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Abstract

We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and
Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019
November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic
gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one
neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals
associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for
subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types
and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB.
Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third
observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local
binary neutron star merger rate.
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Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); Gravitational wave astronomy (675);
Gravitational waves (678); Gravitational wave detectors (676)

1. Introduction

Gamma-ray bursts (GRBs; Kumar & Zhang 2015) are
intense and highly variable flashes of gamma-rays (the prompt
emission), followed by a long-lasting, multiwavelength emis-
sion (the afterglow emission), typically observed in X-rays,
optical, radio, and sometimes in gamma-rays. They are
believed to be powered by ultra-relativistic jets produced by
rapid accretion onto a central compact object: a black hole (BH;
Woosley 1993; Popham et al. 1999) or a magnetar (Dai &
Lu 1998; Zhang & Mészáros 2001).

GRBs are divided into two classes, depending on the
duration and the spectral hardness of the prompt emission
(Kouveliotou et al. 1993): long, soft GRBs (duration 2 s) and
short, hard GRBs (duration <2 s).

Long GRBs are thought to be associated with the core
collapse of massive stars. This connection is observationally
supported by the identification of supernova (SN) signatures in
a number of sufficiently close long GRBs (Galama et al. 1998;
Hjorth et al. 2003; Stanek et al. 2003). Core-collapsing massive
stars are also expected to emit gravitational waves (GWs) if
there is some asymmetry in the stellar-envelope ejection phase
(Kotake et al. 2006; Ott 2009; Gossan et al. 2016). State-of-the-
art models predict that such GW radiation can be detected by
current generation GW interferometers only within our galaxy
(Abbott et al. 2020); however, according to more extreme
phenomenological models, such as long-lived bar-mode
instabilities and disk fragmentation instabilities, GW radiation
could be detected even for extragalactic sources (Fryer et al.
2002; van Putten et al. 2004; Piro & Pfahl 2007; Corsi &
Mészáros 2009; Gossan et al. 2016; Abbott et al. 2020).

Short GRBs were long believed to be associated with
compact binary coalescence (CBC) composed of two neutron
stars (NSs), a binary neutron star (BNS) system, or an NS and a
BH, an NSBH binary (Eichler et al. 1989; Paczynski 1991;
Narayan et al. 1992). The definitive proof of this association
(Abbott et al. 2017a, 2017d) came with the joint detection of
the BNS merger GW signal GW170817 (Abbott et al.
2017c, 2019c) and GRB 170817A (Goldstein et al. 2017;
Savchenko et al. 2017). The groundbreaking electromagnetic
follow-up campaign performed after this joint detection
allowed the identification of the associated kilonova emission
and of the GRB afterglow emission (see Abbott et al. (2017d)
and references therein).

GRB 170817A was 2–6 orders of magnitude less energetic
than other GRBs (Abbott et al. 2017a); the low luminosity of
this source, together with the delayed onset and rising
multiwavelength light curve of the afterglow (Haggard et al.
2017; Hallinan et al. 2017; Troja et al. 2017; D’Avanzo et al.
2018; Lyman et al. 2018) suggested an off-axis GRB with a
relativistic structured jet or a cocoon emission from the
relativistic jet shocking its surrounding nonrelativistic material.
Late time multiwavelength observations were crucial to
discriminate between these scenarios, and now it is widely
accepted that GRB 170817A originated from a structured jet
observed off-axis (see, e.g., Lamb et al. 2018; Mooley et al.
2018; Troja et al. 2018, 2019; Ghirlanda et al. 2019).

In Abbott et al. (2020) we presented targeted GW follow-up
of GRBs reported during the first part of the third observing run

of Advanced LIGO and Advanced Virgo (O3a; 2019 April 1
15:00 UTC–2019 October 1 15:00 UTC) by Fermiʼs Gamma-
Ray Burst Monitor (Fermi/GBM; Meegan et al. 2009) and
Swiftʼs Burst Alert Telescope (Swift/BAT; Gehrels et al. 2004;
Barthelmy et al. 2005; Tohuvavohu et al. 2020). No significant
evidence for GW signals associated with the GRBs that have
been followed up on has been found, nor for a population of
unidentified subthreshold signals.
In this paper we present targeted GW follow-up of GRBs

