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Constraints on dark photon dark matter using data from LIGO’s and Virgo’s third
observing run

The LIGO Scientific Collaboration, The Virgo Collaboration, and The KAGRA Collaboration∗

(Dated: April 5, 2022)

We present a search for dark photon dark matter that could couple to gravitational-wave interfer-
ometers using data from Advanced LIGO and Virgo’s third observing run. To perform this analysis,
we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned
LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo
detectors. The excess power method optimizes the Fourier Transform coherence time as a function
of frequency, to account for the expected signal width due to Doppler modulations. We do not find
any evidence of dark photon dark matter with a mass between mA ∼ 10−14 − 10−11 eV/c2, which
corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of
the minimum coupling of dark photons to baryons, i.e. U(1)B dark matter. For the cross-correlation
method, the best median constraint on the squared coupling is ∼ 1.31× 10−47 at mA ∼ 4.2× 10−13

eV/c2; for the other analysis, the best constraint is ∼ 2.4 × 10−47 at mA ∼ 5.7 × 10−13 eV/c2.
These limits improve upon those obtained in direct dark matter detection experiments by a factor
of ∼ 100 for mA ∼ [2 − 4] × 10−13 eV/c2, and are, in absolute terms, the most stringent constraint
so far in a large mass range mA ∼ 2 × 10−13 − 8 × 10−12 eV/c2.

I. INTRODUCTION

Dark matter has been known to exist for decades [1],
yet its physical nature has remained elusive. Depend-
ing on the theory, dark matter could consist of particles
with masses as low as 10−22 eV/c2 [2], or as high as
(sub-) solar-mass primordial black holes [3–6]. Further-
more, dark matter clouds could form around black holes
that deplete over time and emit gravitational waves [7, 8].
Here, we focus on a subset of the “ultralight” dark mat-
ter regime, i.e. masses of O(10−14 − 10−11) eV/c2 [9], in
which a variety of dark matter candidates may interact
with gravitational-wave interferometers. Scalar, dilaton
dark matter could change the mass of the electron and
other physical constants, causing oscillations in the Bohr
radius of atoms in various components of the interfer-
ometer [10]; axions [11] could alter the phase velocities
of circularly polarized photons in the laser beams trav-
eling down each arm of the detector [12]; dark photons
could couple to baryons in the mirrors, causing an os-
cillatory force on the detector [13]; tensor bosons could
also interact with the interferometer in an analogous way
as gravitational waves [14]. Here, we focus on dark pho-
ton dark matter whose relic abundance could be induced
by the misalignment mechanism [15–17], the tachyonic
instability of a scalar field [18–21], or cosmic string net-
work decays [22]. Cosmic strings, in particular, also offer
a promising way to probe physics beyond the standard
model with gravitational-wave detectors at energies much
larger than those attainable by particle accelerators [23],
which complements the kind of direct dark matter search
we perform here. Independently of the formation mech-
anism, analyses of gravitational-wave data could make a
statement on the existence of dark photons.

∗ Full author list given at the end of the article.

A search for dark photons using data from Advanced
LIGO/Virgo’s first observing run [13, 24] has already
been performed, resulting in competitive constraints on
the coupling of dark photons to baryons. Furthermore,
scalar, dilaton dark matter was searched for recently us-
ing data from GEO600 [25], and upper limits were placed
on the degree to which scalar dark matter could have al-
tered the electron mass or fine-structure constant [26].

Other experiments that have probed the ultralight
dark matter regime include the Eöt-Wash experiment,
which aims to find a violation to the equivalence prin-
ciple of General Relativity resulting from a new force
acting on test masses in a dark matter field, by look-
ing for a difference in the horizontal accelerations of two
different materials using a continuously rotating torsion
balance [27, 28]; the MICROSCOPE satellite [29], which
measures the accelerations of two freely-floating objects
in space made of different materials to look for a viola-
tion of the equivalence principle and hence a new force
[30]; the Axion Dark Matter Experiment (ADMX), which
searches for O(µeV/c2) dark matter by trying to induce
an axion-to-photon conversion in the presence of a strong
magnetic field in a resonant cavity [31]; and the Any
Light Particle Search (ALPS), which looks for particles
with masses less than O(meV/c2) (that could compose
dark matter) by subjecting photons to strong magnetic
fields in two cavities, separated by an opaque barrier, to
cause a transition to an axion and then back to a photon
[32]. Ultralight dark matter has also been constrained
by observing gravitational waves from depleting boson
clouds around black holes [8, 33–38], and by analyzing
binary mergers, e.g. GW190521, which is consistent with
the merger of complex vector boson stars [39].

