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M. Cavaglià,85 F. Cavalier,38 R. Cavalieri,39 M. Ceasar,119 G. Cella,18 P. Cerdá-Durán,120 E. Cesarini,117
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165CNR-SPIN, c/o Università di Salerno, I-84084 Fisciano, Salerno, Italy
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232Instituto de Fisica Teorica, 28049 Madrid, Spain

233Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
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Observatoire Côte d’Azur, CNRS, F-06304 Nice, France

236Department of Physics, Hanyang University, Seoul 04763, Korea
237Sungkyunkwan University, Seoul 03063, South Korea
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Results are presented of searches for continuous gravitational waves from 20 accreting millisecond
X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the
third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses
a hidden Markov model, where the transition probabilities allow the frequency to wander according
to an unbiased random walk, while the J -statistic maximum-likelihood matched filter tracks the
binary orbital phase. Three narrow sub-bands are searched for each target, centered on harmonics
of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm
probability of 30% per sub-band and target searched. These candidates, along with one candidate
from an additional target-of-opportunity search done for SAX J1808.4−3658, which was in outburst
during one month of the observing run, cannot be confidently associated with a known noise source.
Additional follow-up does not provide convincing evidence that any are a true astrophysical signal.
When all candidates are assumed non-astrophysical, upper limits are set on the maximum wave
strain detectable at 95% confidence, h95%

0 . The strictest constraint is h95%
0 = 4.7× 10−26 from IGR

J17062−6143. Constraints on the detectable wave strain from each target lead to constraints on
neutron star ellipticity and r-mode amplitude, the strictest of which are ε95% = 3.1 × 10−7 and
α95% = 1.8 × 10−5 respectively. This analysis is the most comprehensive and sensitive search of
continuous gravitational waves from accreting millisecond X-ray pulsars to date.

I. INTRODUCTION

Second generation, ground-based gravitational wave
detectors, specifically the Advanced Laser Interferome-
ter Gravitational wave Observatory (Advanced LIGO)
[1] and Advanced Virgo [2], have detected more than
50 compact binary coalescence events in recent years [3–
5]. Continuous gravitational waves from rapidly-rotating
neutron stars are also potential sources, e.g. a non-
axisymmetry due to mountains on the surface, or stel-
lar oscillation modes in the interior [6–8]. There are no
reported detections of continuous gravitational waves to
date, despite a number of searches in Advanced LIGO
and Advanced Virgo data [9–30].

Low-mass X-ray binaries (LMXBs) are a high-
priority target for continuous gravitational wave searches.
LMXBs are composed of a compact object, such as
a neutron star1, which accretes matter from a stellar-
mass (. 1M�) companion [31]. The accretion exerts a
torque that may spin up the compact object. Electro-
magnetic (EM) observations show that even the pulsar
with the highest known frequency, PSR J1748−2446ad
at 716 Hz [32], rotates well below the centrifugal break-
up frequency, estimated at ∼ 1400 Hz [33]. Gravitational
wave emission may provide the balancing torque in bi-
nary systems such as these, stopping the neutron star
from spinning up to the break-up frequency [34, 35]. If
so, there should thus be a correlation between accretion
rate (which is inferred via X-ray flux) and the strength of
the continuous gravitational wave emission [34–37]. The

∗ Deceased, August 2020.
1 LMXBs in which the compact object is a stellar-mass black hole

are not expected to function as continuous gravitational wave
sources and are not discussed in this paper.

LMXB Scorpius X-1 is the brightest extra-Solar X-ray
source in the sky, making it a prime target for searches
for continuous gravitational waves [11, 18, 38, 39].

Some LMXBs have EM observations of pulsations dur-
ing “outburst” events lasting days to months, which allow
for measurement of their rotational frequency, f?, to an
accuracy of ∼ 10−8 Hz, and measurement of their binary
ephemerides [31, 40]. LMXBs that are observed to go into
outburst and have measurable pulsations with millisec-
ond periods are sometimes called accreting millisecond
X-ray pulsars (AMXPs). If the rotational frequency is
known, computationally cheap narrowband searches are
possible. Six AMXPs were previously searched for con-
tinuous gravitational waves, one in Science Run 6 (S6)
using the TwoSpect algorithm [41, 42], and five in Ob-
serving Run 2 (O2) using the same Hidden Markov Model
(HMM) algorithm we use in this work [12, 43]. No sig-
nificant candidates were found in either search. Searches
for continuous gravitational waves from LMXBs are dif-
ficult as the rotation frequency may wander stochasti-
cally on timescales of . 1 yr [44], limiting the duration
of coherent integration. A HMM tracks a wandering sig-
nal, and is the search algorithm we use here, following
Refs. [11, 12, 43, 45].

Advanced LIGO and Advanced Virgo began the third
Observing Run (O3) on April 1 2019, 15:00 UTC. There
was a month-long commissioning break between Octo-
ber 1 2019, 15:00 UTC, and November 1 2019, 15:00
UTC, after which observations resumed until March 27,
2020, 17:00 UTC. This month-long break divides O3 into
two segments: O3a and O3b. In this work we search
the full O3 data set for continuous gravitational wave
signals from AMXPs with known rotational frequencies.
The search is a more sensitive version of an analogous
search in O2 data [12], with an expanded target list. We
briefly review the algorithm and O2 search in Sec. II. In
Secs. III and IV we describe the targets and the parame-
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ter space respectively. We discuss the data used in Sec. V.
In Sec. VI we describe the vetoes applied to discrimi-
nate between terrestrial and astrophysical candidates. In
Sec. VII we present the results of the search. In Sec. VIII
we describe an additional target-of-opportunity search
performed for one of the targets that was in outburst
during O3a. We provide upper limits for the detectable
wave-strain, and astrophysical implications thereof, in
Sec. IX. We conclude in Sec. X.

II. SEARCH ALGORITHM

The search in this paper follows the same prescription
as the O2 searches for Scorpius X-1 [11] and LMXBs
with known rotational frequency [12]. It is composed of
two parts: a HMM which uses the Viterbi algorithm to
efficiently track the most likely spin history, and the J -
statistic, which calculates the likelihood a gravitational
wave is present given the detector data, and the orbital
parameters of both the Earth and the LMXB. The HMM
formalism is identical to that used in Refs. [11, 12, 38, 43,
45], and the J -statistic was first introduced in Ref. [43].
Below, we provide a brief review of both the HMM and
the J -statistic.

A. HMM

In a Markov process, the probability of finding the sys-
tem in the current state depends only on the previous
state. In a hidden Markov process the states are not di-
rectly observable and must be inferred from noisy data.
In this paper, the hidden state of interest is the gravi-
tational wave frequency f(t). Although the rotation fre-
quency f?(t) of every target in this search is measured
accurately from EM pulsations, we allow f(t) 6= f?(t)
in general for three reasons: i) different emission mech-
anisms emit at different multiples of f? [46]; ii) a small,
fluctuating drift may arise between f(t) and f?(t), if
the star’s core (where the gravitational-wave-emitting
mass or current quadrupole may reside) decouples par-
tially from the crust (to which EM pulsations are locked)
[45, 47]; and, iii) the rotational frequency of the crust
may also drift stochastically due to a fluctuating accre-
tion torque [31, 44]. The gravitational-wave frequency is
therefore hidden even though the EM measurement of f?
helps restrict the searched frequency space, as described
in Sec. IV.

Following the notation of Refs. [11, 12] we label the
hidden state variable as q(t). In our model, it transitions
between a discrete set of allowed values {q1, ..., qNQ

} at
discrete times {t0, ..., tNT

}. The probability of the state
transitioning from qi at time tn to qj at time tn+1 is de-
termined by the transition matrix Aqjqi . In this search,
as in previous searches of LMXBs [11, 12, 38], the tran-

sition matrix is

Aqjqi =
1

3

(
δqjqi+1

+ δqjqi + δqjqi−1

)
, (1)

where δij is the Kronecker delta. Eq. (1) corresponds to
allowing f(t) to move 0, or ±1 frequency bins, with equal
probability, at each discrete transition. It implicitly de-
fines the signal model for f(t) to be a piece-wise constant
function, with jumps in frequency allowed at the discrete
times {t0, ..., tNT

}. This is a well-tested approximation
for an unbiased random walk [43, 45].

The total duration of the search is Tobs, which we split
into NT coherent equal chunks of length Tdrift, where
NT = bTobs/Tdriftc, and b...c indicates rounding down
to the nearest integer. We justify our choice of Tdrift in
Sec. IV. In essence, it needs to be short enough to ensure
that f?(t) does not wander by more than one frequency
bin during each time segment, but ideally no shorter in
order to maximize the signal-to-noise ratio in each seg-
ment. For each time segment the likelihood that the
observation oj is related to the hidden state qi is given
by the emission matrix Lojqi . We calculate Lojqi from
the data via a frequency domain estimator, e.g. the J -
statistic, as discussed in Sec. II B.

The probability that the hidden path is Q =
{q(t0), ..., q(tNT

)} given a set of observations O =
{o(t0), ..., o(tNT

)} is

P (Q |O) = Πq(t0)Aq(t1)q(t0)Lo(t1)q(t1) ...

×Aq(tNT
)q(tNT −1)Lo(tNT

)q(tNT
) , (2)

where Πq(t0) is the prior probability of starting in the
state q(t0), and is taken to be uniform within a certain
range guided by EM measurements of f?. The Viterbi
algorithm is a computationally efficient way to find the
path Q∗ that maximizes Eq. (2) [48].

The detection statistic we use in this work is L =
lnP (Q∗ |O), i.e. the log-likelihood of the most likely path
given the data. The search outputs one P (Q∗|O) value
per frequency bin, corresponding to the optimal path Q∗

terminating in that frequency bin.

B. J -statistic

Any long-lived gravitational wave signal from an
LMXB observed by the detectors is Doppler modu-
lated by the orbital motion of the detectors around
the Solar System barycenter, and by the orbital mo-
tion of the compact object in its binary. The F-
statistic is a frequency domain estimator originally de-
signed for isolated neutron stars, and accounts for the
Earth’s annual orbital motion (as well as the ampli-
tude modulation caused by the Earth’s diurnal rotation)
[49]. Algorithms that implement the F-statistic, such as
lalapps ComputeFstatistic v2 [50], have subsequently
added functionality to account for modulation of the sig-
nal due to binary motion.
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The J -statistic accounts for the binary modulation via
a Jacobi-Anger expansion of the orbit [43]. It ingests F-
statistic “atoms” as calculated for an isolated source as
an input, assumes the binary is in a circular orbit2, and
requires three binary orbital parameters: the period P ,
the projected semi-major axis a0, and the time of pas-
sage of the ascending node Tasc. We use the J -statistic
as the frequency domain estimator Lojqi in this paper,
as in Refs. [11, 12]. The J -statistic is a computationally
efficient algorithm, as it re-uses F-statistic atoms when
searching over a template bank of binary orbital param-
eters.

III. TARGETS

The AMXPs chosen as targets for this search, along
with their positions, orbital elements, and pulsation fre-
quencies are listed in Table I. These 20 targets constitute
all known AMXPs with observed coherent pulsations and
precisely measured orbital elements as of April 20213.
For details on the relevant EM observations, principally
in the X-ray band, see Refs. [31, 40, 53, 54].

Most AMXPs are transient, with “active” (outburst)
and “quiescent” phases. Pulsations, and therefore f?, are
only observed during the active phase. Active phases are
typically associated with accretion onto the neutron star,
however accretion can also happen during quiescence [55].

The frequency derivatives, ḟ?, in the active phase and in
the quiescent phase are set by the accretion torque and
magnetic dipole braking respectively [55, 56]. The value

of ḟ? has implications for the continuous gravitational
wave signal strength (see Sec. IX C), as well as the choice
of Tdrift (see Sec. IV A).

One target, SAX J1808.4−3658, went into outburst
during O3a [57–59]. It may be the case that continuous
gravitational waves are only emitted when an AMXP is
in outburst [60]. If so, we increase our signal-to-noise
ratio by searching only data from the times that it was in
outburst, compared to searching the entirety of O3 data.
To investigate this possibility, we perform in Sec. VIII
an additional target-of-opportunity search for continuous
gravitational waves from SAX J1808.4−3658 while it is
in outburst.

2 This assumption is justified as none of the targets described in
Sec. III have measurable eccentricity with sufficient precision [31,
40].

3 We do not include the AMXP Aquila X-1 [51, 52] in our target list
as there is a large uncertainty on all three binary orbital elements,
compared to the other 20 AMXPs. One would need to search
> 1010 binary orbital templates, an order of magnitude more
than the rest of the targets combined. The number of binary
orbital templates is calculated as a function of the uncertainty
in orbital elements in Sec. IV B.

IV. SEARCH PARAMETERS

The J -statistic matched filter requires specification of
the source sky position [right ascension (RA) and decli-
nation (Dec)], the orbital period P , the projected semi-
major axis a0, and the orbital phase φa at the start of
the search. The orbital phase can be equivalently spec-
ified via a time of passage through the ascending node,
Tasc. EM observations constrain all of these parameters,
as well as the spin frequency f?. These measurements,
along with their associated uncertainties, are listed in
Table I.

