiting times, p(∆n,∆n+m) describes the joint
probability between the waiting time of a flare with that of
another flare m steps ahead in the sequence, and so forth.

Many studies have recognized that the distribution of waiting
times may result from specific types of processes. For example,
waiting times resulting from a single parameter Poisson process
fall off exponentially. When there is a Poisson process with dis-
crete changes in the rate, the distribution may lead to a power
law in the tail of the distribution and is often referred to as a
nonstationary Poisson process (Wheatland & Litvinenko 2002;
Aschwanden & McTiernan 2010; Nurhan et al. 2021). When the
probability of an event not occurring is proportional to a power
of time, the distribution takes the form of a Weibull distribution,
which is a particular type of nonstationary Poisson process.

The waiting time distribution with k = 1.56 for KIC 7985370
is shown in Fig. 2. Waiting times greater than 5 hours are not
shown. Waiting times longer than 5 h represent less than 0.35%
of the data. Long waiting times could be indicators of erroneous
data, resulting in missed events or gaps in the data due to the pos-
sible maintenance of the instrument (Snelling et al. 2020), so we
did not include these data in our analysis. It is apparent that the
distribution of waiting times is well fit by an exponential distri-
bution consistent with a Poisson process. As the selection criteria
(k-threshold) changes, the distribution of waiting times remains
similarly exponential, although the slope changes to reflect an
increase in the event rate as k decreases.

It is usually thought that a waiting time distribution consis-
tent with a Poisson distribution indicates that the events occurred
independently and that the slope provides the average rate of
occurrence. However, the sequence of waiting times can con-
tain more information about the dynamics of the system than
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Fig. 2. Waiting time distribution for the entire period and stationary
Poisson distribution (p ∝ 0.2423e−1.373∆).

just the waiting time distribution. The joint probability distribu-
tion can tell us more specifically whether the subsequent flares
are related to each other (Rivera et al. 2022). Analysis of the
sequence of solar flares has shown that the flare sequence is
significantly distinguishable from a nonstationary Poisson pro-
cess and exhibits a short-term memory (Snelling et al. 2020;
Aschwanden & Johnson 2021). This memory is associated with
a clustering of flares (Rivera et al. 2022). In the next section we
show that a similar memory can be identified in the stellar flare
sequence of KIC 7985370.

3. Mutual information about the waiting time
sequence of KIC 7985370

Information theory (Deco & Schhurmann 2000; Johnson & Wing
2018; Wing & Johnson 2019) has been widely used to iden-
tify dependence in nonlinear systems in space plasmas
(Johnson & Wing 2005, 2014; Johnson et al. 2018; Wing et al.
2005, 2016, 2018, 2020, 2022; Rivera et al. 2022). Mutual
information,M, can be used as a metric that provides a measure
of whether subsequent flares are dependent or independent, and
to determine how far ahead this dependence lasts, effectively
determining an information horizon for the memory of flares
(Snelling et al. 2020). To determine whether there is memory
in the sequence, the joint probability, p(∆n,∆n+m), between the
waiting time of a flare event and another flare event with a “look
ahead” of m is examined.

When m = 1, this metric measures the relationship between
successive flares. The comparison described by Eq. (1) estab-
lishes whether subsequent waiting times are independent:

p(∆n,∆n+m) ?
= p(∆n)p(∆n+m). (1)

The comparison is established using the mutual information,
defined as

M(X,Y) = H(X) + H(Y) − H(X,Y), (2)

where

H(X) = −
∑

p(x) log p(x); H(Y) = −
∑

p(y) log p(y) (3)

are the Shannon entropy of the random variables x ∈ X and y ∈Y ,
and

H(X,Y) = −
∑

p(x, y) log p(x, y) (4)

is the joint entropy. Mutual information is particularly useful
for establishing nonlinear relationships between two random
variables. It is evident that when X and Y are independent,
M(X,Y) → 0, which should be the case when the flares result
from a Poisson process.

As described in Snelling et al. (2020), mutual information
was computed based on histogramming the data to obtain the
joint and marginal waiting time distributions. We used methods
similar to those outlined in Snelling et al. (2020) to optimize the
bin size.