Compared to the analysis on data from LIGO/Virgo’s
first observing run [24], we use two methods, one based
on cross-correlation [13], and another that judiciously
varies the Fourier Transform coherence time [40, 41], to
search for dark photons in Advanced LIGO and Virgo
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data from the third observing run (O3). Additionally,
we include the signal induced by the common motion of
the mirrors [42]- see section II. Although we do not find
any evidence for a dark photon signal, we place stringent
upper limits on the degree to which dark photons could
have coupled to the baryons in the interferometer.

II. DARK MATTER INTERACTION MODEL

Ultralight dark photon dark matter is expected to
cause time-dependent oscillations in the mirrors of the
LIGO/Virgo interferometers, which would lead to a dif-
ferential strain on the detector. We formulate dark pho-
tons in an analogous way to ordinary photons: as having
a vector potential with an associated dark electric field
that causes a quasi-sinusoidal force on the mirrors in the
interferometers. The Lagrangian L that characterizes the
dark photon coupling to a number current density Jµ of
baryons or baryons minus leptons is:

L = − 1

4µ0
FµνFµν +

1

2µ0

(mAc

~

)2
AµAµ−εeJµAµ, (1)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field
tensor, ~ is the reduced Planck’s constant, c is the speed
of light, µ0 is the magnetic permeability in vacuum, mA

is the dark photon mass, Aµ is the four-vector potential
of the dark photon, e is the electric charge, and ε is the
strength of the particle/dark photon coupling normalized
by the electromagnetic coupling constant. 1

If the analysis observation time exceeds the signal co-
herence time, given by equation 3 [41], we can write the
acceleration of the identical LIGO/Virgo mirrors in the
dark photon field as [24]:

~a(t, ~x) ' εe q
M
ω ~A cos(ωt− ~k · ~x+ φ) (2)

where ω, ~k, and ~A are the angular frequency, propagation
vector, and polarization vector of the dark photon field,
~x is the position of a mirror, φ is a random phase, and q
and M are the charge and the mass of the mirror, respec-
tively. If the dark photon couples to the baryon number,
q is the number of protons and neutrons in each mirror.
If it couples to the difference between the baryon and lep-
ton numbers, q is the number of neutrons in each mirror.
For a fused Silica mirror, q/M = 5.61× 1026 charges/kg
for baryon coupling and q/M = 2.80 × 1026 charges/kg
for baryon-lepton coupling. Practically, we cannot dis-
tinguish between the two types of coupling, though the
baryon-lepton coupling would lead to half the accelera-
tion relative to that of the baryon coupling.

1 We note that the dark photon in our scenario is a different from
the one which couples to the standard model via kinetic mixing.

Because we observe for almost one year, significantly
longer than the assumed dark photon coherence time,
and the dark photons travel with non-relativistic veloc-
ities, we model the signal as a superposition of many
plane waves, each with a velocity drawn from a Maxwell-
Boltzmann distribution [43]. The superposition of dark
photon plane waves with different velocities leads to a
frequency variation of the signal [13, 41]:

∆f =
1

2

(v0
c

)2
f0 ≈ 2.94× 10−7f0, (3)

where v0 ' 220 km/s is the velocity at which dark matter
orbits the center of our galaxy, i.e. the virial velocity [44],
and the frequency f0 is:

f0 =
mAc

2

2π~
. (4)

Dark photons cause small motions of an interferom-
eter’s mirrors, and lead to an observable effect in two
ways. Firstly, the mirrors are well-separated from each
other and hence experience slightly different dark photon
dark matter phases. Such a phase difference leads to a
differential change of the arm length, suppressed by v0/c.
A simple relation between dark photon parameters and
the effective strain hD can be written as [13]:

√
〈h2D〉 = C

q

M

v0
2πc2

√
2ρDM

ε0

eε

f0

' 6.56× 10−27
( ε

10−23

)(100 Hz

f0

)
, (5)

where ε0 is the permittivity of free space, and C =
√

2/3
is a geometrical factor obtained by averaging over all
possible dark photon propagation and polarization direc-
tions. Equation 5 can be derived by integrating equation
2 twice over time, dividing by the arm length of the in-
terferometer, and performing the averages over time and
the dark photon polarization and propagation directions.