There are several mechanisms that could lead to con-
tinuous gravitational wave emission from an AMXP, in
its active or quiescent phase. “Mountains” on the neu-
tron star surface, be they magnetically or elastically sup-
ported, emit at 2f? and potentially f? [97]. The dominant
continuous gravitational wave emission from r-mode os-
cillations (Rossby waves excited by radiation-reaction in-
stabilities) is predicted to be at ∼ 4f?/3 [98–101]. Thus,
we search frequency sub-bands centered on {1, 4/3, 2} f?
for each target. As in Refs. [11, 12] we choose a sub-band
width of ∼ 0.61 Hz4.

Recent work indicates that the continuous gravita-
tional wave signal from r-modes could emit at a frequency
far from 4f?/3 due to equation-of-state-dependent rela-
tivistic corrections, and so comprehensive searches for r-
modes may need to cover hundreds of Hz for the targets
listed in Table I [103, 104]. The exact range of frequen-
cies to search is a non-linear function of f?, and does not
necessarily include 4f?/3 (see equation (17) of Ref. [104]).
However, these estimates are still uncertain. We delib-
erately search ∼ 0.61 Hz sub-bands centered on 4f?/3,
as an exhaustive broadband search lies outside the scope
of this paper, which aims to conduct fast, narrowband
searches at astrophysically motivated harmonics of f?
while accommodating frequency wandering within those
sub-bands, a challenge in its own right.

A. Tdrift and frequency binning

Another key parameter for the search algorithm de-
scribed in Sec. II is the coherence time Tdrift. As in
Refs. [11, 12] we fix Tdrift = 10 d for each target5. This
choice of Tdrift is guided by observations of Scorpius X-1
[44]. Quantitative studies of how X-ray flux variability

4 Other narrowband searches, such as Refs. [10, 102], search sub-
bands whose width, ∼ 10−3f , scales with frequency. We note
that 0.61 Hz is comparable to 10−3f for the harmonics of f? that
we search in this paper, but is 220∆f , where ∆f is the frequency
bin size defined in Sec. IV A. Having the number of frequency
bins in the sub-band equal a power of two speeds up the Fourier
transform [11].

5 We consider additional Tdrift durations for the target-of-
opportunity search for continuous gravitational waves from SAX
J1808.4−3658 during its O3a outburst in Sec. VIII.
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in AMXPs impacts searches for continuous gravitational
waves are absent from the literature. The choice to use
Tdrift = 10 d balances the increased sensitivity achieved
via longer coherence times with the knowledge that the
gravitational wave frequency may wander stochastically,
e.g. due to fluctuations in the mass accretion rate. The
particular value Tdrift = 10 d has been adopted in all pre-
vious Viterbi LMXB searches [11, 12, 38] and is justified
approximately with reference to a simple random-walk
interpretation of fluctuations in the X-ray flux of Scor-
pius X-1 [44, 105, 106], but other values are reasonable
too.

We remind the reader that the choice of Tdrift implicitly
fixes the proposed signal model as one in which the fre-
quency may wander step-wise zero, plus or minus one fre-
quency bin every Tdrift = 10 d. The size of the frequency
bins, ∆f , is fixed by the resolution implied by the coher-
ence time, i.e. ∆f = 1/(2Tdrift) = 5.787037 × 10−7 Hz,
for Tdrift = 10 d. As ∆f depends on Tdrift, changing the
coherence time explicitly changes the signal model, e.g. if
Tdrift is halved and Tobs is kept constant, then both NT

and ∆f double; thus the signal can move up to a factor of
four more in frequency in the same Tobs. The connection
between the coherence time and signal model features in
all semi-coherent search methods. However, for a HMM-
based search such as this, the choice of coherence time
is not limited by computational cost, as it is in all-sky
searches or searches based on the F-statistic [17, 107].

This analysis does not search over any frequency
derivatives. The maximum absolute frequency deriva-
tive, |ḟmax|, that does not change the frequency more
than one frequency bin over the course of one coherent
chunk is ∣∣∣ḟmax

∣∣∣ =
∆f

Tdrift
≈ 6.7× 10−13 Hz s−1 . (3)

When measured, the long-term secular frequency deriva-
tive is well below this value for all of our targets, see
Sec. IX C for details.

B. Number of orbital templates

The orbital elements are known to high precision, with
the uncertainty in P satisfying σP . 10−3 s, the uncer-
tainty in a0 satisfying σa0

. 10−4 light-seconds (lt-s),
and the uncertainty in Tasc satisfying σTasc

. 1 s. How-
ever, Tasc is measured relative to the target’s most re-
cent outburst, which is often years before the start of O3
(TO3, start = 1238166483 GPS time). We need to prop-
agate it forward in time. This propagation compounds
the uncertainty in Tasc, viz. [11, 12, 39]

σTasc,O3
=
[
σ2
Tasc

+ (NorbσP )
2
]1/2

, (4)

where Norb is the number of orbits between the observed
Tasc and Tasc,O3. Henceforth Tasc and σTasc

symbolize
their values when propagated to TO3, start.

To conduct the search over the orbital elements for
each target and sub-band we construct a rectangular
grid in the parameter space defined by (P ± 3σP , a0 ±
3σa0

, Tasc ± 3σTasc
). For three targets, XTE J0929−314,

IGR J16597−3704, and IGR J17494−3030, the range
(Tasc ± P/2) is smaller than (Tasc ± 3σTasc

) and we use
the former. We assume that P and a0 remain within the
same bin for the entire search. While some targets have
a non-zero measurement of Ṗ Tobs (ȧ0 Tobs), in all cases
it is much smaller than the template spacing in P (a0)
[62, 69, 108].

It is unlikely that the true source parameters lie exactly
on a grid point in the parameter space. Thus the grid is
spaced such that the maximum mismatch, µmax, is never
more than an acceptable level. The mismatch is defined
as the fractional loss in signal-to-noise ratio between the
search executed at the true parameters and at the nearest
grid point [109]. We calculate the number of grid points
required for P , a0 and Tasc using Eq. (71) of Ref. [109],
i.e.

NP = π2
√

6µ−1/2max fa0
γTdrift
P 2

σP , (5)

Na0 = 3π
√

2µ−1/2max fσa0
, (6)

NTasc
= 6π2

√
2µ−1/2max fa0

1

P
σTasc

, (7)

where γ is a refinement factor defined in general in
Eq. (67) of Ref. [109]. In the case of O3, the semi-
coherent segments are contiguous so we have γ = NT =
36. We fix µmax = 0.1. A set of software injections into
O3 data verifies that a template grid constructed with
µmax = 0.1 results in a maximum fractional loss in signal-
to-noise ratio of 10%. We make the conservative choice of
rounding NP , Na0

, and NTasc
up to the nearest integer,

after setting f to the highest frequency in each 0.61 Hz
sub-band. As in Ref. [12] we find Na0

= 1 for each tar-
get and sub-band, and so hold a0 constant at its central
value while searching over P and Tasc. Table II shows
NP , NTasc

, and Ntot = NPNTasc
for each target and sub-

band. When Eq. (5) or (7) predicts only two templates
for a given sub-band we round up to three, ensuring that
the central value of P or Tasc from EM observations is
included in the template bank. Note that the EM obser-
vations are sufficiently precise that < 5 × 104 templates
are required across all targets and sub-bands. This is
in contrast to the O2 search for continuous gravitational
waves from Scorpius X-1, for which ∼ 109 templates were
needed, mainly due to the large uncertainty in a0, and
the unknown rotation frequency [11].

C. Thresholds

The output of the search algorithm outlined in Sec. II is
a L value corresponding to the most likely path through
each sub-band for each orbital template (P, a0, Tasc). We
flag a template for further follow-up if L exceeds a thresh-
old, Lth, given an acceptable probability of false alarm.
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TABLE II: Starting frequencies, fs, for each ∼ 0.61 Hz-wide sub-band, number of templates needed to cover the P
and Tasc domains in that sub-band, NP and NTasc

respectively, and the total number of templates for each
sub-band, Ntot = NPNTasc

. The projected semi-major axis a0 is known precisely enough that we have Na0
= 1 for

each sub-band.

Target fs (Hz) NP NTasc Ntot Target fs (Hz) NP NTasc Ntot

IGR J00291+5934 598.6 1 3 3 IGR J17498−2921 400.7 1 17 17
798.5 1 3 3 534.7 1 22 22

1197.8 1 3 3 802.0 3 33 99
MAXI J0911−655 339.7 1 10 10 IGR J17511−3057 244.5 1 14 14

453.3 3 14 42 326.4 1 19 19
679.9 3 20 60 489.7 1 28 28

XTE J0929−314 184.8 3 52 156 XTE J1751−305 435.0 4 195 780
246.8 3 69 207 580.4 5 260 1300
370.2 3 104 312 870.6 8 390 3120

IGR J16597−3704 104.9 49 23 1127 Swift J1756.9−2508 181.8 10 34 340
140.2 65 31 2015 242.8 13 45 585
210.4 97 46 4462 364.1 20 67 1340

IGR J17062−6143 163.4 1 1 1 IGR J17591−2342 527.1 1 3 3
218.2 1 1 1 703.2 3 3 9
327.3 1 1 1 1054.9 3 4 12

IGR J17379−3747 467.8 4 12 48 XTE J1807−294 190.3 1 7 7
624.1 5 15 75 254.2 1 9 9
936.2 7 23 161 381.2 1 13 13

SAX J1748.9−2021 442.1 3 18 54 SAX J1808.4−3658 400.7 4 5 20
589.8 3 24 72 534.6 5 7 35
884.7 3 36 108 802.0 7 10 70

NGC 6440 X−2 205.6 1 6 6 XTE J1814−338 314.1 1 9 9
274.5 1 8 8 419.1 1 12 12
411.8 1 12 12 628.7 1 17 17

IGR J17494−3030 375.7 21 112 2352 IGR J18245−2452 254.0 3 44 132
501.4 27 150 4050 339.1 3 58 174
752.1 41 224 9184 508.7 5 87 435

Swift J1749.4−2807 517.6 7 43 301 HETE J1900.1−2455 377.0 1 17 17
690.6 9 57 513 503.1 1 22 22

1035.8 13 85 1105 754.6 1 33 33

To determine Lth we need to know how often pure noise
yields L > Lth. The distribution of L in noise-only data
is unknown analytically, but depends on P , a0, and the
frequency, so Monte-Carlo simulations are used to deter-
mine Lth in each sub-band for each target.

We estimate the distribution of L in noise via two
methods: i) using realizations of synthetic Gaussian noise
generated using the lalapps Makefakedata v5 program
in the LIGO Scientific Collaboration Algorithm Library
(LALSuite) [50], and ii) searching O3 data in off-target
locations to simulate different realizations of true detec-
tor noise. As in Refs. [11, 12] we generate realizations
for each target and sub-band, and apply the search algo-
rithm described in Sec. II to each realization to recover
samples from the noise-only distribution of L. Details on
how we use these samples to find Lth for each sub-band
are given in Appendix A. Unless otherwise noted, Lth

refers to the lower of the two thresholds derived from the
methods listed above to minimize false dismissals.

To define Lth we must also account for a “trials fac-
tor” due to the number of templates searched in each
sub-band. We assume that in noise-only data the spac-

ing between templates is sufficiently large such that each
template returns a statistically independent L. We can
therefore relate the false alarm probability for a search of
a sub-band with Ntot templates, αNtot

, to the probability
of a false alarm for a single template, α, viz.

αNtot
= 1− (1− α)Ntot . (8)

Previous comparable searches have set αNtot between
0.01 and 0.3 [11, 12, 38, 39]. In this search, we fix
αNtot = 0.3, i.e. set the acceptable probability of false
alarm at 30% per sub-band. As we search a total of
20× 3 = 60 sub-bands, we expect ∼ 18 candidates above
Lth due to noise alone (i.e. false alarms), a reasonable
number on which to perform more exhaustive follow-up.
Looking ahead to the results in Sec. VII we recover 4611
candidates above Lth. While this number is much higher
than the ∼ 18 false alarms expected, almost all of these
candidates are non-Gaussian noise artifacts in one (or
both) of the detectors. All but 16 of the 4611 candidates
are eliminated by the vetoes outlined in Sec. VI. We re-
iterate that Lth in each sub-band is the lower of the two
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thresholds described in Appendix A, lowering conserva-
tively the probability of false dismissal.

D. Computing resources

A mix of central processing unit (CPU) and graphical
processing unit (GPU) resources are used. The GPU im-
plementation of the J -statistic is identical to that used
in Refs. [11, 12]. The entire search across all targets and
sub-bands takes ∼ 30 CPU-hours and ∼ 40 GPU-hours
when using compute nodes equipped with Xeon Gold
6140 CPUs and NVIDIA P100 12GB PCIe GPUs. Pro-
ducing Lth for each sub-band, as described in Sec. IV C,
takes an additional ∼ 5× 102 CPU-hours and ∼ 4× 103

GPU-hours to perform the search on different noise re-
alizations. The additional follow-up in Appendix B 1 re-
quires an additional ∼ 103 CPU-hours and ∼ 102 GPU-
hours.