reported during the second part of the third observing run of
Advanced LIGO and Advanced Virgo (O3b) by Fermi/GBM
and Swift/BAT. O3b took place between 2019 November 1
15:00 UTC and 2020 March 27 17:00 UTC. During O3b, 35
CBC events have been identified with an inferred probability of
astrophysical CBC origin of pastro> 0.5 (Abbott et al. 2021a).
The majority of them are classified as mergers of binary black
hole (BBH) systems; however, several events are consistent
with binary systems with at least one NS (Abbott et al. 2021a).
One other event with lower pastro was also published as a
possible NSBH coalescence (Abbott et al. 2021b). No EM
counterparts have been reported so far in association with these
events; however, given their large distances (300 Mpc) and
their large error in the sky localization (Abbott et al. 2021a), it
would have been difficult to detect an EM signal in association
with these GW events.
In Section 2 we discuss the sample of GRBs analyzed in this

paper. In Section 3 we summarize the methods used to follow
up on GRBs. In Section 4 we describe the results, and in
Section 5 we present a population model analysis. Finally, in
Section 6 we present our concluding remarks.

2. GRBs During O3b

Our GRB sample consists of 108 events that occurred
between 2019 November 1 15:00 UTC and 2020 March 27
17:00 UTC. The vast majority of these events were identified in
low-latency via notices circulated by the Gamma-ray Coordi-
nates Network (GCN) and subsequently refined with additional
data from the Swift/BAT catalog and the Fermi/GBM
catalog.298 The Vetting Automation and Literature Informed
Database (Coyne 2015) is a dedicated processing system that
tracks updates to the observed GRB parameters, comparing
time and localization data to ensure that the latest results are
used for our GW analyses, and employing an automated
literature search to identify particularly noteworthy events.
We identify candidate events by classifying each GRB as

long, short, or ambiguous. We classify events based on their
T90 (and its associated error δT90), which is the time interval
over which 90% of the total background-subtracted photon
counts are observed. GRBs are classified as short when
T90+ |δT90|< 2 s, GRBs are classified as long when T90−
|δT90|> 4 s, and all remaining GRBs are labeled as ambiguous.
This long/short classification based on duration is only a
general trend, and is not a perfect discriminator. In particular, it
does not account for short GRBs that are followed by periods

298 Swift/BAT Gamma-Ray Burst Catalog swift.gsfc.nasa.gov/results/
batgrbcat/, and Fermi/GBM Burst Catalog heasarc.gsfc.nasa.gov/W3Browse/
fermi/fermigbrst.html.
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of extended emission (Norris & Bonnell 2006), for which
measures of T90 may substantially exceed these thresholds. For
more robust classification one must also consider spectral
properties, most commonly the spectral hardness or peak
energy of the event, but since our sample consists of
observations from multiple observatories with different spectral
sensitivities we do not employ such quantities when organizing
our sample.

This classification process results in seven short GRBs, 12
ambiguous GRBs, and 89 long GRBs. Of all these GRBs, only
two have known redshifts:

1. GRB 191221B (z= 1.148; Kuin & Swift/UVOT Team
2019; Vielfaure et al. 2019)

2. GRB 200205B (z= 1.465; Vielfaure et al. 2020)

In keeping with previous studies of this kind (Abbott et al.
2017e, 2019d, 2020), we apply a generic transient search to all
events, regardless of classification. In order to maximize our
chances at identifying potential CBC candidates, we apply our
modeled search to all short and ambiguous GRBs. We also
follow the same requirements on amount of data available
within our network to process a given GRB. For the modeled
search we select GRBs if there is a minimum amount of time in
at least one detector around the time of the event. This gives us
17 events for our analysis corresponding with the observing
time for the same selection criteria (96.6% with at least one
interferometer in observing mode). For the generic transient
search, we perform the selection by requiring enough data in at
least two interferometers. This leads to 86 GRBs to analyze and
is also compatible with the network observing time of at least
two detectors (85.3%).

3. Search Methods

3.1. Modeled Search for Compact Binary Mergers

This analysis is carried out by a coherent matched filtering
pipeline, PyGRB (Harry & Fairhurst 2011; Williamson et al.
2014), contained within the open-source PyCBC (Nitz et al.
2020) suite, which also relies heavily on the LALSuite (LIGO
Scientific Collaboration 2018) library. These searches seek to
find candidate GW signals coincident with the GRB triggers
due to the inspiral and merger of BNS or NSBH binaries. We
define a window around each GRB trigger, the on-source
window, which is [− 5, +1] s from the GRB trigger time. This
window is based on the assumption that a GW may precede the
prompt GRB emission by several seconds (Lee & Ramirez-
Ruiz 2007; Vedrenne & Atteia 2009), and was demonstrated by
GW170817 (Abbott et al. 2017b). The search also uses time
surrounding the trigger, split into 6 s off-source windows, to
estimate the background. In total, the search uses ∼90 minutes
of data around each GRB trigger to assign a significance to
candidate events by ranking them against the background. To
constrain the sky location of the GRB event, the search is using
a grid based on the best localization known either from Fermi/
GBM or Swift/BAT.