Secondly, the common motion of the interferometer
mirrors, induced by the dark photon dark matter back-
ground, can lead to an observable signal because of the
finite travel time of the laser light in the interferom-
eter arms. The light will hit the mirrors at different
times during their common motions, and although the
common motions do not change the instantaneous arm
length, they can lead to a longer round-trip travel time
for the light, equivalent to arm lengthening, and there-
fore an apparent differential strain [42]. Instead of being
suppressed by v0/c as shown in equation 5, such an effect
suffers from a suppression factor of (f0L/c), where L is
the arm length of the interferometers. Similarly to equa-
tion 5, the common motion induces an observable signal
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with an effective strain hC as:√
〈h2C〉 =

√
3

2

√
〈h2D〉

2πf0L

v0
,

' 6.58× 10−26
( ε

10−23

)
. (6)

hD maps to h2 in [42], and hC is the result of a Tay-
lor expansion of h1 in [42]. The interference between
the two contributions to the strain averages to zero over
time, which indicates that the total effective strain can
be written as 〈h2total〉 = 〈h2D〉+ 〈h2C〉.

III. SEARCH METHOD

A. Cross-Correlation

Cross-correlation has been widely used in
gravitational-wave searches [45–47], but is employed
differently here. Because we are interested in ultralight
dark matter, the coherence length of a dark photon
signal, given by equation 2 in [41], is always much larger
than the separation between earth-based detectors [19].
Therefore, the interferometers should experience almost
the same dark photon dark matter field, and the signals
at any two detectors are highly correlated [19].

Because the dark photon signal is quasi-
monochromatic, we analyze the frequency domain
by Discrete Fourier Transforming the strain time series.
Given a total coincident observation time, Tobs, for two
detectors, we divide the time series into NFFT smaller
segments, with durations TFFT, i.e. Tobs = NFFTTFFT.
For the i-th time segment, j-th frequency bin, and
interferometer k (1 or 2), we label the complex Discrete
Fourier Transform coefficients as zk,ij . The one-sided
power spectral densities (PSDs) of interferometer 1(2)
can be estimated by taking a (bias-corrected) running
median of the raw noise powers Pk,ij from 50 neighboring
frequency bins: PSDk,ij = 2Pk,ij/TFFT.

The cross-correlated signal strength is:

Sj =
1

NFFT

NFFT∑
i=1

z1,ijz
∗
2,ij

P1,ijP2,ij
, (7)

where “∗” is the complex conjugate, and the variance is:

σ2
j =

1

NFFT

〈
1

2P1,ijP2,ij

〉
NFFT

, (8)

where 〈...〉NFFT
is the average over NFFT time segments.

Therefore, the signal-to-noise ratio (SNR) is:

SNRj =
Sj
σj
. (9)

In Gaussian noise without a signal, SNRj has zero mean
and unit variance. The presence of a signal would lead to
a non-zero offset in the mean SNR proportional to ε2 (see

equations 5-6). We note that we will include the overlap
reduction function (ORF) in our upper limit calculation,
which accounts for the relative orientation and overlap
of two detectors and the responses of the detectors to
a signal. As indicated in [13], the ORF is constant (∼
−0.9) for the LIGO Hanford (H1) and LIGO Livingston
(L1) detectors because the dark photon coherence length
always exceeds the detector separation.