V. O3 DATA

We use the full dataset from O3, spanning from April 1,
2019, 15:00 UTC to March 27, 2020, 17:00 UTC, from the
LIGO Livingston and Hanford observatories. We do not
use any data from the Virgo interferometer in this analy-
sis, due to its lower sensitivity compared to the two LIGO
observatories in the frequency sub-bands over which we
search [110]. The data products ingested by the search
algorithm described in Sec. II are short Fourier trans-
forms (SFTs) lasting 1800 s. Times when the detectors
were offline, poorly calibrated, or were impacted by egre-
gious noise, are excluded from analysis by using “Cat-
egory 1” vetoes as defined in section 5.2 of Ref. [110].
The SFTs are generated from the “C01 calibrated self-
gated” dataset, which is the calibrated strain data with
loud transient glitches removed [111]. Transient glitches
otherwise impact the noise floor, as described in section
6.1 of Ref. [110]. The median systematic error of the
strain magnitude across O3 is < 2% [112, 113].

The coherence time Tdrift = 10 d splits the data into
NT = 36 segments. However, due to the month-long
commissioning break between O3a and O3b there are two
segments without any SFTs. These two segments, start-
ing at October 8, 2019, 15:00 UTC and October 15, 2019,
15:00 UTC, are replaced with a uniform log-likelihood for
all frequency bins, which allows the HMM to effectively
skip over them while still allowing spin wandering. When
generating synthetic data in Secs. IV C and IX the same
two data segments are also replaced with uniform log-
likelihoods to emulate the real search.

VI. VETOES

When a candidate is returned with L > Lth we must
decide whether there are reasonable grounds to veto the

candidate as non-astrophysical. We use three of the
vetoes from Ref. [12]: the known line veto, detailed
in Sec. VI A, the single interferometer veto, detailed in
Sec. VI B, and the off-target veto, detailed in Sec. VI C.
The false dismissal rate of these vetoes is less than 5%
(see detailed safety investigations in section IVB of Ref.
[38] and section IVB of Ref. [11]).

A. Known line veto

As part of the detector characterization process many
harmonic features are identified as instrumental “known
lines” [110, 114]. However, the exact source of these har-
monic features is sometimes unidentified, and their im-
pact cannot always be mitigated through isolating hard-
ware components or post-processing the data [110, 114].
We use the vetted known lines list in Ref. [115].

Any candidate close to a known line at frequency fline
is vetoed. Precisely, if for any time 0 ≤ t ≤ Tobs the
candidate’s frequency path f(t) satisfies

|f(t)− fline| < 2πa0fline/P , (9)

then the candidate is vetoed6.

B. Single interferometer veto

An instrumental artifact is unlikely to be coincident
in both detectors, so the candidate’s L should be dom-
inated by only one of the detectors if the signal is non-
astrophysical. On the other hand, an astrophysical signal
may need data from both detectors to be detected, or if
it is particularly strong may be seen in both detectors
individually.

We label the original log-likelihood as L∪, and we also
calculate the two single interferometer log-likelihoods La

and Lb (where the higher L is labeled with b for definite-
ness). There are four possible outcomes for this veto:

1. If the L value in one detector is sub-threshold, while
the other is above the two-detector L value, i.e. one
has La < Lth and Lb > L∪ and fb(t), the frequency
path associated with Lb, is close to the frequency
path of the candidate when using data from both
detectors, f∪(t), i.e.

|f∪(t)− fb(t)| < 2πa0f∪/P , (10)

6 One might consider an additional Doppler broadening factor of
2πa⊕/1 yr, where a⊕ is the mean Earth-Sun distance, as sta-
tionary lines in the detector frame get Doppler shifted when
transforming the data to the frame of reference of the source.
We opt not to apply this factor for simplicity in this search, as
the exact pattern of Doppler modulation depends strongly on
the sky location of the target. Looking ahead to the results in
Sec. VII, we note that none of the 16 surviving candidates is
within 2πfa⊕/1 yr of any known line.
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then the candidate is likely to be a noise artifact in
detector b, and is vetoed.

2. If one has La < Lth and Lb > L∪, but Eq. (10) does
not hold then the candidate signal cannot be ve-
toed, as the single-interferometer searches did not
find the same candidate. This could indicate that
the candidate is a weak astrophysical signal that
needs data from both detectors to be detectable.

3. If one has La > Lth and Lb > Lth, the candidate
could represent a strong astrophysical signal that is
visible in data from both detectors independently,
or it could represent a common noise source. Can-
didates in this category cannot be vetoed.

4. If one has La < Lth and Lb < L∪, data from both
detectors is needed for the candidate to be above
threshold, possible indicating a weak astrophysical
signal. Candidates in this category cannot be ve-
toed.

C. Off-target veto

The third veto we apply to a candidate is to search an
off-target sky position with the same orbital template.
If the off-target search returns L > Lth then the candi-
date is likely instrumental rather than astrophysical. For
this veto, off-target corresponds to shifting the target sky
position +40 m in RA and +10◦ in Dec.

VII. O3 SEARCH RESULTS

The results of the search of all 20 targets are summa-
rized in Fig. 1, with αNtot

= 0.3, i.e. a nominal proba-
bility of false alarm per sub-band of 30%. Each symbol
indicates, for all templates with L > Lth, the terminat-
ing frequency bin and pnoise, the probability that a search
of that candidate’s sub-band in pure noise would return
at least one candidate at least as loud as the one seen.
Equation (A6) in Appendix A 5 defines pnoise explicitly.
Each candidate is colored according to L. We note that
high L does not always correspond to low pnoise due to the
differing “trials factors” in each sub-band, as accounted
for when calculating Lth via Eq. (8). A low value of pnoise
corresponds to a higher probability that the candidate is
a true astrophysical signal. Targets not listed in the leg-
end return zero candidates above threshold. We do not
display in Fig. 1 candidates that are eliminated by any
of the vetoes described in Sec. VI for clarity.

In total, across all targets and sub-bands, there are
4611 candidates with L > Lth, before the vetoes are ap-
plied. All but 100 are eliminated by veto A (known line
veto). A further 84 candidates are eliminated by veto B
(single interferometer veto). None of the remaining can-
didates are eliminated by veto C (off-target veto), leav-
ing 16 candidates passing all of the vetoes outlined in

Sec. VI. None of the surviving candidates from the O3
search coincide in their orbital template and terminating
frequency bin with the seven above- or sub-threshold can-
didates from the O2 search (c.f. Table VI of Ref. [12]). If
we set αNtot

= 0.01, i.e. set the probability of false alarm
per sub-band to 1%, the search does not return any can-
didates with L > Lth for any target or sub-band, after
vetoes are applied.

In Secs. VII A–VII T we summarize the search results
for each of the 20 targets. To guide the reader, and not
clutter the main body of the paper, the full search results
for one target, IGR J18245−2452, are shown in Fig. 2,
while the full search results for the other 19 targets are
shown in Figs. 4a–4s in Appendix B. The orbital tem-
plate, terminating frequency bin, L, and pnoise for all
16 candidates with L > Lth are collated in Table VI in
Appendix B. We present further follow-up of the 16 can-
didates in Appendix B 1. We find no convincing evidence
that any are a true astrophysical signal.

A. IGR J18245−2452

The search results for IGR J18245−2452 are presented
in Fig. 2. Each marker in Fig. 2 shows the terminat-
ing frequency and associated L of the most likely path
through the sub-band for a given template, i.e. choice of
P and Tasc. The vertical blue dashed (green dot-dashed)
lines correspond to the threshold set via Gaussian (off-
target) noise realizations, Lth,G (Lth,OT), in each sub-
band, with αNtot

= 0.3. See Appendix A for details on
how we set thresholds in each sub-band. The horizontal
red lines indicate known instrumental lines in the detec-
tor with bandwidth indicated by the shading. There are
zero above-threshold candidates in the f? and 4f?/3 sub-
bands. There are 435 above-threshold candidates in the
2f? sub-band, which are all coincident with known noise
lines in both the Livingston and Hanford detectors, and
are therefore eliminated by veto A. The sub-band around
508 Hz is especially noisy due to violin mode resonances
[110].

B. IGR J00291+5934

The search results for IGR J00291+5934 are shown in
Fig. 4a, which is laid out identically to Fig. 2. There
are zero above-threshold candidates in the 4f?/3 and 2f?
sub-bands. There are three above-threshold candidates
in the f? sub-band, however all three of these candidates
are coincident with known noise lines in the Hanford de-
tector, and are therefore eliminated with veto A.

C. MAXI J0911−655

The search results for MAXI J0911−655 are shown in
Fig. 4b, which is laid out identically to Fig. 2. There
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are zero above-threshold candidates in the f? and 2f?
sub-bands. There is one above-threshold candidate in
the 4f?/3 sub-band which survives all of the vetoes and
has pnoise = 0.26. Additional follow-up, presented in Ap-
pendix B 1, does not provide any evidence that this can-
didate is a true astrophysical signal.

D. XTE J0929−314

The search results for XTE J0929−314 are shown in
Fig. 4c, which is laid out identically to Fig. 2. There

are zero above-threshold candidates across all three sub-
bands.

E. IGR J16597−3704

The search results for IGR J16597−3704 are shown in
Fig. 4d, which is laid out identically to Fig. 2. Each
sub-band for this target is contaminated with known
noise lines. There are 84 above-threshold candidates in
the 4f?/3 sub-band, however they are all eliminated by
veto B. One above-threshold candidate is returned in
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each of the f? and 2f? sub-bands. Both of these can-
didates survive all of the vetoes, and have pnoise = 0.30
and pnoise = 0.09 respectively. Further follow-up, includ-
ing the frequency path and cumulative log-likelihood for
the latter candidate, is presented in Appendix B 1. This
follow-up does not provide any evidence that either can-
didate is a true astrophysical signal.

F. IGR J17062−6143

The search results for IGR J17062−6143 are shown in
Fig. 4e, which is laid out identically to Fig. 2. Given
the long-term timing presented in Ref. [69] there is only
one template needed in each of the three sub-bands for
this target. The template returns L > Lth in all three
of the f?, 4f?/3, and 2f? sub-bands. All of these can-
didates survive all of the vetoes, and have pnoise = 0.24,
pnoise = 0.19, and pnoise = 0.05 respectively. Further
follow-up, including the frequency path and cumulative
log-likelihood for the candidate with pnoise = 0.05, is pre-
sented in Appendix B 1. This follow-up does not provide
any evidence that any of the three candidates are a true
astrophysical signal.

G. IGR J17379−3747

The search results for IGR J17379−3747 are shown in
Fig. 4f, which is laid out identically to Fig. 2. There are
zero above-threshold candidates in the f? and 2f? sub-
bands. There is one above-threshold candidate in the
4f?/3 sub-band which survives all of the vetoes and has
pnoise = 0.08. Further follow-up, including the frequency
path and cumulative log-likelihood, for this candidate is
presented in Appendix B 1. This follow-up does not pro-
vide any evidence that the candidate is a true astrophys-
ical signal.

H. SAX J1748.9−2021

The search results for SAX J1748.9−2021 are shown
in Fig. 4g, which is laid out identically to Fig. 2. There
are zero above-threshold candidates in the f? sub-band.
There are two above-threshold candidates in the 4f?/3
sub-band which survive all of the vetoes and have pnoise =
0.12 and pnoise = 0.27. There is one above-threshold can-
didate in the 2f? sub-band which survives all of the vetoes
and has pnoise = 0.22. Additional follow-up, presented in
Appendix B 1, does not provide any evidence that any of
the three candidates are a true astrophysical signal.

I. NGC 6440 X−2

The search results for NGC 6440 X−2 are shown in
Fig. 4h, which is laid out identically to Fig. 2. There

are zero above-threshold candidates across all three sub-
bands.

J. IGR J17494−3030

The search results for IGR J17494−3030 are shown in
Fig. 4i, which is laid out identically to Fig. 2. There
are zero above-threshold candidates in the f? and 2f?
sub-bands. All 4050 candidates in the 4f?/3 sub-band
are above threshold, however all of them are coincident
with a known noise line in the Hanford detector, and are
therefore eliminated with veto A. The sub-band around
501.7 Hz is especially noisy due to violin mode resonances
[110].

K. Swift J1749.4−2807

The search results for Swift J1749.4−2807 are shown in
Fig. 4j, which is laid out identically to Fig. 2. There are
zero above-threshold candidates in the f? and 4f?/3 sub-
bands. There is one above threshold candidate in the 2f?
sub-band. However it is coincident with a known noise
line in the Hanford detector, and is therefore eliminated
by veto A.

L. IGR J17498−2921

The search results for IGR J17498−2921 are shown in
Fig. 4k, which is laid out identically to Fig. 2. There are
zero above-threshold candidates in the f?, and 4f?/3 sub-
bands. There is one above-threshold candidate in the 2f?
sub-band which survives all of the vetoes and has pnoise =
0.22. Additional follow-up, presented in Appendix B 1,
does not provide any evidence that this candidate is a
true astrophysical signal.