The analysis requires a bank of template waveforms to carry
out the matched filtering. We generated this bank using both
geometric (Brown et al. 2012; Harry et al. 2014) and stochastic
methods (Harry et al. 2008) for BNS and NSBH signals. The
waveforms used in generating this bank are phenomenological
inspiral–merger–ringdown waveform models of the IMRPhe-
nomD family (Husa et al. 2016; Khan et al. 2016). We choose

to place limits on the bank, identical to those used in the O3a
template bank (Abbott et al. 2020), such that any NS masses
are limited to [1.0, 2.8]Me and BH masses are within [2.8,
25]Me. We conservatively set the mass cutoff between an NS
and a BH based on an NS equation of state (Kalogera &
Baym 1996). Functionally, this cutoff has no effect on the
waveforms and is just used for nomenclature. The bank only
contains aligned-spin BNS and NSBH binaries where the
maximum dimensionless spin magnitude for NSs is 0.05 from
the largest observed NS spin in a binary (Burgay et al. 2003).
For BH, we limit the spin to 0.998 based on theory
(Thorne 1974). Finally, we check to ensure that all potential
binaries are viable GRB progenitors with the creation of an
accretion disk able to power a GRB (Pannarale & Ohme 2014).
We focus the search on these types of compact binary events as
they are the most likely GRB progenitors. Certain conditions
may be able to produce short-GRB-like events without the
formation of an accretion disk, as in the case of theorized
resonant shattering flares (RSFs) acting as a precursor GRB to
an otherwise electromagnetically dark NSBH event (Tsang
et al. 2012; Tsang 2013; Neill et al. 2021). Our search does not
presently include these cases, as doing so would increase both
the computing cost of the search and its false-alarm probability,
potentially reducing the sensitivity of signals associated with
accretion disk formation. This choice may be revisited in the
future, especially in light of additional evidence for RSFs.
The only structural change between this bank and the bank

used in the O3a modeled searches (Abbott et al. 2020) is the
template placement for NSBH systems with total mass
M< 6Me. Both banks are constructed by first performing a
geometric generation for a part of the parameter space. These
templates are then seeded to a stochastic generation that fills the
rest of the parameter space (Capano et al. 2016). The difference
between the O3a and O3b banks is that the geometric
generation for the O3a bank extended through the low-mass
NSBH region whereas the O3b bank limits the geometric
generation to the BNS region. We made this change based on a
bank verification that tests a bank’s ability to recover a set of
signals. The result of this verification is a fitting factor
( ) that quantitatively measures the bank’s performance
(Apostolatos 1995). The target for our template banks is to
minimize the number of signals that have a  less than a
threshold, which we set at 0.97 for our offline searches. For the
same set of signals in the low-mass NSBH region, the bank
with a limited geometric generation recovers a factor of 10 less
signals with a fitting factor below 0.97—when compared to the
extended geometric bank. These results show that the limited
geometric approach creates a more sensitive template bank for
our searches.
PyGRB uses this bank to rank candidate signals based on a

re-weighted optimal signal-to noise ratio (S/N). This optimal
S/N is the result of the coherent matched filter, and is re-
weighted by how well the template matches the identified
signal (Harry & Fairhurst 2011; Williamson et al. 2014). The
search can then rank the significance of any event against the
background using the off-source windows. In order to improve
this ranking statistic, we artificially increase the amount of off-
source data by performing time slides (Williamson et al. 2014).
To further determine the sensitivity of our searches, we inject