Here, we analyze only time segments satisfying stan-
dard data quality requirements used in gravitational-
wave searches (see section IV), and further restrict to
contiguous, coincident intervals of good data spanning
the Fast Fourier Transform coherence time. As in the
analysis performed using data from the first observing
run (O1) [24], we set TFFT = 1800 s, a pragmatic compro-
mise between recovering signal power at high frequencies
with shorter-than-optimal coherence times, and reducing
noise contamination at low frequencies for longer-than-
optimal coherence times. An important constraint at low
frequencies is that requiring longer (contiguous) coher-
ence times necessarily reduces total available livetime,
especially given the need for coincident H1 and L1 data.
In total, we analyze 7539 pairs of 1800-second coincident
time segments from H1 and L1.

B. BSD analysis

In addition to cross-correlation, we employ an indepen-
dent method [41] to search for dark photon dark matter.
The method relies on Band Sampled Data (BSD) struc-
tures, which store the detector’s downsampled strain
data as a reduced analytic signal [40] in 10-Hz/1-month
chunks. In each 10-Hz band, we change the Fast Fourier
Transform coherence time [40] based on the expected
Maxwell-Boltzmann frequency spread of dark photons,
equation 3. Although this frequency spread is given as a
function of v0, we instead use the escape velocity from the
galaxy, vesc ' 540 km/s [44], to determine the maximum
allowed TFFT, TFFT,max, by requiring that the frequency
spread be contained in one frequency bin in TFFT,max:

TFFT,max .
2

f0

c2

v2esc
' 6× 105

f0
s. (10)

Based on simulations [41], we found that the sensitivity
of the search improves when taking TFFT = 1.5TFFT,max,
because the power lost due to over-resolving in frequency
is less than that gained by increasing TFFT.

After selecting TFFT, we create time/frequency
“peakmaps” [48, 49], which are collections of ones and
zeros that represent when the power in particular fre-
quency bins has exceeded a threshold in the equalized
spectrum. Because we choose TFFT to confine a signal’s
power to one frequency bin, we project the peakmap onto
the frequency axis and look for frequency bins with large
numbers of peaks, which we call the “number count”.
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FIG. 1. Number of candidates selected as a function of fre-
quency in the BSD analysis, with log10 TFFT colored. We se-
lect enough candidates in each 1-Hz band such that one coin-
cident candidate between two detectors would occur in Gaus-
sian noise. The changing number of candidates as a function
of frequency ensures that we select uniformly in frequency.

We should uniformly select candidates in the frequency
domain. In figure 1 shows how many candidates to select
in each 10-Hz frequency band such that we would obtain,
on average, one coincident candidate every one Hz in
Gaussian noise. We also show in color how log10 TFFT
changes with frequency (equation 10).

Our detection statistic is the critical ratio CR:

CR =
y − µ
σ

, (11)

where y is the number count in a particular frequency
bin, and µ and σ are the mean and standard deviations of
the number counts across all frequency bins in the band.
The CR has a normal distribution with an expectation
value of 0 and unit variance in Gaussian noise, and a
normalized non-central χ2 distribution with two degrees
of freedom when a signal is present.

IV. DATA

We use data from the third observing run (O3) of the
Advanced LIGO [50] and Virgo [51] gravitational-wave
detectors between 10-2000 Hz. O3 lasted from 2019 April
1 to 2020 March 27, with a one-month pause in data
collection in October 2019. The three detectors’ datasets,
H1, L1, and Virgo (V1), had duty factors of ∼ 76%,
∼ 77%, and ∼ 76%, respectively, during O3.

In the event of a detection, calibration uncertainties
would limit our ability to provide robust estimates of
the coupling of dark matter to the interferometers. Even
without a detection, these uncertainties affect the esti-
mated instruments’ sensitivities and inferred upper lim-
its. The uncertainties vary over the course of a run but

do not change by large values, so we do not consider
time-dependent calibration uncertainties here [52].

For the LIGO O3 data set, the analyses use the “C01”
calibration, which has estimated maximum amplitude
and phase uncertainties of ∼ 7% and ∼ 4 deg, respec-
tively [52]. Because of the presence of a large number of
noise artifacts, gating [53, 54] has also been applied to
LIGO data. This procedure applies an inverse Tukey
window to LIGO data at times when the root-mean-
square value of the whitened strain channel in the 25-50
Hz band or 70-110 Hz band exceeds a certain threshold.
The improvements from gating are significant, as seen in
stochastic and continuous gravitational-wave analyses in
O3 [46]. For the Virgo O3 dataset, we use the “V0” cal-
ibration with estimated maximum amplitude and phase
uncertainties of 5% and 2 deg, respectively.