M. IGR J17511−3057

The search results for IGR J17511−3057 are shown in
Fig. 4l, which is laid out identically to Fig. 2. There
are zero above-threshold candidates across all three sub-
bands.

N. XTE J1751−305

The search results for XTE J1751−305 are shown in
Fig. 4m, which is laid out identically to Fig. 2. There
are zero above-threshold candidates across all three sub-
bands.
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O. Swift J1756.9−2508

The search results for Swift J1756.9−2508 are shown
in Fig. 4n, which is laid out identically to Fig. 2. There
are zero above-threshold candidates across all three sub-
bands.

P. IGR J17591−2342

The search results for IGR J17591−2342 are shown in
Fig. 4o, which is laid out identically to Fig. 2. There
are zero above-threshold candidates across all three sub-
bands.

Q. XTE J1807−294

The search results for XTE J1807−294 are shown in
Fig. 4p, which is laid out identically to Fig. 2. There are
zero above-threshold candidates in the f? and 4f?/3 sub-
bands. There is one above-threshold candidate in the 2f?
sub-band which survives all of the vetoes and has pnoise =
0.10. Further follow-up, including the frequency path and
cumulative log-likelihood, for this candidate is presented
in Appendix B 1. This follow-up does not provide any
evidence that the candidate is a true astrophysical signal.

R. SAX J1808.4−3658

The search results for SAX J1808.4−3658 are shown in
Fig. 4q, which is laid out identically to Fig. 2. There are
zero above-threshold candidates in the f? and 2f? sub-
bands. There are two above-threshold candidates in the
4f?/3 sub-band which survive all of the vetoes and have
pnoise = 0.16 and pnoise = 0.30. Additional follow-up,
presented in Appendix B 1, does not provide any evidence
that either candidate is a true astrophysical signal.

SAX J1808.4−3658 was observed in outburst in Au-
gust 2019, during O3a [58, 59]. This allows us to per-
form an additional target-of-opportunity search during
only its active phase. If the target only emits continuous
gravitational waves during outburst, searching a shorter
duration of data increases the probability of detection by
increasing the signal-to-noise ratio. The details and re-
sults of this target-of-opportunity search are in Sec. VIII.
In summary, after searching with three separate coher-
ence times of Tdrift = 1 d, Tdrift = 8 d, and Tdrift = 24 d,
only one candidate is above threshold and survives all of
the vetoes. The candidate is found using Tdrift = 24 d
in the f? sub-band, and has pnoise = 0.02. Additional
follow-up does not reveal any informative features that
would distinguish between an astrophysical signal and
noise. It does not coincide with either of the two candi-
dates in the 4f?/3 sub-band found in the semi-coherent
search using the full O3 data set.

S. XTE J1814−338

The search results for XTE J1814−338 are shown in
Fig. 4r, which is laid out identically to Fig. 2. There
are zero above-threshold candidates in the 4f?/3 and 2f?
sub-bands. There is one above-threshold candidate in
the f? sub-band which survives all of the vetoes and has
pnoise = 0.08. Further follow-up, including the frequency
path and cumulative log-likelihood, for this candidate is
presented in Appendix B 1. This follow-up does not pro-
vide any evidence that the candidate is a true astrophys-
ical signal.

T. HETE J1900.1−2455

The search results for HETE J1900.1−2455 are shown
in Fig. 4s, which is laid out identically to Fig. 2. There
are zero above-threshold candidates in the f? sub-band.
All 22 templates in the 4f?/3 sub-band return candidates
above Lth, however these candidates are all coincident
with known noise lines in the Hanford detector, and are
summarily eliminated with veto A. The sub-band around
503 Hz is especially noisy due to violin mode resonances
[110]. There is one above-threshold candidate in the 2f?
sub-band which survives all of the vetoes and has pnoise =
0.25. Additional follow-up, presented in Appendix B 1,
does not provide any evidence that this candidate is a
true astrophysical signal.

VIII. TARGET-OF-OPPORTUNITY SEARCH:
SAX J1808.4−3658 IN OUTBURST

On August 7 2019 SAX J1808.4−3658 went into out-
burst [57]. The Neutron star Interior Composition Ex-
plorer (NICER) team undertook a high-cadence moni-
toring campaign, and performed a timing analysis of the
pulsations [58]. The outburst lasted for roughly 24 days,
with enhanced X-ray flux observed between August 7
2019 and August 31 2019 (see Fig. 1 of Ref. [58]). We
note that the Swift X-ray Telescope observed increased
X-ray activity from August 6 2019, and observations in
the optical i′-band with the Las Cumbres Observatory
network detected an increased flux from July 25 2019
[59].

Outburst events are attributed to in-falling plasma
that is channeled by the magnetosphere onto a localized
region on the neutron star surface, creating a hot spot
that rotates with the star [116]. As the observed X-ray
flux is assumed to be linearly proportional to the mass
accretion rate, an outburst could result in a larger moun-
tain on the neutron star surface (or excite r-modes in the
interior), compared to when the AMXP is in quiescence
[60, 117].

If continuous gravitational waves are only emitted
from SAX J1808.4−3658 when it is in outburst, search-
ing all of the O3 data decreases the signal-to-noise ra-
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tio, as compared to only searching data from the out-
burst. To protect against this possibility, we do an ad-
ditional search for continuous gravitational waves from
SAX J1808.4−3658 using data from both LIGO obser-
vatories between 1249171218 GPS time (August 7 2019)
and 1251244818 GPS time (August 31 2019), rather than
data from the entirety of O3, as in Sec. VII R.

A. Search parameters

The search algorithm is laid out in Sec. II. We run
the search using three different coherence times, set-
ting Tdrift = 1 d, Tdrift = 8 d, and Tdrift = 24 d. We
search three sub-bands centered on {1, 4/3, 2}f?, for each
Tdrift. The width of the sub-band depends on Tdrift. It is
∼ 0.76 Hz for the searches with Tdrift = 1 d and 8 d, and is
∼ 1.01 Hz for the search with Tdrift = 24 d. Given the pre-
cise timing achieved during the outburst in 2019 [58], and
the shorter search duration, only one {P, Tasc, a0} tem-
plate is required for each sub-band, according to Eqs. (5)–
(7). Due to the different values of Tdrift, shorter total du-
ration, and different number of templates, we re-calculate
Lth for each sub-band and value of Tdrift, using the pro-
cedure outlined in Sec. IV C and Appendix A. As in the
full O3 search, we set the probability of false alarm in
each sub-band at αNtot

= 0.3. For all candidates that
have L > Lth we apply the three vetoes described in VI.

B. Search results

For Tdrift = 1 d, the search in the f? sub-band returns
one candidate above Lth. The candidate survives both
veto A (known line) and veto B (single interferometer),
but fails veto C (off-target). The searches in the 4/3f?
and 2f? sub-bands do not return any candidates above
Lth.

For Tdrift = 8 d, there are no candidates above Lth in
any of the three sub-bands.

For Tdrift = 24 d, the searches in the 4f?/3 and 2f?
sub-bands do not return any candidates above Lth. The
search in the f? sub-band does return one candidate
above Lth. This candidate survives all of the vetoes
outlined in Sec. VI. We remind the reader that with
αNtot = 0.3 and nine sub-bands searched (three for each
of the three choices of Tdrift), we should expect ∼ 3 can-
didates above threshold purely due to noise. The proba-
bility that we would see a value of L at least this large if
this sub-band is pure noise, pnoise, is 0.02. The template
and frequency of the candidate are not coincident with
any candidate from the full O3 search (see Table VI) or
the sub-threshold candidate found in the search of this
sub-band in O2 data [12]. By setting Tdrift = Tobs = 24 d
we perform a fully coherent search across this time pe-
riod, with a frequency bin size of ∆f = 2.4×10−7 Hz. We
describe in Appendix C further follow-up of this candi-
date. In summary, we find no significant evidence that it

is an astrophysical signal rather than a noise fluctuation.

IX. FREQUENTIST UPPER LIMITS

If we assume that the remaining candidates reported
in Sec. VII and Appendix B are false alarms, we can
place an upper limit on the wave strain that is detectable
at a confidence level of 95%, h95%0 , in a sub-band. The

value of h95%0 is a function of our algorithm, the detector
configuration during O3, and our assumptions about the
signal model. We describe the method used to estimate
h95%0 in Sec. IX A, present the upper limits in each sub-
band in Sec. IX B, and compare the results to indirect
methods that calculate the expected strain in the 2f?
sub-band in Sec. IX C. The astrophysical implications are
discussed in Sec. IX D.

A. Upper limit procedure in a sub-band

We set empirical frequentist upper limits in each
sub-band using a sequence of injections into O3 SFTs.
For each sub-band we inject Ntrials = 100 simu-
lated binary signals at 12–15 fixed values of h0 using
lalapps Makefakedata v5 [50]. For each of the Ntrials

injections at a fixed h0 we select a constant injection
frequency, finj, uniformly from the sub-band. While
the injected signal has zero spin-wandering, we still use
Tdrift = 10 d in the search algorithm outlined in Sec. II
to mimic the real search. The injected period, Pinj, and
time of ascension, Tasc, inj are chosen uniformly from the
ranges [P−3σP , P+3σP ] and [Tasc−3σTasc

, Tasc+3σTasc
]

respectively. We keep a0 fixed at the precisely known
value for each target. The polarization, ψ, is chosen uni-
formly from the range [0, 2π]. The cosine of the projected
inclination angle of the neutron star spin axis with our
line of sight, cos ι, is chosen uniformly from the range
[−1, 1]7. We then search for the injected signal with the
template in this sub-band’s template grid that is nearest
to {Pinj, Tasc, inj}. We re-calculate Lth such that the prob-
ability of false alarm in each sub-band is αNtot = 0.01.
This allows us to set conservative upper limits, even in
sub-bands where we have marginal candidates above a
threshold corresponding to a probability of false alarm of
30% per sub-band. By recording the fraction of injected
signals we recover at each h0 with L > Lth we estimate
the efficiency, ε, as a function of h0. We then perform a
logistic regression [118] to obtain a sigmoid fit to ε(h0),

7 While the inclination angle of the binary with respect to our line
of sight is restricted via EM observations for some of our targets,
we opt to marginalize over cos ι as the neutron star spin axis
may not necessarily align with the orbital axis of the binary. It
is possible to scale our results via equation (19) of Ref. [106], if
one wishes to fix cos ι.
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and solve

ε(h95%0 ) = 0.95 , (11)

to find an estimate of h95%0 in the given sub-band.
One might reasonably ask, how precise is this esti-

mate of h95%0 ? The main factors impacting the precision
are: (i) the precision of the most likely parameters of the
sigmoid, as estimated via logistic regression, when solv-
ing Eq. (11) for h95%0 , given the Ntrials injections done
at 12–15 values of h0; and (ii) the assumption that the
strain data (and hence the SFTs) are perfectly calibrated.
We investigate the impact of (i) by drawing alternative
sigmoid fits of ε(h0) using the covariance matrix of the
parameters returned by the logistic regression. We find
that inverting these alternative fits through Eq. (11) re-

sults in a value of h95%0 that varies by less than 5% from
the value calculated via the most likely parameters (at
the 95% confidence level). The impact of (ii) is trickier
to quantify. As described in Refs. [112, 113] the me-
dian systematic error in the magnitude of the strain is
less than 2% in the 20–2000 Hz frequency band across
O3a. The statistical uncertainty around the measure-
ment of calibration bias means that in the worst case the
true magnitude of the calibration bias may be as large as
7%. However, the calibration bias at a given frequency
is not correlated between the detectors (see Figures 16
and 17 in Ref. [112]), and so the impact on a continuous
gravitational wave search that combines data from both
detectors is likely to be less than 7%.

In light of the above considerations we quote h95%0 to
a precision of two significant figures, but we emphasize
that estimating h95%0 involves many (potentially com-
pounding) uncertainties. Subsequent conclusions about
the physical system that are drawn from estimates of
h95%0 cannot be more precise than the estimate of h95%0

itself.

B. Upper limits

The estimates of h95%0 for each target and sub-band
are listed in Table III. Dashes correspond to sub-bands
that are highly contaminated with noise lines, which pre-
clude the procedure described in Sec. IX A, as one always
finds L > Lth, regardless of h0. The most sensitive sub-
bands are for IGR J17062−6143 with h95%0 = 4.7×10−26

in both the 4f?/3 and 2f? sub-bands (centered around
218.2 Hz and 327.6 Hz respectively). These sub-bands lie
in the most sensitive band of the detector, and the binary
elements are known to high precision [69], so only one
template is needed in each sub-band, corresponding to a
relatively lower Lth at fixed probability of false alarm.