signals into the off-source data and attempt to recover them.
The signals that we choose to inject are generally in the same
BNS and NSBH domains as the template bank, with a few
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important distinctions. Again, we replicate what was done in
O3a (Abbott et al. 2020), where the injected signals are split
into three sets; a BNS set with non-aligned (precessing) spins,
an aligned-spin NSBH set, and a precessing NSBH set. The NS
masses in a BNS binary are selected randomly from a normal
distribution with a mean of 1.4Me and variance of 0.2Me (Özel
et al. 2012). For NSBH binaries, NS masses are selected from a
normal distribution with slightly more variance (μ= 1.4Me,
σ= 0.4Me). The larger width reflects the greater uncertainty
arising from a lack of observed NSBH systems. BH masses are
randomly selected from the following normal distribution
(μ= 10.0Me, σ= 6.0Me). For all cases we place limits on the
distributions similar to those used for the template bank.
Randomly selected spin magnitudes are less than 0.4 for NSs
based on the maximum observed pulsar spin (Hessels et al.
2006), and less than 0.98 for BHs (Miller & Miller 2014). For
the two sets of injections that allow precessing signals, the
orientations are also randomly selected. We also choose to use
different waveform families than the ones used to generate the
template bank to account for modeling uncertainty. We
generate the BNS injections using the SpinTaylorT2 family,
which are post-Newtonian approximations in the time domain
(Sathyaprakash & Dhurandhar 1991; Blanchet et al. 1996;
Mikoczi et al. 2005; Arun et al. 2009; Bohé et al. 2013, 2015;
Mishra et al. 2016). The NSBH sets both make use of the
SEOBNRv3 family of waveforms. These waveforms are
effective-one-body approximates that are tuned for precessing
systems (Pan et al. 2014; Taracchini et al. 2014; Babak et al.
2017). As with the template bank, we check to ensure that
generated systems are capable GRB progenitors (Pannarale &
Ohme 2014). These injection sets allow us to calculate the 90%
exclusion distance (D90), which is the distance at which we
recover 90% of the injected signals with a significant ranking
statistic.

3.2. Search for Generic GW Transients

This analysis, carried out with the X-Pipeline software
package (Sutton et al. 2010; Was et al. 2012), searches for
excess power that is coherent across the GW detector network
and consistent with the sky localization and time window of
each GRB. Like the previous X-Pipeline analyses (Abbott
et al. 2017e, 2019d, 2020), the search time window starts 600 s
before the GRB trigger time and ends at 60 s after trigger time,
or at T90 if T90> 60 s. This is sufficient to cover the time delay
between GW emission from a progenitor and any GRB prompt
emission (Koshut et al. 1995; Aloy et al. 2000; MacFadyen
et al. 2001; Zhang et al. 2003; Lazzati 2005; Wang &
Mészáros 2007; Burlon et al. 2008, 2009; Lazzati et al. 2009;
Vedrenne & Atteia 2009). While some GW emissions, such as
from core-collapse SNe, are expected to reach frequencies up
to a few kilohertz (Radice et al. 2019), we restrict our
search frequency range to the most sensitive band of the GW
detectors, 20–500 Hz, since detecting such signals above a few
hundred hertz requires extremely high GW energies (Abbott
et al. 2019b, Figure 4) and expanding the frequency range
would also significantly increase the computational cost. To
constrain the sky location of the GRB event, the search is using
a grid based on the best localization known either from Fermi/
GBM or Swift/BAT.

X-Pipeline produces time–frequency maps of the GW
data coherently combined between the detectors. These maps
give access to the temporal evolution of the spectral properties

of the signal and enable the pipeline to search for clusters of
pixels containing excess energy, referred to as events. The
pipeline assigns each event a detection statistic based on energy
and ranks them accordingly. A coherent consistency test, based
on correlations between data in different detectors, then vetoes
events that are associated with noise transients. The surviving
event with the largest ranking statistic is the best candidate for a
GW detection, and the search quantifies its significance as the
probability of the event being produced by the background
alone. This is determined by comparing the S/N of the trigger
within the 660 s on-source window to the distribution of the S/
Ns of the loudest triggers in the 660 s off-source windows. As a
requirement, the off-source data consist of at least ∼1.5 hr of
coincident data from at least two detectors around the time of a
GRB. This is small enough to select data where the detectors
should be in a similar state of operation as during the GRB on-
source window, and large enough so that probability estimates
using artificial time-shifting of the data are at the sub-percent
level.
We quantify the sensitivity of the generic transient search by

injecting simulated signals into off-source data. For each
waveform family injected we determine the largest significance
of any surviving cluster associated with the injections. We
compute the percentage of injections that have a significance
higher than the best event candidate and look for the amplitude
at which this percentage is above 90%, which sets the upper
limit. We include O3b calibration errors (Acernese et al. 2022;
Sun et al. 2021) by jittering the amplitude and arrival time
according to a Gaussian distribution representative of the
calibration uncertainties. As with the modeled search, these
injection sets allow us to calculate 90% exclusion distances.
We choose simulated waveforms to cover the search

parameter space of three distinct sets of circular waveforms:
BNS and NSBH binary inspiral signals, stellar collapse, and
disk instability models.