V. RESULTS

A. Cross-Correlation

The output of the cross-correlation analysis is a value
of the SNR in every frequency bin analyzed. At this
point, we remove frequency bins with noise artifacts, i.e.
bins within 0.056 Hz of known noise lines [55]. To fur-
ther estimate the non-Gaussian background from arti-
facts, control samples are constructed using frequency
lags, i.e. examining the correlations among a set of offset
bins. We apply ten lags of the frequency bin offsets, i.e.
(-50, -40, ..., -10, +10, ..., +50). If any frequency bin in
the control sample has a |Re(SNR)| or |Im(SNR)| larger
than 4.0 within 0.1 Hz of the outlier, the outlier is vetoed
as contaminated by spectral leakage from a nearby non-
Gaussian artifact. We choose a band of 0.1 Hz because
within that band, spectral leakage causes non-physical
correlated amplitudes and phases. Furthermore, ten lags
allows us to compare frequency bins that are not too far
from each other to construct an estimation of the noise
in the chosen frequency bin.

After removing these instrumental artifacts, we look
for frequency bins with Re(SNR) < −5.8, which corre-
sponds to an overall ∼ 1% false alarm probability after
including the trial factor in Gaussian noise, and is nega-
tive because H1 and L1 are rotated 90 deg with respect to
each other. We find no outliers that pass this threshold.

Finally, as a cross-check, between [5.0, 5.8] for
|Re(SNR)| or |Im(SNR)|, we find four non-vetoed out-
liers, which are shown in table I. The number of outliers
is consistent with the Gaussian noise expectation of 4.1.
We consider the absolute value of the real and imaginary
components of the SNR because we are checking consis-
tency with the expected number of outliers in Gaussian
noise, which does not depend on the sign of the SNR .
We show the distribution of the real and imaginary parts
of the SNR in appendix A.
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B. BSD analysis

Before selecting candidates, we remove any frequencies
that fall within one frequency bin of known noise lines
from each detector’s data [55]. We subsequently require
coincident candidates between two or more detectors to
be within one frequency bin of each other. At this stage,
our analyses of the Hanford-Livingston (HL), Hanford-
Virgo (HV), and the Livingston-Virgo (LV) baselines re-
turn 5801, 5628, and 5592 candidates, respectively.

In all baselines, we veto coincident candidates if one
of the candidates’ critical ratios is less than five or one
of the candidates’ frequencies is too close, i.e. within
5 bins, to the edges of the 10 Hz-band analyzed. The
latter veto is necessary because the construction of the
BSDs introduces artifacts in some bands at the edges.
For the HL baseline, we remove candidates whose critical
ratios differ by more than a factor of two because the
sensitivity of each interferometer is comparable, so we do
not expect a dark photon signal to appear with vastly
different critical ratios in each detector. In the HV and
LV baselines, we reject candidates whose critical ratios
in V1 are higher than those in L1 or H1 because Virgo
is less sensitive than LIGO [56]. We show distributions
of CR in the Hanford and Livingston detectors across all
frequencies in appendix A, figures 5 and 6, respectively,
as well as the CR distribution of the number of coincident
candidates in figure 7.

We are then left with eleven surviving candidates
across the three baselines, given in table II, that are all
due to instrumental noise or artifacts in the peakmap.
Peakmap artifacts occur because when there are strong
lines at particular frequencies, we tend to select peaks
that correspond to those lines. This causes a “depletion”
of peaks nearby, and thus, a candidate could result be-
cause the level of the noise in the projected peakmap is
lower on one side than on the other. No candidate has
been found to be coincident in all three interferometers.
These surviving candidates do not overlap with the list
of known lines used in this search [55], although line arti-
facts or/and combs regions are clearly visible when using
a different resolution to construct the spectra. In figure
2, we show an example of the disturbances near an out-
lier at 1498.76 Hz, where a family of combs is present in
both the H1 and L1 detectors.