No estimates of h95%0 were established in Ref. [12] for
the five targets therein. The search of XTE J1751−305
in S6 data estimated h95%0 ≈ 3.3×10−24, 4.7×10−24, and
7.8×10−24 in three sub-bands corresponding to f?, an r-
mode frequency, and 2f? respectively [42]. Our estimates

TABLE III: Upper limits on the detectable gravitational
wave strain at a 95% confidence level, h95%0 , in each of
the sub-bands for each target. See Sec. IX A for details
on how they are estimated, and the precision to which

they are known. Upper limits are not estimated in
sub-bands marked with a “−” as these sub-bands are

highly contaminated with known noise lines.

h95%
0 in each sub-band (×10−26)

Target f? 4f?/3 2f?

IGR J00291+5934 − 7.6 11
MAXI J0911−655 7.7 6.4 7.3
XTE J0929−314 5.1 5.3 6.4
IGR J16597−3704 7.5 − 5.6
IGR J17062−6143 8.1 4.7 4.7
IGR J17379−3747 8.5 7.4 10
SAX J1748.9−2021 9.2 7.7 10
NGC 6440 X−2 6.2 7.2 5.8
IGR J17494−3030 8.3 − 9.0
Swift J1749.4−2807 11 17 24
IGR J17498−2921 7.0 6.6 8.4
IGR J17511−3057 7.5 5.5 6.6
XTE J1751−305 10 8.3 9.7
Swift J1756.9−2508 8.1 8.8 6.3
IGR J17591−2342 9.5 11 14
XTE J1807−294 6.1 5.0 5.6
SAX J1808.4−3658 6.4 6.9 8.8
XTE J1814−338 9.4 6.0 6.9
IGR J18245−2452 9.0 6.3 −
HETE J1900.1−2455 5.6 − 8.4

of h95%0 for XTE J1751−305 improve these results by
two orders of magnitude, because the detector is more
sensitive, and Tdrift is longer.

C. Comparison to expected strain from AMXPs

It is valuable to consider how strong the signal from
our targets could be, given EM observations. If we as-
sume that all rotational energy losses, as observed in the
frequency derivative ḟ?, are converted into gravitational
radiation, the indirect spin-down limit on the maximum
strain, h0, sd, is [46]

h0, sd = 4.0× 10−28
(

8 kpc

D

)

×
(

600 Hz

fGW

)1/2
(

−ḟGW

10−14 Hz s−1

)1/2

, (12)

where D is the distance to the target, fGW is the grav-
itational wave frequency, and ḟGW is its derivative. In
Eq. (12) we assume Izz/I0 ≈ 1, i.e. the zz component
of the moment-of-inertia tensor (Izz) is very close to the
moment-of-inertia of an undeformed star (I0). We as-
sume fGW ≈ 2f? when computing Eq. (12) for each of
our targets. We list the best estimates for the distance
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TABLE IV: Maximum expected strain from each target, as inferred from EM observations. The second column
contains the best estimate for the distance to the target. Targets with “-” listed as the frequency derivative (third

column), ḟ?, do not have a measured value during outburst, and also do not have a long-term (quiescent) ḟ?
measured either. The labels (A) and (Q) indicate that ḟ? is measured in outburst and quiescence respectively. The
scaling equations used to estimate the maximum spin-down strain (fourth column), h0, sd, and the maximum strain
assuming torque-balance (sixth column), h0 torque, are Eqs. (12) and (13) respectively. The h0, sd value is calculated

using the central distance and ḟ? estimates. The h0 torque value is calculated using the maximum bolometric X-ray
flux measured during outburst (fifth column), FX,max, which is typically measured to a precision of ∼ 10%. The
X-ray flux of each target in quiescence is not shown, as it is only measured for half of the targets, and is usually
∼ 1− 2 orders of magnitude lower than FX,max. The seventh column contains h95%0 in the 2f? sub-band (fourth

column of Table III) to facilitate comparisons between h95%0 and h0 torque or h0, sd.

Distance h0, sd FX,max (×10−8 h0,torque h95%
0

Target (kpc) ḟ? (Hz s−1) (×10−26) erg s−1 cm−2) (×10−26) (×10−26) Refs.

IGR J00291+5934 4.2(5) −4.0(1.4)× 10−15 (Q) 0.05 0.35 0.2 11 [53, 119–121]
MAXI J0911−655 9.45(15) - - 0.047 0.1 7.3 [63, 64, 122]
XTE J0929−314 7.4a −9.2(4)× 10−14 (A) 0.2 0.1 0.2 6.4 [53, 65, 123]
IGR J16597−3704 9.1b - - 0.065 0.2 5.6 [68]
IGR J17062−6143 7.3(5) +3.77(9)× 10−15 (A) 0.04f 0.006 0.05 4.7 [69, 124]
IGR J17379−3747 8c −1.2(1.9)× 10−14e(A) 0.05 0.04 0.08 10 [70, 71, 125, 126]
SAX J1748.9−2021 8.5b - - 0.077 0.1 10 [53, 72, 127, 128]
NGC 6440 X−2 8.5b - - 0.02 0.09 5.8 [74, 127]
IGR J17494−3030 8c −2.1(7)× 10−14 (Q) 0.07 0.0143 0.05 9.0 [75]
Swift J1749.4−2807 6.7(1.3) - - 0.0352 0.07 24 [77, 78, 129]
IGR J17498−2921 7.6(1.1) −6.3(1.9)× 10−14 e (A) 0.1 0.2 0.2 8.4 [79, 80, 130]
IGR J17511−3057 3.6(5) +4.8(1.4)× 10−14 (A) 0.2f 0.2 0.2 6.6 [82]
XTE J1751−305 6.7d −5.5(1.2)× 10−15 (Q) 0.04 0.29 0.2 9.7 [53, 84, 131]

+3.7(1.0)× 10−13 (A) 0.2f

Swift J1756.9−2508 8c −4.8(6)× 10−16 (Q) 0.02 0.288 0.3 6.3 [53, 85]
−4.3(2.1)× 10−11 e (A) 5

IGR J17591−2342 7.6(7) −7.1(4)× 10−14 (A) 0.1 0.0535 0.09 14 [87, 132, 133]
XTE J1807−294 8c +2.7(1.0)× 10−14 (A) 0.08f 0.2 0.3 8.8 [53, 89, 134]
SAX J1808.4−3658 3.3+0.3

−0.2 −1.01(7)× 10−15 (Q) 0.04 0.103 0.1 5.6 [53, 58, 135, 136]
−3.02(13)× 10−13 (A) 0.7

XTE J1814−338 10.25(1) −6.7(7)× 10−14 (A) 0.1 0.069 0.1 6.9 [53, 91, 137]
IGR J18245−2452 5.5b - - 0.0466 0.1 - [93, 127, 138]
HETE J1900.1−2455 4.5(2) +4.2(1)× 10−13 (A) 0.4f 0.09 0.1 8.4 [53, 96, 139, 140]

a Estimate assumes conservative mass transfer during accretion. An alternative estimate gives less than 4 kpc [123].
b Uncertainty not quoted as target located in a globular cluster.
c Unknown, but as the target is in the direction of the galactic centre a fiducial value of 8 kpc is assumed in the literature.
d Lower limit.
e Estimate of ḟ? consistent with zero at a 3σ level.
f Assumes ḟGW ≈ −ḟ?, see text for details.

to each target in the second column of Table IV. These
estimates are typically poorly known, especially if there
is no known counterpart observed in wavelengths other
than X-ray for the target. We use the central estimate
of the distance in Eq. (12).

For AMXPs, ḟ? is estimated by constructing a phase-
connected timing solution when the target is in outburst,
but estimates for ḟ? in quiescence are also possible for tar-
gets that have gone into outburst multiple times. The ḟ?
observed during outburst can be either positive (corre-
sponding to spin-up) or negative (corresponding to spin-

down), while in quiescence ḟ? is typically (but not always)
negative [55, 56]. The third column of Table IV records

ḟ? for each of our targets. When ḟ? has been measured in
multiple outburst events, only the ḟ? from the most re-
cent outburst is listed. For ḟ? < 0 we assume ḟGW ≈ 2ḟ?
in Eq. (12). For targets with ḟ? < 0 (in either quiescent
or active phases) we find 10−28 . h0, sd . 10−27 (fourth
column of Table IV), an order of magnitude lower than

the estimated value of h95%0 .

As argued in Ref. [12], for ḟ? > 0 the torque due to
gravitational radiation reaction may be masked by the
accretion torque, allowing larger values of ḟGW, as long
as one has ḟ? = ḟacc + ḟGW, where ḟacc is the spin-
up rate due to accretion. A reasonable choice, with-
out excessive fine-tuning, is to set ḟGW ≈ −ḟ?, for an
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order-of-magnitude estimate in Eq. (12), i.e. assuming

|ḟacc| ≈ 2|ḟGW|. The resultant values for h0, sd for targets

with ḟ? > 0 are all well below the estimates of h95%0 set
in Sec. IX B, and fall in the range 10−28 . h0, sd . 10−27.

Another avenue through which EM observations can
constrain h0 is by assuming that the X-ray flux is pro-
portional to the mass accretion rate, and that the torque
due to accretion balances the gravitational radiation re-
action. The torque-balance limit is [18, 46]

h0, torque = 5× 10−27
(

600 Hz

fGW

)1/2

×
(

FX

10−8 erg s−1 cm−2

)1/2

, (13)

where FX is the observed bolometric X-ray flux. Eq. (13)
has a few hidden assumptions, namely: i) that the mass
of the neutron star is 1.4M�, ii) that all of the accre-
tion luminosity is radiated as an X-ray flux, and iii) that
the accretion torque is applied at the radius of the neu-
tron star, which is set to 10 km. The exact dependence
of the torque-balance limit on these assumptions is dis-
cussed in Ref. [18]. We take fGW ≈ 2f? for each of our
targets, as for Eq. (12). We take FX = FX,max, the max-
imum recorded X-ray flux from each target when it was
in outburst (fifth column of Table IV), providing an up-
per limit on h0, torque (sixth column of Table IV). We find
5× 10−28 . h0, torque . 1× 10−27 across all targets.

D. Astrophysical implications

The estimates of h95%0 given in Sec. IX B can be con-
verted into constraints on the physical parameters that
govern the mechanism putatively generating continuous
gravitational waves in each sub-band.

In the 2f? sub-band the simplest emission mechanism
is that of a perpendicular biaxial rotator (using the lan-
guage from Ref. [141]), for which we calculate the upper
limit of the ellipticity of the neutron star as [49]

ε95% = 2.1×10−6
(
h95%0

10−25

)(
D

8 kpc

)(
600 Hz

fGW

)2

, (14)

assuming Izz = 1038 kg m2. Using the central estimate
for D (second column of Table IV), we find the strictest
constraint, from all of our targets, ε95% = 3.1× 10−7 for
IGR J00291+5934. A kernel density estimate of the prob-
ability density function (PDF) of the constraints ε95%,
p̂(ε95%), for all our targets, is shown in the left panel of
Fig. 3. It is peaked around ε95% ∼ 10−6.

In the 4f?/3 sub-band the emission mechanism is via
r-modes, the strength of which is parametrized as [142]

α95% = 1.0× 10−4
(
h95%0

10−25

)(
D

8 kpc

)(
600 Hz

fGW

)3

.

(15)

Eq. (15) assumes fGW ≈ 4f?/3, which may not be true,
as discussed in Sec. IV [103, 104]. The strictest con-
straint, from all of our targets, is α95% = 1.8 × 10−5,
again for IGR J00291+5934. A kernel density estimate
of the PDF of the constraints α95%, p̂(α95%), for all our
targets, is shown in the right panel of Fig. 3. It is peaked
around α95% ∼ 10−4.

The kernel density estimates of the PDFs p̂(ε95%) and
p̂(α95%) in Fig. 3 are not constraints on ε and α respec-
tively, nor are they expressing the uncertainty in each in-
dividual estimate of ε95% or α95% (which are dominated

by the uncertainty in h95%0 , and the distance, see column
two of Table IV). They are instead presented to indi-
cate where the constraints on ε95% and α95% lie, given
the strain upper limits calculated for the targets in this
search. That is, they are estimates of the true probabil-
ity distribution of the constraints one would obtain for ε
and α, given a large population of AMXPs (assuming the
targets studied here are representative of this larger pop-
ulation). The kernel density estimates are calculated by
summing Gaussian kernels centered on each data point,
with bandwidth chosen to minimize the asymptotic mean
integrated square error [143].

The physical mechanism for emission in the f? sub-
band is less well-defined. A biaxial non-perpendicular
rotator emits gravitational radiation at both f? and 2f?
[49, 97, 144]. The emission at f? dominates the 2f? emis-
sion for both θ . 20◦ and | cos ι| . 0.8, where θ is the
wobble angle (see figure 5 of Ref. [141] for details). The
value of θ is low for certain models involving pinned su-
perfluid interiors [97, 145]. Other possibilities exist, in-
cluding a triaxial rotator [146–148]. We recommend fu-
ture searches to also consider searching the f? sub-band,
due to the wealth of information that a continuous grav-
itational wave detection at this frequency would provide
regarding neutron star structure.