1. Circular sine–Gaussian (CSG): signals representing GW
emission from stellar collapses defined in Equation (1) of
Abbott et al. (2017e) with a Q factor of 9 and varying
center frequency of 70, 100, 150, and 300 Hz. In all
cases, we assume an optimistic emission of energy in
GWs of EGW= 10−2Mec

2.
2. Binary inspiral: signals are characterized by a Gaussian

distribution centered at 1.4Me, with a width of 0.2Me for
an NS in a BNS, and with a width of 0.4Me for an NS in
an NSBH. The distribution for GWs emitted by BNS
mergers addresses the case of short GRB events as in
Abbott et al. (2017e) and adopted in the PyGRB search
(Section 3.1).

3. Accretion disk instability (ADI): long-duration wave-
forms for GWs produced by instabilities in the magne-
tically suspended torus around a rapidly spinning BH.
The model specifics and parameters used to generate the
five families of ADI signals are the same as in the
previous searches (Abbott et al. 2017e, 2019d, 2020).

In the O3a search, the sensitivity to long-duration (10 s)
signals was often limited by loud background noise transients
known as glitches (Davis et al. 2021). While X-Pipeline’s
coherent consistency tests easily veto these glitches, many
long-duration simulated signals would overlap such a glitch by
chance. In these cases the simulated signal and glitch would be
clustered together and subsequently vetoed together. To
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address this problem, we implemented an autogating procedure
for O3b. For each detector, we compute the total energy in the
whitened data stream over a 1 s window. If this total fluctuates
by more than 50 standard deviations above the median value,
then the data is zeroed out over the interval where the threshold
is exceeded and we apply an inverse 1 s Tukey window at each
end of the zeroed interval to transition smoothly between the
whitened and zeroed data. To minimize the possibility of a loud
GW transient triggering a gate, the procedure cancels a gate if
there is a simultaneous energy excursion above 10 standard
deviations in any other detector. The threshold of 50 standard
deviations is low enough to gate the most problematic loud
glitches, while being high enough that the only GWs zeroed out
by the gate would have been detectable by all-sky searches.
Empirically we find that this procedure is effective at reducing
the impact of loud glitches without affecting the sensitivity to
low-amplitude GW signals.

For both search methods, we rank each candidate by
calculating a p-value, the probability of an event or a louder
one in the on-source data, given the background distribution,
under the null hypothesis. The p-value is calculated by
counting the fraction of background trials that contain an event
with a greater signal-to-noise ratio than that of the loudest on-
source event.

4. Results of Analyses

We followed up on 86 GRB triggers with the generic
transient method and 17 GRBs (those categorized as short or
ambiguous) with the modeled search. None of the analyses
indicate the presence of a statistically significant GW signal
associated with one or more of the GRBs. This null result is
consistent with the estimated GW–GRB joint detection rate

with Fermi/GBM of 0.07–1.80 yr−1 reported previously in
Abbott et al. (2019a) for the second observing run of Advanced
LIGO and Advanced Virgo (O2).
We present the cumulative p-value distributions from both

search methods in Figures 1 and 2. In these plots, a significant
event would appear at a much lower p-value in the lower left
corner of the plots, and be outside (to the left) of the 90%
confidence region. Both plots show that the p-value distribu-
tions are consistent with the background.
The most significant event from the modeled search had a

p-value of 1.08× 10−2 (GRB 200129A). Through further
investigation of this candidate event, a period of excess noise
in one of the detectors was discovered ∼20 s before the
candidate time. To determine the effect of this noise on the
candidate, we used BayesWave to reconstruct the glitch and
then clean the data by subtracting the reconstruction (Pankow
et al. 2018; Cornish et al. 2021). After this cleaning, we
conducted a coherent matched filtering on the cleaned data and
the recovered candidate was no longer significant with respect
to the background. This result suggests that much of the power
of the candidate was caused by noise and not a GW. Even if
there is a quiet GW at this time, it is not strong enough without
the contribution from the glitch to survive ranking against the
background in the analysis.
The lowest reported p-value found during O3b for the

generic transient search was 7.95× 10−3 (GRB 200224B).
Although this p-value is very small, it is not unexpected given
the high number of GRBs analyzed.
Given that no loud GW signals were observed coincident

with any of the GRBs in either of our searches, we perform a
weighted binomial test to determine the probability of
observing our set of p-values assuming a uniform background
distribution. A small probability would suggest that there may
be a population of subthreshold GW signals that our searches

Figure 1. The cumulative distribution of p-values for the loudest on-source
events for the modeled search in O3b. If a trigger is found in the on-source the
upper and lower limits are identical to the reported p-value. If no trigger is
identified in the on-source window, we set an upper limit on the p-value of 1,
and a lower limit equal to the fraction of off-source trials that also did not
contain a trigger. The upper limits are plotted as the curve with full circles and
the lower limits are plotted as the curve with empty circles. The dashed line
indicates an expected uniform distribution of p-values under a no-signal
hypothesis, with the corresponding 90% band as the dotted lines.