As mentioned above, the aim is to determine whether flare
events are statistically independent. A Poisson process should
haveM = 0 . However, when there is a limited amount of data,
M can be small but nonzero. In order to interpret mutual infor-
mation results from the data, we constructed an ensemble of
surrogate data sets to calculate the significance (Snelling et al.
2020),

S =

∣∣∣∣∣Md − 〈Msurr〉

σsurr

∣∣∣∣∣ , (5)

where Md is the mutual information of the data, 〈Msurr〉 is the
ensemble averaged mutual information obtained by averaging
the mutual information of the jth surrogate data set, Msurr( j),
over the number, Nsurr, of surrogates,

〈Msurr〉 =
1

Nsurr

Nsurr∑
j=1

Msurr( j), (6)

and σsurr is the standard deviation of those surrogate mutual
information calculations:

σ2
surr =

1
Nsurr

Nsurr∑
j=1

(
Msurr( j) − 〈Msurr〉

)2
. (7)

First we analyzed the waiting time sequence for flare events
in the KIC 7985370 light curve when a k = 2 threshold is used.
The mutual information for this case is shown in Fig. 3 (panel a)
as a function of look ahead, m. For comparison, the mean and 3σ
level of the surrogates is also shown. The significance as defined
in Eq. (5) is shown in Fig. 3 (panel b). In this case, the surro-
gates are constructed with a random permutation of the waiting
times, which retains the original distribution of waiting times but
ensures that they are randomly drawn. Differences between the
actual data and the surrogates indicate that, in this case, flares
up to look ahead m = 2 are not randomly distributed and that
some successive flares are related to each other. This behavior
is similar to the short-term memory identified in the sequence
of solar waiting times (Snelling et al. 2020). It should be noted
that in the study of Snelling et al. (2020), Bayesian block anal-
ysis was used to construct the surrogates, and such a procedure
was necessary to account for variability in the flare rate during
the solar cycle. In this case the simpler null hypothesis that the
waiting times are randomly ordered is sufficient to demonstrate
the short-term memory because the distribution of waiting times
is well fit by a stationary Poisson distribution (see Fig. 2).

This same analysis was then applied to the flare sequences
obtained by varying the k-threshold. In Fig. 4 (panel a) we show
the significance as a function of look ahead. It is apparent that as
the k-threshold is reduced, the significance increases. This result
is somewhat surprising because it might be expected that con-
tamination of the data by random flare events would reduce the
mutual information because subsequent flares would be more
likely to be unrelated. In fact, below k = 1.56 it does appear
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Fig. 3. Information content as a function of look ahead, m. (a) Mutual information with k-threshold equal to 2. Mutual information of 50 surrogates
is shown as a green line, and the envelope of the 3σ the fluctuation of the surrogates is shaded yellow. Note that the look ahead axis begins at m = 1.
(b) Significance of the mutual information as a function of look ahead. The significance is elevated for m = 1 and 2, indicating that successive
flares have a relationship.

Fig. 4. Contour plots showing (a) significance vs. look ahead vs. k-value and (b) significance as a function of τ vs. k-value (where τ is obtained
by multiplying the average waiting time based on that k-value by m). The lower boundary of this plot corresponds to m = 1 and also shows how
the average waiting time depends on the k-value. The hashed region in the lower right is masked because we only analyze the mutual information
for m ≥ 1. It is apparent that the information horizon detected between k = 0.6 and k = 2.4 appears to be consistent in duration (around 5 h),
suggestive of an underlying dynamics that is independent of the threshold value.

that the mutual information drops such that the flare sequence
so identified is indistinguishable from shot noise. On the other
hand, if the low amplitude flare events were real and distinguish-
able from shot noise, it would be expected that increasing the
number of the events would, in fact, improve the statistics, lead-
ing to an increase in the significance. This possibility will be
discussed later.

The increase in the number of events identified by reducing
k also naturally decreases the mean waiting time of the distri-
bution. To provide a perspective on the timescales involved, we
multiplied the look ahead for a given threshold, m, by the aver-
age waiting time based on the threshold τ = m〈∆〉 and then re-
plotted panel a using τ instead of look ahead. As can be seen, the
elevated significance appears to have a more uniform timescale
(high significance lasts around 5 h), which suggests that there
is a preferred timescale likely related to some physical process
that is independent of the threshold. It should be noted that this
timescale is similar to the timescale identified in the solar wait-
ing time sequence (Snelling et al. 2020).

The mutual information is largest for successive flares m = 1;
therefore, it is useful to examine the significance for succes-
sive flares as a function of threshold, k, as shown in Fig. 5.
The significance increases as the threshold level is reduced and
peaks around k = 1.56. For a lower threshold, there is a dras-
tic reduction in significance, consistent with noise. These results
are suggestive that a significant fraction of flare events normally
discarded by taking a k = 3 threshold are, in fact, real events and
not noise.