X. CONCLUSIONS

We present the results of a search for continuous gravi-
tational waves from 20 accreting low-mass X-ray binaries
in the Advanced LIGO O3 dataset. Five of these targets
were searched before in O2 [12], and one was searched
in S6 [42]. The search pipeline we use allows for spin-
wandering and tracks the orbital phase of the binary via
a hidden Markov model and the J -statistic respectively.
The targets have well-constrained rotational frequencies,
f?, and orbital elements from electromagnetic observa-
tions of outburst events, restricting the parameter space.
For each target we search three∼ 0.61 Hz-wide sub-bands
centered on {1, 4/3, 2}f?. We also perform a target-of-
opportunity search for emission from SAX J1808.4−3658,
which went into outburst during O3a.

We find no candidates that survive our veto procedure
and are above a threshold corresponding to a 1% false
alarm probability per sub-band. We find 16 candidates
that survive our astrophysical vetoes when we set the
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FIG. 3: Kernel density estimate of the PDF of the constraints on ellipticity ε95% (left panel) and dimensionless
r-mode amplitude α95% (right panel) via Eqs. (14) and (15) respectively. Both PDFs are normalized to a height of

one. The black dashes in both panels correspond to the individual estimates of ε95% or α95% from each target.

threshold to 30% false alarm probability per sub-band.
As we search a total of 60 sub-bands, this number of sur-
viving candidates is consistent with the expected number
of false alarms. These candidates are systematically in-
vestigated with further follow-up. In all cases, the follow-
up does not provide convincing evidence that any are real
astrophysical signals. However, they could not be con-
vincingly ruled out, which is not surprising given their
borderline significance. We record the orbital template
and frequencies recovered for these candidates, and rec-
ommend that they are followed up in future gravitational
wave data sets, and with different pipelines.

The target-of-opportunity search returns one candi-
date above threshold that survives our veto procedure.
Additional, detailed follow-up of this candidate does not
produce convincing evidence that it is a true astrophysi-
cal signal rather than a noise fluctuation.

Assuming all of the candidates are not astrophysical,
we set upper limits on the strain at 95% confidence in
each sub-band. Using these estimates, the strictest con-
straint on neutron star ellipticity is ε95% = 3.1 × 10−7.
The strictest constraint we place on the r-mode ampli-
tude is α95% = 1.8 × 10−5. Both of these constraints
come from IGR J00291+5934.
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isme and the Conselleria d’Educació i Universitat del
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Appendix A: Threshold setting

In this Appendix we outline two alternative methods to
set thresholds for the search. In Appendix A 1 we detail
the method in Ref. [11] to set thresholds by modeling the
tail of the log-likelihood distribution in noise as an expo-
nential. In Appendix A 2 we review the non-parametric
method in Refs. [12, 19, 20, 38, 149], which takes a certain
percentile detection statistic from noise-only realizations
as the threshold. We compare the methods in Appendix
A 3. In Appendix A 4 we discuss generating noise realiza-
tions using off-target searches, and justify the approach
taken in this paper. In Appendix A 5 we specify how to
calculate pnoise, the probability that we see a value of L at
least as high as a certain candidate in a given sub-band.

Whatever the method, the threshold depends on both
the target’s projected semi-major axis, a0, and the sub-
band frequency, f , as log-likelihoods depend non-linearly
on a0 f as an increased number orbital sidebands are in-
cluded in the J -statistic at higher a0 f [see equation (6)
in Ref. [11] and Ref. [43] for details]. For this reason
we set thresholds independently for each target and sub-
band.

1. Exponential tail method

The PDF of the log-likelihood, p(L), for the most likely
path for a given template is observed to have an expo-
nentially distributed tail in noise,

p(L) = Aλ exp [−λ (L − Ltail)] for L > Ltail , (A1)

where A is a normalization constant, λ is a parameter to
be found empirically, and Ltail is a cut-off that must also
be determined empirically.

For each target and sub-band we estimate λ and Ltail

using a set of M sample log-likelihoods, a subset of which

have L > Ltail. This subset is denoted SNtail
≡ {Li},

i ∈ {1, ..., Ntail}. The entire set of M samples is gener-
ated by running the search on NG = 100 realizations of
Gaussian noise. To keep NG small enough to be compu-
tationally feasible we include log-likelihoods from all pos-
sible Viterbi paths through the sub-band for each tem-
plate, instead of just the log-likelihood from the most
likely path. Thus, we have M = NGNfNB , where
Nf = 220 is the number of frequency bins in each sub-
band, and NB is the number of binary orbital templates
needed for each individual sub-band, as listed in Table
II. Separate tests, not shown here, indicate that includ-
ing the log-likelihoods from non-maximal paths does not
change the shape of p(L), and therefore does not change
the thresholds Lth, if the appropriate trials factor is taken
into account.

Assuming each Li is independent, the maximum like-

lihood estimator, λ̂, for λ is

λ̂ =
Ntail∑Ntail

i=1 (Li − Ltail)
. (A2)

The normalization A = Ntail/M is fixed via the frac-
tion of total samples used to construct p(L). The cut-
off Ltail is estimated in each sub-band as the smallest
value L∗ where a histogram of the samples Li > L∗ has
approximately constant slope when viewed on log-linear
axes. Each Li is independent for the long coherence times
(Tdrift = 10 d) used in this search, as NT � Nf implies
most optimal paths through the sub-band are not corre-
lated.

The probability, α, that L is above some threshold
Lth > Ltail if no signal is present (i.e. in pure noise) is∫ ∞

Lth

dL p(L) = α . (A3)

Combining Eqs. (8), (A1), and (A3) we solve for Lth in
a given sub-band, viz.

Lth = − 1

λ̂
log

(
NGαNtot

Ntail

)
+ Ltail , (A4)

where Eq. (8) is simplified via the binomial approxima-
tion (Ntot = NfNB � 1), and αNtot

is the desired false
alarm probability for the search over the sub-band. Note
Eq. (A4) depends implicitly on the sub-band frequency

and NB , through λ̂ and Ntail.

Across all targets and sub-bands we find 0.195 < λ̂ <
0.248, with larger values corresponding to higher fre-
quency sub-bands, and those with larger NB . A simple

rule-of-thumb is that, for a median value of λ̂ = 0.218,
an increment of ≈ 3 in L is ≈ 50% less likely to occur in
pure noise.

2. Percentile method

Given a sorted set of most likely log-likelihoods {Li},
i ∈ {1, ...,M} with M = NGNB , generated via running
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the search algorithm over NG realizations of noise for a
single target and sub-band, one can pick as the thresh-
old the Li corresponding to the percentile equal to the
desired false alarm probability, i.e.

Lth = Lj , (A5)

with j = bαNtotMc. As with the method described
in Appendix A 1 we may opt to use the log-likelihoods
from all possible Viterbi paths through the sub-band for
a given orbital template, to reduce the number of real-
izations of noise we need to generate. With this set of
log-likelihoods, we have M = NGNfNB .

3. Comparison of methods

The two methods described in Appendices A 1 and A 2
give broadly similar results for Lth for a given probability
of false alarm. Ref. [11] opts for the method in Appendix
A 1. When Viterbi scores are used as the detection statis-
tic, as in Ref. [11], the PDF of the score in noise does not
vary with frequency, and thus the thresholds in each sub-
band can be extrapolated from a small set of Gaussian
noise realizations. If the PDF of the detection statistic
varies with target search parameters, then the method in
Appendix A 2 is used, as in Refs. [12, 19, 20, 149]. The
percentile method has inherently fewer assumptions, as
it does not fit a parametric model to p(L). However it is
not possible to extrapolate thresholds calculated in one
sub-band to other sub-bands.

For our targets and sub-bands, we find Le
th −Lp

th ≈ 2,
where the superscripts e and p correspond to the expo-
nential tail and percentile methods respectively. However
the exact difference depends on the realizations of Gaus-
sian noise; Monte Carlo simulations indicate that with
NG = 100 the calculated threshold is usually within 2%
of the true value, so thresholds should only be considered
precise to 2%.

4. Off-target thresholds

Both methods derive Lth based on realizations of Gaus-
sian noise. However, the noise in real detector data
is non-Gaussian in general [110]. To account for this
we search O3 data at NOT randomly chosen, but well-
separated, off-target positions, to generate NOT realiza-
tions of real detector noise, as originally done in Ref. [12].
We set NOT such that NBNOT > 500, with a minimum
value of NOT = 100, to ensure enough samples are gen-
erated.

If there are no known noise lines in the sub-band, we
find 4 < Le

th,G − Lp
th,OT < 12, where the subscripts G

and OT correspond to thresholds calculated using Gaus-
sian and off-target noise realizations respectively. That
is, the thresholds calculated from Gaussian noise, using
the exponential tail method are considerably more con-
servative than those calculated from off-target noise and

the percentile method. If there are loud noise lines in
the sub-band, Lth,OT is often much higher, as these lines
appear in the off-target noise realizations. Because off-
target noise realizations are impacted by noise lines, p(L)
is not necessarily exponential in its tail. We thus opt to
use the percentile method when calculating thresholds
with off-target noise realizations. Table V contains the
calculated Le

th,G and Lp
th,OT for each target and sub-

band.
As in Ref. [12] we consider Lth for each sub-band to

be the minimum of Le
th,G and Lp

th,OT, with αNtot = 0.3.
This choice minimizes the probability that we will miss
a potential candidate due to inadvertently setting our
threshold too high.

5. Probability that a candidate arises due to noise

As discussed in Sec. IV C, when we set αNtot
= 0.3 we

expect ∼ 18 candidates above Lth, across all targets and
sub-bands. Let us quantify empirically the probability,
pnoise, that, if the data in a given sub-band are pure noise,
we see at least one template with log-likelihood higher
than that of the candidate, Lcand. We have

pnoise =

∑M
i=1 1 (Li > Lcand)

M
, (A6)

where 1(...) is the indicator function which returns 1
when the argument is true, otherwise 0. In this paper
we calculate Eq. (A6) for each candidate with L > Lth

using the set of log-likelihoods, {Li}, generated via off-
target realizations as discussed in Appendix A 4. As in
Appendix A 2, we set M = NGNB to account for the
extra “trials factor” needed for sub-bands with multiple
templates.

Appendix B: Full search results and survivor
follow-up

This Appendix collates the full search results for ref-
erence and reproducibility for all targets in Figs. 4a–4s
(except for IGR J18245−2452 which is shown in Fig. 2).
Each of Figs. 4a–4s is laid out identically to Fig. 2.

The orbital parameters (P , a0, and Tasc), terminating
frequency bin [f(NT )], log-likelihood (L), and pnoise, the
probability that a search of that candidate’s sub-band in
pure noise would return at least one candidate at least as
loud as the one seen are shown in Table VI, for each of
the candidates that survive all vetoes and have L > Lth.

1. Additional follow-up for survivors

The full frequency paths, f(t) − f(NT ), for all can-
didates with pnoise ≤ 0.1 are shown in the top panels
of Figs. 5a–5e. The bottom panels of Figs. 5a–5e dis-
play the cumulative log-likelihood along the frequency
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TABLE V: Target, starting frequency, fs, for each ∼ 0.61 Hz-wide sub-band, threshold calculated using Gaussian
noise realizations and the exponential tail method, Le

th,G, and threshold calculated using off-target noise realizations

and the percentile method, Lp
th,OT. All thresholds are calculated with αNtot

= 0.3.

Target fs (Hz) Le
th,G Lp

th,OT Target fs (Hz) Le
th,G Lp

th,OT

IGR J00291+5934 598.6 291.9 1136.7 IGR J17498−2921 400.7 304.6 298.4
798.2 294.9 288.4 534.4 304.7 297.9

1197.5 295.2 287.6 801.7 311.2 304.5
MAXI J0911−655 339.7 297.0 290.0 IGR J17511−3057 244.5 302.0 293.7

453.0 305.4 298.2 326.1 303.4 295.8
679.6 305.5 300.4 489.4 305.1 297.9

XTE J0929−314 184.8 311.9 304.9 XTE J1751−305 435.0 312.8 316.0
246.5 307.4 301.2 580.1 312.9 306.6
369.9 310.4 304.5 870.3 319.9 315.7

IGR J16597−3704 104.9 321.6 316.4 Swift J1756.9−2508 181.8 308.7 302.8
139.9 322.9 625.5 242.5 317.4 312.8
210.0 323.7 318.5 363.8 315.3 309.0

IGR J17062−6143 163.4 292.1 285.1 IGR J17591−2342 527.1 299.3 289.4
217.9 289.1 281.8 702.9 302.0 295.7
327.0 293.3 283.3 1054.5 304.7 298.2

IGR J17379−3747 467.8 307.4 298.9 SAX J1808.4−3658 400.7 303.8 294.8
623.8 307.4 299.9 534.3 305.0 296.1
935.9 311.1 305.7 801.6 309.3 301.4

SAX J1748.9−2021 442.1 308.2 300.3 XTE J1807−294 190.3 295.5 287.0
589.5 310.1 301.6 253.9 296.8 289.0
884.4 311.5 304.9 380.9 299.7 292.0

NGC 6440 X−2 205.6 292.8 281.3 XTE J1814−338 314.1 301.8 293.3
274.2 298.3 288.6 418.8 302.3 294.3
411.5 295.9 287.2 628.4 305.8 298.4

IGR J17494−3030 375.7 315.3 309.3 IGR J18245−2452 254.0 311.2 305.4
501.1 317.5 13763.8 338.8 312.5 305.9
751.8 322.2 316.5 508.4 317.3 13569.7

Swift J1749.4−2807 517.6 316.4 308.8 HETE J1900.1−2455 377.0 299.6 288.1
690.3 318.4 311.9 502.8 303.1 8459.4

1035.5 321.0 316.3 754.3 303.8 294.7

TABLE VI: Orbital template, (P, a0, Tasc), terminating frequency bin, f(NT ), log-likelihood, L, and the
probability that a search of the candidate’s sub-band in pure noise would return a candidate just as loud, pnoise, for

the 16 candidates with L > Lth that cannot be eliminated by any of the vetoes detailed in Sec. VI.