Figure 2. The cumulative distribution of p-values for the loudest on-source
events for the generic transient search in O3b. Unlike with the modeled search,
there is a p-value found for all GRBs analyzed by the generic transient search,
so there are no upper and lower limits. The observed values are plotted as the
curve with full circles. The dashed line indicates an expected uniform
distribution of p-values under a no-signal hypothesis, with the corresponding
90% band as the dotted lines.
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did not identify. This type of weighted binomial test, fully
described in the Appendix of Abadie et al. (2012), uses the
lowest re-weighted p-values from the searches. The resulting
probability for the modeled search is 0.07. If we remove
GRB 200129A, for which the small p-value is the result of
noise, the probability becomes 0.68, suggesting no population
of weak GW signals. For the generic transient search, the
test gives a probability of 0.76. These same weighted
binomial tests carried out in O3a returned probabilities of
0.43 and 0.30 for the modeled and generic transient
searches, respectively (Abbott et al. 2020). In O2 (removing
GW170817/GRB 170817A) and the first observing run of
Advanced LIGO and Advanced Virgo (O1) the probabilities
were 0.30 and 0.75, and 0.57 and 0.75, respectively (Abbott
et al. 2017e, 2019a). As in these previous analyses, the
probabilities obtained in O3b suggest that no weak GWs can be
attributed to the population of GRBs.

In Figure 3, we present the cumulative 90% exclusion
distances for the 17 GRBs analyzed with the modeled search.
The first of these 17 GRBs, GRB 200323A, has significantly
lower exclusion distances than the rest. We can attribute this to
the fact that the analysis of this GRB only used data from the
Virgo interferometer. Furthermore, this GRB has a suboptimal
sky location for the Virgo interferometer with a sensitivity,
when compared to an optimal sky location, of ∼30%. Both of
these factors produce the relatively small exclusion distances
for the first step in the histogram. Table 1 reports the median
D90 for the 17 GRBs analyzed with the modeled search. It
shows median values for all three of the injected signal types
described in Section 3.1. For comparison, all three of these
median values are 10%–30% larger than those reported from
the same modeled search in O3a (Abbott et al. 2020). This

difference stems from having a larger fraction of GRBs in O3b
that by chance arrived with better LIGO–Virgo antenna factors
on average, bringing up the median values. The individual D90

values for each of the 17 GRBs analyzed with the modeled
search can be seen in Table 2.
Similar to the modeled search, we derive a 90% confidence

level lower limit on the distance for each of the 86 GRBs
analyzed with the generic transient search, based on the
different emission models described in Section 3.2. We present
the distribution of D90 values for the ADI model A (van
Putten 2001; van Putten et al. 2014) and for a CSG with central
frequency of 150 Hz (Abbott et al. 2017e) in Figure 4. The
limits reported depend on the sensitivity of the instruments in
the network, which change with time and sky localization of
the GRB events. We marginalize these limits over errors
introduced by detector calibration. In Table 1, we report the
median exclusion distance limits, D90, for the set of GRBs for
the different signals described in Section 3.2. The limits vary
by nearly an order of magnitude due to the variety of signals
used in our analysis. On average the median values for the O3b
generic transient search are about 50% greater than those
reported in O3a (Abbott et al. 2020). We can primarily attribute
this improvement to the use of autogating in O3b: the increase
in exclusion distances is highest (up to a factor of 2) for the
longest-duration waveforms, which are most impacted by the
glitches removed by autogating (as explained in Section 3). The
exclusion distances for the shorter-duration CSG waveforms,
which are not expected to be affected by autogating, increased
by about 30% on average. This is more than could be
accounted for by chance differences in the LIGO–Virgo
antenna factors between the two samples. Rather, the increase
is likely due to improvements in the performance of the
detectors themselves, such as through the reduction of noise
caused by scattered light in the LIGO detectors (Soni et al.
2021) or the improvement in sensitivity of the Virgo
detector (Davis et al. 2021). We report the D90 values found
for each GRB in the case of ADI model A simulated signals

Figure 3. Cumulative histograms of the 90% exclusion distances, D90, for the
17 GRBs that the modeled search followed up on in O3b. The thin blue line
shows generically spinning BNS models and the thick orange line shows
generically spinning NSBH models.