A simple experiment can be performed with the data to ana-
lyze the fraction of the light curve elevation events attributable
to noise. As the peak information is found with k ≈ 1.56, we
chose this threshold for the analysis; with this threshold we have
7213 events. To proceed, we randomly selected a percentage
of these waiting times, which were each replaced by a waiting
time randomly selected from the set of all the waiting times.
This resampling procedure is known as bootstrapping. We then
computed the mutual information of successive events (m = 1)
for the data set that includes a percentage of bootstrapped data.
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k.

Fig. 5. Significance for successive flares as a function of threshold k.

Fig. 6. Analysis of the fraction of the light curve elevation events from
noise by bootstrapping.

As can be seen in Fig. 6, as the fraction of resampled values
increases, the mutual information decreases. When 50% of the
data have been resampled, it is no longer possible to detect any
relationship between subsequent flares. Thus, it is clear that if
the waiting times were randomly distributed, we would not find
any significance. A similar result is found when k < 0.5, sug-
gestive that there is legitimate noise in the light curves, but the
high significance when k = 1.56 suggests that many of the events
detected at this threshold reflect a dynamics that is significantly
different than noise and may well be evidence of microflares.

While this analysis suggests the existence of real flare events
at low amplitude in the light curve of KIC 7985370, we can
further explore whether the relationship detected by the mutual
information results from flare clusters. If there are clusters of
flares, it is likely that they occur in close temporal proximity
to each other. We can systematically remove such flare events
by introducing a minimum waiting time, ∆min. We then reex-
amined the waiting time sequence with the k = 1.56 selection
criterion for which the mutual information is maximized. We
analyzed the mutual information of successive events (m = 1)
for a given value of ∆min. The significance is shown in Fig. 7. As
can be seen, the significance decreases as ∆min increases until

Fig. 7. Significance of successive events (m = 1) for a given value
of ∆min (blue curve), and significance for a given value of ∆min if the
decrease in significance is only a result of a decrease in the amount of
data (dashed red curve).

∆min > 0.8 h, at which point it is no longer possible to determine
any relationship between successive flares. This result suggests
that the short-term memory mostly applies to flare waiting times
that are less than 0.8 h. It should be noted, however, that this
memory persists for about 5 h, as shown in Fig. 5.

As mentioned previously, when there is a relationship
between two random variables, the statistical significance gen-
erally increases with the number of events, as shown by
Snelling et al. (2020). Thus, it is important to understand the
extent to which the decrease in significance could be attributed to
a decrease in the amount of data. As expected, when we impose
a minimum flare waiting time (which effectively merges waiting
times of less than ∆min), the total number of waiting times, N,
decreases, as shown in Fig. 8 (panel a). The number of waiting
times decreases from 7212 to around 175 when ∆min is equal to
1.16 h.

As a second exercise, we calculated how the significance
changes as we reduce the amount of data. Figure 8 (panel b)
shows the significance of successive flares (m = 1) when only
N waiting times are selected from the sequence for k = 1.56
(discarding the remaining 7212 N flares). As expected, the sig-
nificance increases with N, and the relationship is linear when N
is large.

Finally, we used the results from Fig. 8 to show how the sig-
nificance would be expected to decrease with ∆min if the decrease
only resulted from a decrease in the amount of data. This result
was obtained by plotting the significance as a function of ∆min,
using Fig. 8 (panel a) to find the amount of data, N, for the
given value of ∆min and then using Fig. 8 (panel b) to obtain
S (N(∆min)). This curve is plotted in Fig. 7. It is apparent that the
decrease in significance from ∆min = 0.1 h to ∆min = 0.7 h can be
attributed to a reduction in the amount of data, but the decrease
in significance from ∆min = 0.7 h to ∆min = 0.9 h can only be
attributed to a change in the underlying dynamics. Figure 7 ulti-
mately shows that the flares that violate a Poisson process are
flares with a low waiting time. We therefore conclude that there
is a distinct change in the dynamics of this class of events on
timescales of less than 0.9 h. If we restrict our data set to flares
with waiting times longer than 1 h, they could likely be modeled
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Fig. 8. Dependence of statistical significance on the amount of data, N. (a) N for a given value of ∆min. (b) Significance of successive events
(m = 1) for a given value of N.

as a Poisson process; for waiting times of less than 1 h, this is
not possible.