Target Candidate P (s) a0 (lt-s) Tasc (GPS time) f(NT ) (Hz) L pnoise

MAXI J0911−655 1 2659.933 0.0176 1238165869.0437 453.309532 299.2 0.26
IGR J16597−3704 1 2758.61 0.0048 1238163275.6122 105.002195 316.5 0.30

2 2757.90 0.0048 1238163010.7583 210.359055 323.5 0.09
IGR J17062−6143 1 2278.2112 0.0040 1238165942.2745 163.531805 286.4 0.24

2 2278.2112 0.0040 1238165942.2745 218.452091 283.9 0.19
3 2278.2112 0.0040 1238165942.2745 327.058287 290.0 0.05

IGR J17379−3747 1 6765.84 0.0770 1238162768.3832 623.819568 303.9 0.08
SAX J1748.9−2021 1 31555.29 0.3876 1238151700.2214 590.048237 304.9 0.12

2 31555.30 0.3876 1238151760.9764 590.040010 302.3 0.27
3 31555.31 0.3876 1238151710.6406 884.592276 305.6 0.22

IGR J17498−2921 1 13835.619 0.36517 1238164013.8774 801.703605 305.8 0.22
XTE J1807−294 1 2404.416 0.00483 1238165585.2721 381.000852 296.7 0.10
SAX J1808.4−3658 1 7249.15 0.0628 1238161168.0040 534.633578 298.2 0.16

2 7249.16 0.0628 1238161183.0831 534.407934 296.2 0.30
XTE J1814−338 1 15388.723 0.3906 1238151585.3941 314.564137 297.7 0.08
HETE J1900.1−2455 1 4995.26 0.0184 1238161529.0866 754.378543 295.8 0.25



30

path relative to the average sum log-likelihood needed to

reach Lth, namely CL ≡ ∑i=t
i=0

[
L(i) − Lth/NT

]
, where∑i=t

i=0 L(i) is lnP (Q∗|O) from Eq. (2) truncated after the
t-th segment. Over-plotted (blue dashed line) is the av-
erage cumulative log-likelihood needed at each data seg-
ment in order to reach Lth. This diagnostic indicates
whether a handful of segments dominate in making the
candidate’s frequency path the optimal one for that tem-
plate. If the candidate is a true signal, we would expect
the signal strength to be approximately constant, and
thus the cumulative log-likelihood should grow linearly as
more data are considered. However, Monte Carlo tests
with injections show that the cumulative log-likelihood
only becomes linear for L & Lth + 200. This is not
the case for any of the 16 survivor candidates, and thus
their cumulative log-likelihood cannot help us distinguish
whether they are truly astrophysical signals.

The sky resolution of the algorithm described in Sec. II
is roughly 2 arcmin in RA and Dec., for an injection
with Lth . L . Lth + 50. The point-spread-function of
an injection is an ellipse, which has a varying orienta-
tion and eccentricity dependent on the sky position. For
each of our candidates we calculate L at 440 regularly
spaced sky positions in a 100 arcmin2 grid around the
target’s true location, using the template recovered from
the search and listed in Table VI. For almost all survivor
candidates, the distribution of L values in the patch of
sky around the candidate does not match the elliptical
point-spread-function we see in injections for their re-
spective sky locations. The sole exception is Candidate
2 from IGR J16597−3704. Figure 6 shows L at 3721 reg-
ularly spaced sky positions in a 100 arcmin2 grid around
the target’s true location, again using the template as
listed in Table VI. The roughly elliptical shape is consis-
tent with the point-spread-function of injections at this
sky location. However, the region of sky with L & Lth

is centered ∼ 1 arcmin lower in Dec. than the true dec-
lination of the source, which is known to a precision of
0.01 arcmin [67].

One final follow-up we perform for these candidates
is to calculate L in a small, densely sampled patch of
the {P, Tasc} parameter space around each candidate’s
template. Moderately loud injections (L & Lth + 100)
are seen to “spread out” in the {P, Tasc} plane, and are
detectable with L > Lth even when searching a tem-
plate that has a slightly incorrect value of P and Tasc.
However, none of our candidates are this loud, so this
diagnostic does not help us distinguish whether they are
truly astrophysical signals or merely noise fluctuations.

We do not use any data from LIGO’s Observing Runs 1
or 2 (O1 and O2 respectively) to aid in following up these
candidates, as the detector is considerably more sensitive
in O3. The duration of O3 was also longer than the
durations of O1 and O2. If a candidate is only marginally
above threshold in O3 data, it may be hidden in the
noise in O1 and O2 data, so including data from those
observing runs is not likely to increase the candidate’s
signal-to-noise ratio.

Appendix C: Survivor follow-up for
target-of-opportunity search candidate

For posterity, and to aid future follow-up with differ-
ent pipelines, we record in Table VII the template, the
frequency f , the log-likelihood L, and pnoise, of the can-
didate from the target-of-opportunity search in Sec. VIII
that survives all vetoes.

As in Appendix B 1, we perform additional follow-
up for this remaining candidate. With Tobs = 24 d
the point-spread-function of a moderately loud injection
(L & Lth +20), at the sky location of the target, is a nar-
row ellipse ∼ 2 arcmin wide in RA, but over ∼ 30 arcmin
tall in Dec. When we search a 100 arcmin2 patch of
sky around the location of SAX J1808.4−3658 we do
not see any evidence of this point-spread-function at the
source location. There is an ellipse with L > Lth roughly
−2 arcmin away in RA from SAX J1808.4−3658, but as
the location of the target is known to sub-arcsec preci-
sion [58], this ellipse is likely a noise fluctuation, rather
than an astrophysical signal.

We also calculate L in a small, densely sampled patch
of the {P, Tasc} parameter space around the candidate’s
template. As discussed in Appendix B 1, moderately loud
injections (L & Lth + 20) “spread out” in the {P, Tasc}
plane. However, the candidate is not loud enough for this
diagnostic to provide evidence for or against the hypoth-
esis that the candidate is a noise fluctuation.

If we assume that the remaining candidate is a false
alarm, we calculate h95%0 for the 24 d coherent search,

using the procedure outlined in Sec. IX A. We find h95%0 =
1.3× 10−25 for the sub-bands centered on f? and 4f?/3,

and h95%0 = 1.7 × 10−25 for the sub-band centered on
2f?. These upper limits are higher than the ones listed
in Sec. IX B because the longer coherence time does not
completely compensate for the shorter observation time.

Finally, we perform a complementary follow-up search
using a deterministic signal template on the candidate
of interest using PyFstat [150, 151]. The use of the
PyFstat algorithm as a follow-up technique was applied
to the last surviving outlier of Ref. [28] and previously
in Refs. [24, 152]. The follow-up procedure, thoroughly
described in Ref. [153], uses a Markov chain Monte Carlo
(MCMC) sampler [154, 155] to explore a parameter-space
region using the F-statistic as log-likelihood [49]. Two
coherence times are used here, namely Tcoh = 12 d and
Tcoh = 24 d. Prior distributions are Gaussian distribu-
tions centered at the outlier parameters (Table VII) us-
ing a standard deviation of one parameter-space bin with
maximum mismatch µmax = 1 [109]. The results of the
follow-up are evaluated using a Bayes factor, BS/N, that
compares the evidence for a model that the data contain
a coherent signal to the evidence for a model that the
data contain only noise. The value of BS/N is computed
by comparing the change in the F-statistic of the loudest
candidate between the two follow-up stages with differ-
ent coherence times: if a signal is present in the data,
the F-statistic should provide a consistent estimate of the
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(a) Search results for IGR J00291+5934.
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(b) Search results for MAXI J0911−655.
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(c) Search results for XTE J0929−314.
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(d) Search results for IGR J16597−3704.
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(e) Search results for IGR J17062−6143.
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(f) Search results for IGR J17379−3747.
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(g) Search results for SAX J1748.9−2021.
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(h) Search results for NGC 6440 X−2.
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(i) Search results for IGR J17494−3030.
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(j) Search results for Swift J1749.4−2807.
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(k) Search results for IGR J17498−2921.
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(l) Search results for IGR J17511−3057.
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(m) Search results for XTE J1751−305.
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(n) Search results for Swift J1756.9−2508.
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FIG. 4: Search results for each target and sub-band, laid out as in Fig 2. Black crosses indicate the frequency and L
for the most likely path through the sub-band for each binary template. The vertical blue dashed (green

dot-dashed) lines correspond to the threshold set via Gaussian (off-target) noise realizations, Lth,G (Lth,OT), in each
sub-band. Solid red lines indicate the peak frequency of known instrumental lines in the Hanford or Livingston

detectors; the red band indicates the width of the line and the yellow band indicates the increased effective width
due to Doppler broadening, as described in Sec. VI A. Multiple overlapping orange bands creates the red bands. The

transparency of crosses in sub-bands with many templates, e.g. the sub-bands of IGR J16597−3704, is adjusted
relative to the maximum L in that sub-band for clarity.
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FIG. 5: Top panels: frequency paths, f(t), for candidates with pnoise ≤ 0.1. The terminating frequency bin, f(NT ),
is subtracted and displayed in the title of each figure for clarity. Faint horizontal grey lines demarcate frequency bins

of size ∆f = 5.787037× 10−7 Hz, while faint vertical grey lines demarcate chunks of length Tdrift = 10 d. Bottom
panels: the cumulative log-likelihood along the frequency path relative to the average sum log-likelihood needed to

reach Lth, CL ≡∑i=t
i=0

[
L(i)− Lth/NT

]
, where

∑i=t
i=0 L(i) is lnP (Q∗|O) from Eq. (2) truncated after the t-th

segment. The horizontal blue dashed line corresponds to
∑i=t

i=0 L(i) = tLth/NT . The grey shaded regions in both top
and bottom panels correspond to the segments which have no SFTs and are therefore filled with a uniform

log-likelihood, as described in Sec. V.
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TABLE VII: Orbital template, (P, a0, Tasc), frequency, f , log-likelihood, L, and the probability of seeing a
candidate at least this loud in pure noise, pnoise, for the remaining candidate from the target-of-opportunity, 24 d

coherent search when SAX J1808.4−3658 was in outburst. The candidate cannot be eliminated by any of the vetoes
detailed in Sec. VI.

P (s) a0 (lt-s) Tasc (GPS time) f (Hz) L pnoise

7249.155 0.062809 1249163578.03125 400.59656098 42.5 0.02
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FIG. 6: L, as represented by the color of each pixel,
calculated at 3721 regularly spaced sky locations in a

100 arcmin2 patch of sky, centered on IGR
J16597−3704. See text in Appendix B 1 for details.

signal-to-noise ratio; otherwise, the loudest candidate is a
result of noise, the distribution of which follows a Gumbel
distribution. This noise distribution is estimated using
a similar method to the one described in Appendix A 4,
with 600 off-source calculations performed.

The loudest candidate of the follow-up returns a log-
Bayes factor of log10 BS/N = 1.45. We characterize the
log10 BS/N distribution using 400 isotropically distributed
sources injected into the real data with an amplitude
of h95%0 . We obtain a 1% false dismissal threshold of
8.75, which is significantly larger than the candidate’s
log-Bayes factor of 1.45. That is, if this were a true signal,
with h0 = h95%0 , we would expect the log-Bayes factor to
be higher than what we see in the real data by about
7. We conclude that there is no significant evidence of
continuous gravitational wave emission from this target.

[1] J. Aasi et al., Advanced LIGO, Class. Quantum Grav.
32, 074001 (2015).

[2] F. Acernese et al., Advanced Virgo: A second-
generation interferometric gravitational wave detector,
Class. Quantum Grav. 32, 024001 (2015).

[3] LIGO Scientific Collaboration and Virgo Collaboration
et al., GWTC-1: A Gravitational-Wave Transient Cat-
alog of Compact Binary Mergers Observed by LIGO
and Virgo during the First and Second Observing Runs,
Phys. Rev. X 9, 031040 (2019).

[4] LIGO Scientific Collaboration and Virgo Collaboration
et al., GWTC-2: Compact Binary Coalescences Ob-
served by LIGO and Virgo during the First Half of the
Third Observing Run, Phys. Rev. X 11, 021053 (2021).