C. Upper limits

Finding no evidence of a signal, in figure 3 we place
95% confidence-level upper limits on the square of
the minimum detectable dark photon/baryon coupling,
U(1)B, using the HL baseline. The cross-correlation lim-
its are shown in red for every 0.556-mHz bin, while the
BSD limits are given in black with cyan 1σ shading
in frequency bins in which coincident candidates were
found. To calculate these limits, we employ the Feldman-
Cousins [57] approach, in which we assume that both

FIG. 2. We discarded all surviving outliers because they were
due to instrumental noise or artifacts. In this figure, we can
see the comb affecting the power spectral density (PSD) of H1
and the line in L1 responsible for the production of an outlier
near 1498.8 Hz. Frequency resolution: δf = 3.47 × 10−5 Hz.

CR and SNR follow Gaussian distributions, and map
the measured detection statistics to “inferred” positive-
definite statistics based on the upper value of table 10
of [57] at 95% confidence. As shown in [5], this ap-
proach produces consistent limits with respect to those
that would be obtained by injecting simulated signals.
With our estimates of the noise power spectral density
and TFFT, we can translate the inferred SNR and CR
at each frequency to the corresponding signal amplitude
using equation 9 in [13] and equation 30 in [41], respec-
tively. This amplitude is then converted to a coupling
strength using equation 5, and adjusted for the common
mode motion effect [42].

The limits from the cross-correlation analysis are more
stringent than those from the BSD method because the
former employs the phase information of the signal, while
the latter only looks at power. Furthermore, though the
choice of TFFT is “optimal” in the BSD method, it is
still shorter than that used by cross correlation by as
much as a factor of six above ∼ 330 Hz, and the defi-
nition of “optimal” depends on whether we consider the
escape or virial velocity of dark matter as responsible for
the frequency variation. Additionally, cross-correlation
of two data streams can achieve better sensitivity than
coincidence analysis of the same streams (for the same
livetime) because coincidence analysis is limited by the
less sensitive of the two detectors at a given frequency.



6

frequency (Hz) SNR SNR(Bkg)
483.872 0.53+5.03i Re: [-3.62, 3.62] Im: [-3.52, 3.51]
853.389 -0.18+5.02i Re: [-3.85, 3.85] Im: [-3.55, 3.90]
1139.590 -5.21+0.67i Re: [-3.54, 3.39] Im: [-3.61, 3.58]
1686.598 5.01+1.63i Re: [-3.50, 3.70] Im: [-3.65, 3.89]

TABLE I. Four sub-threshold outliers returned by the cross correlation analysis of the HL baseline. We report the (complex)
signal-to-noise ratio (SNR) for each outlier and the associated background (Bkg) SNR. For the background SNR, we include
the range of the real part (Re) and imaginary part (Im) among ten lagged results. These four events are consistent with the
Gaussian noise expectation over all of the clean bands in the analysis.

frequency (Hz) average CR TFFT (s) baseline source
15.9000 5.29 44762 HL unknown line in L
17.8000 28.93 44762 LV unidentified line in L (17.8 Hz)
36.2000 8.90 22382 HV unidentified line in H (36.2 Hz)
599.324 12.38 1492 HV peakmap artifact; no significant candidate in L
599.325 12.33 1492 HV peakmap artifact; no significant candidate in L
1478.75 6.47 604 HL noisy spectra in H
1496.26 7.12 596 HL noisy violin resonance regions
1498.77 8.73 596 HL noisy violin resonance regions
1799.63 7.40 498 HV unidentified line in H (1799.63904 Hz)
1936.88 7.96 462 HL noisy violin resonance regions
1982.91 6.34 450 HL noisy violin resonance regions

TABLE II. Outliers returned by the BSD analysis. The frequency resolution of each outlier is 1/TFFT. We have determined
the origin of all outliers to be from instrumental lines or peakmap artifacts. No outlier was found to be in triple coincidence.
A list of unidentified lines can be found in [58].