Table 1
Median 90% Exclusion Distances (D90) for the Both the Modeled and Generic

Transient Searches during O3b

Modeled Search NSBH NSBH
(Short GRBs) BNS Generic Spins Aligned Spins

D90 (Mpc) 149 207 257

Generic Transient Search CSG CSG CSG CSG
(All GRBs) 70 Hz 100 Hz 150 Hz 300 Hz

D90 (Mpc) 166 126 92 42

Generic Transient Search ADI ADI ADI ADI ADI
(All GRBs) A B C D E

D90 (Mpc) 34 140 54 22 52

Note. For the modeled searches, we report the median (D90) values for all three
simulated signal types. For the generic search, we report results obtained with
CSG (Abbott et al. 2017e) and ADI (van Putten 2001; van Putten et al. 2014)
models.

13

The Astrophysical Journal, 928:186 (20pp), 2022 April 1 Abbott et al.



Table 2
GRB Details and Associated GW Emission Limits for Each of the Fermi and Swift GRBs Followed Up On during O3b

D90 (Mpc)

GRB Name UTC Time R.A. Decl. Satellite T90(s) δ T90 (s) Type Network BNS Generic NSBH Aligned NSBH ADI-A CSG 150 Hz

191101A 21:08:03 16h 47m 25s 43° 45’ Swift 142.708 18.247 Long H1L1V1a L L L 204 72
191106A 14:15:23 17h57m26s 46° 03′ Swift 3.436 0.325 Ambiguous H1 71 112 148 L L
191110A 14:05:34 17h 20m 48s 43° 31′ Fermi 14.848 7.141 Long H1L1V1 L L L 104 32
191111347 08:19:09 8h 42m 09s −32° 28′ Fermi 5.376 0.923 Long H1L1 L L L 91 31
191111A 08:44:29 12h 37m 09s −32° 07′ Fermi 88.066 0.923 Long H1L1a L L L 102 42
191111B 13:07:10 15h 57m 38s −70° 25′ Fermi 158.212 7.209 Long H1V1a L L L 73 26
191117A 00:08:28 19h 51m 31s 76° 23′ Fermi 7.424 1.619 Long H1L1 L L L 144 54
191117B 15:17:38 10h 29m 40s 7° 14′ Fermi 1.28 0.87 Ambiguous H1V1 141 189 257 77 25
191118A 22:12:01 14h 15m 57s −48° 24′ Fermi 36.353 2.064 Long L1V1 L L L 78 22
191119261 06:16:07 20h 37m 24s −9° 21′ Fermi 8.448 3.566 Long H1L1 L L L 39 17
191122A 13:32:56 3h 37m 09s −32° 11′ Swift 125.736 31.050 Long H1L1V1a L L L 148 49
191123A 10:38:44 14h 21m 10s 22° 50′ Swift 284.812 52.232 Long L1V1a L L L 105 32
191125A 04:56:43 16h 12m 21s −13° 07′ Fermi 77.31 0.81 Long H1L1V1a L L L 177 59
191125B 15:12:45 23h 34m 09s 18° 12′ Fermi 46.336 8.208 Long H1L1V1 L L L 104 35
191129A 03:22:27 0h 35m 43s 5° 26′ Fermi 19.968 1.056 Long L1V1 L L L 69 34
191130253 06:04:41 23h 17m 36s 63° 05′ Fermi 121.09 1.45 Long H1V1a L L L 60 24
191130507 12:09:34 23h 14m 24s −7° 44′ Fermi 61.953 1.145 Long L1V1a L L L 74 36
191130A 13:05:02 8h 52m 19s 4° 60′ Swift 17.56 2.88 Long L1V1 L L L 95 33
191202A 20:48:51 16h 38m 08s 17° 33′ Fermi 30.72 0.81 Long H1L1V1 L L L 183 70
191203A 06:57:19 22h 09m 33s 51° 49′ Fermi 0.83 0.64 Short H1L1 87 153 180 73 32
191205741 17:46:20 0h 56m 09s −34° 09′ Fermi 2.05 3.62 Ambiguous H1L1 189 211 355 146 58
191213254 06:05:33 13h 04m 14s −30° 27′ Fermi 18.944 2.919 Long H1L1V1 L L L 84 50
191213B 18:49:07 22h 04m 14s −13° 56′ Fermi 9.216 4.615 Long H1L1V1 L L L 20 9
191213A 04:06:23 14h 58m 07s −9° 45′ Swift 118.992 18.265 Long H1L1V1a L L L 39 51