[5] The LIGO Scientific Collaboration et al., GWTC-2.1:
Deep Extended Catalog of Compact Binary Coales-
cences Observed by LIGO and Virgo During the First
Half of the Third Observing Run, arXiv e-prints ,
arXiv:2108.01045 (2021).

[6] K. Glampedakis et al., Gravitational Waves from Sin-
gle Neutron Stars: An Advanced Detector Era Survey,
in The Physics and Astrophysics of Neutron Stars, As-
trophysics and Space Science Library (Springer Interna-
tional Publishing, Cham, 2018) pp. 673–736.

[7] M. Sieniawska and M. Bejger, Continuous Gravita-

tional Waves from Neutron Stars: Current Status and
Prospects, Universe 5, 217 (2019).

[8] B. Haskell and K. Schwenzer, Gravitational waves from
isolated neutron stars, arXiv e-prints , arXiv:2104.03137
(2021).

[9] B. P. Abbott et al., Search for Gravitational Waves
from a Long-lived Remnant of the Binary Neutron Star
Merger GW170817, Astrophys. J. 875, 160 (2019).

[10] LIGO Scientific Collaboration and Virgo Collaboration
et al., Narrow-band search for gravitational waves from
known pulsars using the second LIGO observing run,
Phys. Rev. D 99, 122002 (2019).

[11] LIGO Scientific Collaboration and Virgo Collaboration
et al., Search for gravitational waves from Scorpius X-1
in the second Advanced LIGO observing run with an im-
proved hidden Markov model, Phys. Rev. D 100, 122002
(2019).

[12] H. Middleton, P. Clearwater, A. Melatos, and L. Dunn,
Search for gravitational waves from five low mass x-ray
binaries in the second Advanced LIGO observing run
with an improved hidden Markov model, Phys. Rev. D
102, 023006 (2020).

[13] M. A. Papa et al., Search for Continuous Gravitational
Waves from the Central Compact Objects in Supernova
Remnants Cassiopeia A, Vela Jr., and G347.3–0.5, As-

https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://arxiv.org/abs/2108.01045
https://arxiv.org/abs/2108.01045
https://doi.org/10.1007/978-3-319-97616-7_12
https://doi.org/10.3390/universe5110217
https://arxiv.org/abs/2104.03137
https://arxiv.org/abs/2104.03137
https://doi.org/10.3847/1538-4357/ab0f3d
https://doi.org/10.1103/PhysRevD.99.122002
https://doi.org/10.1103/PhysRevD.100.122002
https://doi.org/10.1103/PhysRevD.100.122002
https://doi.org/10.1103/PhysRevD.102.023006
https://doi.org/10.1103/PhysRevD.102.023006
https://doi.org/10.3847/1538-4357/ab92a6


37

trophys. J. 897, 22 (2020).
[14] L. Fesik and M. A. Papa, First Search for r-mode Grav-

itational Waves from PSR J0537–6910, Astrophys. J.
895, 11 (2020).

[15] L. Fesik and M. A. Papa, Erratum: “First Search for
r-mode Gravitational Waves from PSR J0537–6910”
(2020, ApJ, 895, 11), Astrophys. J. 897, 185 (2020).

[16] O. J. Piccinni et al., Directed search for continuous
gravitational-wave signals from the Galactic Center in
the Advanced LIGO second observing run, Phys. Rev.
D 101, 082004 (2020).

[17] B. Steltner et al., Einstein@Home All-sky Search for
Continuous Gravitational Waves in LIGO O2 Public
Data, Astrophys. J. 909, 79 (2021).

[18] Y. Zhang, M. A. Papa, B. Krishnan, and A. L. Watts,
Search for Continuous Gravitational Waves from Scor-
pius X-1 in LIGO O2 Data, Astrophys. J. 906, L14
(2021).

[19] D. Beniwal, P. Clearwater, L. Dunn, A. Melatos, and
D. Ottaway, Search for continuous gravitational waves
from ten H.E.S.S. sources using a hidden Markov model,
Phys. Rev. D 103, 083009 (2021).

[20] D. Jones and L. Sun, Search for continuous gravitational
waves from Fomalhaut b in the second Advanced LIGO
observing run with a hidden Markov model, Phys. Rev.
D 103, 023020 (2021).

[21] R. Abbott et al., Gravitational-wave Constraints on the
Equatorial Ellipticity of Millisecond Pulsars, Astrophys.
J. Lett. 902, L21 (2020).

[22] V. Dergachev and M. A. Papa, Search for continuous
gravitational waves from small-ellipticity sources at low
frequencies, Phys. Rev. D 104, 043003 (2021).

[23] B. Rajbhandari, B. J. Owen, S. Caride, and R. Inta,
First searches for gravitational waves from r-modes
of the Crab pulsar, arXiv e-prints , arXiv:2101.00714
(2021).

[24] The LIGO Scientific Collaboration and the Virgo Col-
laboration et al., All-sky search in early O3 LIGO data
for continuous gravitational-wave signals from unknown
neutron stars in binary systems, Phys. Rev. D 103,
064017 (2021).

[25] K. Wette, L. Dunn, P. Clearwater, and A. Melatos, Deep
exploration for continuous gravitational waves at 171–
172 Hz in LIGO second observing run data, Phys. Rev.
D 103, 083020 (2021).

[26] R. Abbott et al., Diving below the Spin-down Limit:
Constraints on Gravitational Waves from the Energetic
Young Pulsar PSR J0537-6910, Astrophys. J. Lett. 913,
L27 (2021).

[27] The LIGO Scientific Collaboration et al., Constraints
from LIGO O3 data on gravitational-wave emission due
to r-modes in the glitching pulsar PSR J0537-6910, As-
trophys. J. 922, 71 (2021).

[28] The LIGO Scientific Collaboration et al., All-sky Search
for Continuous Gravitational Waves from Isolated Neu-
tron Stars in the Early O3 LIGO Data, Phys. Rev. D
104, 082004 (2021).

[29] R. Abbott et al., Searches for Continuous Gravitational
Waves from Young Supernova Remnants in the Early
Third Observing Run of Advanced LIGO and Virgo,
Astrophys. J. 921, 80 (2021).

[30] A. Ashok et al., New searches for continuous gravita-
tional waves from seven fast pulsars, arXiv e-prints ,
arXiv:2107.09727 (2021).

[31] A. Patruno and A. L. Watts, Accreting Millisecond X-
ray Pulsars, in Timing Neutron Stars: Pulsations, Os-
cillations and Explosions, Astrophysics and Space Sci-
ence Library, edited by T. M. Belloni, M. Méndez, and
C. Zhang (Springer, Berlin, Heidelberg, 2021) pp. 143–
208.

[32] J. W. T. Hessels et al., A Radio Pulsar Spinning at 716
Hz, Science 311, 1901 (2006).

[33] G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Rapidly
rotating neutron stars in general relativity: Realistic
equations of state, Astrophys. J. 424, 823 (1994).

[34] L. Bildsten, Gravitational Radiation and Rotation of
Accreting Neutron Stars, Astrophys. J. Lett. 501, L89
(1998).

[35] N. Andersson, K. D. Kokkotas, and N. Stergioulas, On
the Relevance of the R-Mode Instability for Accreting
Neutron Stars and White Dwarfs, Astrophys. J. 516,
307 (1999).

[36] J. Papaloizou and J. E. Pringle, Gravitational radiation
and the stability of rotating stars, Mon. Not. R. Astron.
Soc. 184, 501 (1978).

[37] R. V. Wagoner, Gravitational radiation from accreting
neutron stars, Astrophys. J. 278, 345 (1984).

[38] B. P. Abbott et al., Search for gravitational waves from
Scorpius X-1 in the first Advanced LIGO observing run
with a hidden Markov model, Phys. Rev. D 95, 122003
(2017).

[39] B. P. Abbott et al., Upper Limits on Gravitational
Waves from Scorpius X-1 from a Model-based Cross-
correlation Search in Advanced LIGO Data, Astrophys.
J. 847, 47 (2017).

[40] T. Di Salvo and A. Sanna, Accretion powered X-ray
millisecond pulsars, arXiv e-prints , arXiv:2010.09005
(2020).

[41] E. Goetz and K. Riles, An all-sky search algorithm
for continuous gravitational waves from spinning neu-
tron stars in binary systems, Class. Quantum Grav. 28,
215006 (2011).

[42] G. D. Meadors, E. Goetz, K. Riles, T. Creighton, and
F. Robinet, Searches for continuous gravitational waves
from Scorpius X-1 and XTE J1751-305 in LIGO’s sixth
science run, Phys. Rev. D 95, 042005 (2017).

[43] S. Suvorova et al., Hidden Markov model tracking of
continuous gravitational waves from a binary neutron
star with wandering spin. II. Binary orbital phase track-
ing, Phys. Rev. D 96, 102006 (2017).

[44] A. Mukherjee, C. Messenger, and K. Riles, Accretion-
induced spin-wandering effects on the neutron star in
Scorpius X-1: Implications for continuous gravitational
wave searches, Phys. Rev. D 97, 043016 (2018).

[45] S. Suvorova, L. Sun, A. Melatos, W. Moran, and R. J.
Evans, Hidden Markov model tracking of continuous
gravitational waves from a neutron star with wander-
ing spin, Phys. Rev. D 93, 123009 (2016).

[46] K. Riles, Gravitational waves: Sources, detectors and
searches, Progress in Particle and Nuclear Physics 68,
1 (2013).

[47] B. Abbott et al., Beating the Spin-Down Limit on Grav-
itational Wave Emission from the Crab Pulsar, Astro-
phys. J. Lett. 683, L45 (2008).

[48] A. Viterbi, Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm, IEEE
Trans. Inform. Theory 13, 260 (1967).

[49] P. Jaranowski, A. Królak, and B. F. Schutz, Data anal-

https://doi.org/10.3847/1538-4357/ab92a6
https://doi.org/10.3847/1538-4357/ab8193
https://doi.org/10.3847/1538-4357/ab8193
https://doi.org/10.3847/1538-4357/aba04e
https://doi.org/10.1103/PhysRevD.101.082004
https://doi.org/10.1103/PhysRevD.101.082004
https://doi.org/10.3847/1538-4357/abc7c9
https://doi.org/10.3847/2041-8213/abd256
https://doi.org/10.3847/2041-8213/abd256
https://doi.org/10.1103/PhysRevD.103.083009
https://doi.org/10.1103/PhysRevD.103.023020
https://doi.org/10.1103/PhysRevD.103.023020
https://doi.org/10.3847/2041-8213/abb655
https://doi.org/10.3847/2041-8213/abb655
https://doi.org/10.1103/PhysRevD.104.043003
http://arxiv.org/abs/2101.00714
http://arxiv.org/abs/2101.00714
https://doi.org/10.1103/PhysRevD.103.064017
https://doi.org/10.1103/PhysRevD.103.064017
https://doi.org/10.1103/PhysRevD.103.083020
https://doi.org/10.1103/PhysRevD.103.083020
https://doi.org/10.3847/2041-8213/abffcd
https://doi.org/10.3847/2041-8213/abffcd
https://doi.org/10.3847/1538-4357/ac17ea
https://arxiv.org/abs/2107.09727
https://arxiv.org/abs/2107.09727
https://doi.org/10.1007/978-3-662-62110-3_4
https://doi.org/10.1007/978-3-662-62110-3_4
https://doi.org/10.1126/science.1123430
https://doi.org/10.1086/173934
https://doi.org/10.1086/311440
https://doi.org/10.1086/311440
https://doi.org/10.1086/307082
https://doi.org/10.1086/307082
https://doi.org/10.1093/mnras/184.3.501
https://doi.org/10.1093/mnras/184.3.501
https://doi.org/10.1086/161798
https://doi.org/10.1103/PhysRevD.95.122003
https://doi.org/10.1103/PhysRevD.95.122003
https://doi.org/10.3847/1538-4357/aa86f0
https://doi.org/10.3847/1538-4357/aa86f0
https://arxiv.org/abs/2010.09005
https://arxiv.org/abs/2010.09005
https://doi.org/10.1088/0264-9381/28/21/215006
https://doi.org/10.1088/0264-9381/28/21/215006
https://doi.org/10.1103/PhysRevD.95.042005
https://doi.org/10.1103/PhysRevD.96.102006
https://doi.org/10.1103/PhysRevD.97.043016
https://doi.org/10.1103/PhysRevD.93.123009
https://doi.org/10.1016/j.ppnp.2012.08.001
https://doi.org/10.1016/j.ppnp.2012.08.001
https://doi.org/10.1086/591526
https://doi.org/10.1086/591526
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010


38

ysis of gravitational-wave signals from spinning neutron
stars: The signal and its detection, Phys. Rev. D 58,
063001 (1998).

[50] LIGO Scientific Collaboration, LIGO Algorithm Li-
brary - LALSuite 10.7935/GT1W-FZ16 (2018).

[51] P. Casella, D. Altamirano, A. Patruno, R. Wijnands,
and M. van der Klis, Discovery of Coherent Millisec-
ond X-Ray Pulsations in Aquila X-1, Astrophys. J. Lett.
674, L41 (2008).

[52] D. Mata Sánchez, T. Muñoz-Darias, J. Casares, and
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