FIG. 3. Upper limits derived using a Feldman-Cousins approach for both searches on dark photon/baryon coupling, U(1)B.
The limits from each method are comparable, noting that the BSD-based analysis takes an optimally chosen TFFT and can
observe for twice as long than the cross-correlation method can. We plot for comparison upper limits from MICROSCOPE
given in [30], though other weaker limits exist [59–61], that have been converted from the coupling constant to gravity, α, to
ε2, using the equation below figure 3 in [62], and from the Eöt-Wash torsion balance experiment [28]. To produce limits on
dark photon/baryon-lepton coupling, U(1)B−L, our limits should be multiplied by four.
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VI. CONCLUSIONS

We have presented strong constraints on the coupling
strength of dark photon dark matter to baryons by us-
ing data from LIGO’s and Virgo’s third observing run.
In the mass range mA ∼ [2 − 4] × 10−13 eV/c2, we im-
prove upon previous limits derived using data from the
first observing run of LIGO [24] by a factor of ∼ 100 in
the square of the coupling strength of dark photons to
baryons. This improvement is due to more sensitive de-
tectors and to accounting for the finite light travel time
[42]. Additionally, our limits surpass those of existing
dark matter experiments, such as the Eöt-Wash torsion
balance and MICROSCOPE, by orders of magnitude in
certain frequency bands, and support new ways to use
gravitational-wave detectors as direct probes of the ex-
istence of ultralight dark matter. As the sensitivities
of current ground-based gravitational-wave detectors im-
prove, and third generation detectors, such as Cosmic
Explorer [63] and Einstein Telescope [64], come online,
we will dig even more deeply into the noise. Further-
more, once future-generation space-based detectors, such
as DECIGO [65], LISA [66], and TianQin [67], are oper-
ational, we will probe dark photon couplings at masses
as low as mA ∼ 10−18 eV/c2.
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Appendix A: Distribution of detection statistics

We provide here more details on our detection statis-
tics for both methods. When we calculate upper limits,
we assume that these statistics follow Gaussian distribu-
tions, which is actually true only in clean bands. But,
because we showed the Feldman-Cousins approach to be
robust towards noise disturbances in [41], we are confi-
dent that the limits are reflective of what we would have
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FIG. 4. Distribution of the real (top) and imaginary (bot-
tom) parts of the SNR in the cross-correlation search, with
those corresponding to on-source (with zero lag) results in
magenta, background (with frequency lags) in black and the
ideal Gaussian distribution in green.

obtained if we performed software injections.

For the cross-correlation search, the distributions of
the real and imaginary parts of the SNR are shown in
figure 4 after vetoing frequency bins within 0.056Hz of the
known noise lines [55] and after vetoing the instrumental
artifacts as described in the main text above.

We show the distributions of the CR in Hanford (fig-
ure 5) and Livingston (figure 6), over all frequency bins
between 10-2000 Hz. We also overlay a Gaussian on the
plot to show the extent to which the distributions dif-
fers from a Gaussian distribution. In both detectors, the
number of frequency bins whose CRs deviate from Gaus-
sianity is of O(102), which is a small fraction of the total
number of bins analyzed.

We also include a plot to characterize the coincident
candidates between Hanford and Livingston that are se-
lected in our search. Figure 7 shows a histogram of all
the coincident candidates’ critical ratios that we select,
as well as a black line that indicates the threshold on the
critical ratio that we impose, equal to 5. We can see that
very few candidates are coincident relative to the num-
ber of candidates plotted in figures 5 and 6, and that the
total number of coincident candidates that are subject to
further study is of O(1000).
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74Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
75INFN, Sezione di Padova, I-35131 Padova, Italy

76Montana State University, Bozeman, MT 59717, USA
77Institute for Plasma Research, Bhat, Gandhinagar 382428, India

78Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland
79Dipartimento di Ingegneria, Università del Sannio, I-82100 Benevento, Italy
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CNRS/IN2P3, UPS, F-31062 Toulouse Cedex 9, France
104School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
105IGFAE, Campus Sur, Universidade de Santiago de Compostela, 15782 Spain

106The Chinese University of Hong Kong, Shatin, NT, Hong Kong
107Stony Brook University, Stony Brook, NY 11794, USA

108Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
109NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
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