4. Limitations of noise thresholding methods for
the detection of flares and possible solutions

The conventional application of a threshold condition to the
detrended light curves of stars certainly seems appropriate for
differentiating flare events from noise. Stellar variability, instru-
mental fluctuations, and shot noise likely form the major noise
components in the system. The conventional approach is to
assume that the amplitude of the noise distribution is charac-
terized by its standard deviation, σ, and the noise threshold is
then set at kσ, where k > 0. As we have shown, below some
threshold level, the information in the trend-less light curve of
the solar-type star KIC 7985370 is dominated by noise.

However, the k-σ approach for flare detection purposes in
light curves uses a rule of thumb basis to choose a certain value
of k and therefore requires a certain level of expertise. Also, a
subsequent visual inspection is often needed to verify the accu-
racy of the detection (Vida & Roettenbacher 2018; Oláh et al.
2021). However, this empirical procedure is not always justified
and could produce results that can cause many real flares to go
unidentified or discarded. Light curves may contain significant
but low flare-to-noise ratio peaks that may be scattered among
much more intense peaks. These peaks will be lost at the thresh-
olding stage if the actual noise level is overestimated by the kσ
value. Also, as light curve data sets become ever greater, as in the
case of the analysis of ensembles of stars (Maehara et al. 2012;
Davenport 2016), it can become increasingly impractical to use
the rule of thumb basis to obtain the same quality of results as
can be accomplished when analyzing only a data set from a star.
Given the difficulties associated with the k-σ standard approach,
where the statistical distribution for noise is defined in order to
identify flares, another approach that provides a robust and reli-
able identification of flares is needed.

Although information theory has been applied to a large
number of problems in the studies of solar and space
physics (Johnson & Wing 2005, 2014; Johnson et al. 2018;
Wing & Johnson 2019; Wing et al. 2005, 2016, 2018, 2020,
2022; Rivera et al. 2022), so far as we know, it has not been used
as a means of proposing a thresholding method for stellar flare
detection. To maximize the return from the light curve data, it
may be useful to consider a new thresholding method based on

this study for the detection of flare events. In this method, the
value of k would be determined so as to maximize the signifi-
cance of the mutual information contained in the flare sequence.
That is, the short-term memory evident both in the Sun and
in other stars, such as KIC 7985370, can be used to identify
the transition from flare dynamics to shot noise. In the case of
KIC 7985370, it appears that 50% of the k = 1.56 threshold
events exhibited characteristics different from noise.

5. Conclusions

In this paper we have analyzed the light curve of KIC 7985370.
Flare events were identified from the detrended light curve as
excursions above a kσ threshold value. We examined how the
choice of the threshold, k, affects the information content of
the flare sequence. The study uses a theoretical information
approach that takes advantage of the additional information
encoded in the ordering of a time sequence. Our analysis of this
star shows:
1. When the light curve over the entire period is considered,

we see that there is an optimal threshold level (kσ) when k
is 1.56, showing that even with a threshold around 1.56σ
the dynamics of the flare events are dramatically differ-
ent from the dynamics of shot noise. This elevated signifi-
cance suggests a short-term memory between events and is
similar to our analysis of the solar waiting time sequence
(Snelling et al. 2020).

2. When a fraction of the waiting times are resampled using a
bootstrap method (Fig. 6), we find that we could eliminate
the memory by shuffling 50% of the waiting times randomly,
suggesting that about 50% of the noise may be actual flare
events.

3. When we considered the timescale on which successive
flares are related, we found that the short-term memory is
eliminated when all flare waiting times lower than a given
∆min are merged. This result suggests that, for KIC 7985370,
there are clusters of flare events that occur with a time sep-
aration of less than 1.5 h. These timescales are similar to
(although slightly shorter than) the timescale on which solar
flares are related (Rivera et al. 2022).
These results suggest that an information-theory-based

threshold that maximizes the information contained in the flare
sequence may detect a more complete stellar flare candidate
list by better capturing the real information contained in a light
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curve. In addition, it minimizes the number of noise peaks
included, thus reducing the proportion of false positives. In
practice, the method can outperform noise-based flare detection
methods by maximizing the significance of mutual information
to determine the optimal threshold level. This procedure is fast
enough to work within existing workflows with large amounts of
data. It should also be noted that the method could be extendable
to any form of signal processing application for peak detection.
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