191220589 14:08:29 14h 07m 04s −67° 31′ Fermi 27.905 1.056 Long L1V1 L L L 74 22
191220A 13:29:37 18h 45m 20s 26° 40′ Swift 175.584 125.995 Long L1V1a L L L 94 33
191221A 19:14:28 2h43m19s −43° 02′ Fermi 2.24 0.78 Ambiguous H1V1 166 219 327 L L
191221B 20:39:13 10h 19m 19s −38° 09′ Swift 48.0 16.0 Long H1V1a L L L 105 34
191225A 07:25:16 6h 21m 57s −17° 21′ Fermi 112.38 11.31 Long L1V1a L L L 92 32
191225B 17:37:51 9h 43m 12s −7° 11′ Fermi 82.69 2.92 Long H1L1a L L L 44 32
191227723 17:21:44 17h 12m 40s −26° 01′ Fermi 0.208 0.066 Short H1L1V1 144 207 253 129 46
191227A 01:39:37 21h 16m 40s −16° 43′ Swift 55.888 16.282 Long H1V1a L L L 98 32
191228A 00:01:19 0h 21m 27s −8° 41′ Swift 193.816 29.875 Long H1L1V1a L L L 148 52
200101861 20:39:26 17h 09m 43s −35° 04′ Fermi 9.984 0.326 Long L1V1 L L L 70 18
200103678 16:16:50 23h 41m 31s −38° 22′ Fermi 9.984 4.971 Long H1V1 L L L 36 16
200103689 16:32:23 7h 53m 55s −0° 54′ Fermi 68.1 5.4 Long H1L1V1a L L L 27 18
200105914 21:55:28 21h 32m 07s −41° 11′ Fermi 16.896 2.919 Long H1L1V1 L L L 74 23
200109A 01:46:16 20h 28m 27s 52° 59′ Swift 112.0 32.0 Long L1V1a L L L 80 25
200110518 12:26:08 6h 24m 36s 28° 53′ Fermi 153.859 2.064 Long H1V1a L L L 60 22
200112395 09:28:27 12h 27m 52s −34° 19′ Fermi 38.912 4.222 Long H1L1V1 L L L 96 36
200112A 12:36:31 10h 00m 31s 64° 25′ Fermi 4.925 0.602 Long H1L1V1 L L L 141 45
200114A 03:40:43 13h 17m 31s −0° 19′ Fermi 29.69 0.81 Long H1L1V1 L L L 141 48
200115A 11:50:23 3h 45m 48s 5° 36′ Swift 242.14 27.23 Long H1L1a L L L 102 34
200117517 12:24:06 8h 38m 40s −62° 31′ Fermi 28.416 2.187 Long H1L1V1 L L L 99 27
200120A 23:04:55 9h 08m 32s −70° 26′ Fermi 12.8 2.9 Long H1V1 L L L 105 46
200122221 05:18:20 8h 18m 38s 67° 05′ Fermi 2.816 2.673 Ambiguous H1L1V1 183 247 371 162 41
200122A 01:41:00 14h 00m 02s 27° 33′ Swift 190.596 4.515 Long H1L1V1a L L L 101 32
200125B 20:43:31 0h 29m 47s 64° 41′ Fermi 5.824 0.091 Long H1L1 L L L 176 69
200126466 11:10:51 3h 57m 52s −59° 37′ Fermi 0.768 1.168 Short L1V1 149 214 300 102 23
200127B 18:11:18 5h 03m 33s 20° 04′ Fermi 33.025 2.919 Long H1L1 L L L 95 33
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Table 2
(Continued)

D90 (Mpc)

GRB Name UTC Time R.A. Decl. Satellite T90(s) δ T90 (s) Type Network BNS Generic NSBH Aligned NSBH ADI-A CSG 150 Hz

200128A 03:40:05 10h 34m 36s 41° 34′ Fermi 0.576 0.181 Short L1V1 149 207 253 94 27
200129A 09:48:44 23h 05m 07s −44° 58′ Fermi 0.112 0.464 Short H1L1V1(H1L1) 235 323 454 203 64
200130A 05:57:16 21h 57m09s −65° 56′ Fermi 56.577 3.114 Long H1V1 L L L 110 34
200130B 09:59:56 9h 10m 07s −51° 20′ Fermi 11.293 0.383 Long H1L1 L L L 14 6
200131A 22:41:15 0h 12m 21s 51° 07′ Swift 32.74 0.88 Long H1L1V1 L L L 213 78
200201A 00:57:20 19h 10m 50s −11° 02′ Fermi 12.544 1.379 Long H1L1V1 L L L 102 34
200205C 20:17:23 14h 52m 50s −42° 47′ Fermi 17.408 1.448 Long H1L1 L L L 142 50
200207A 01:22:55 16h 16m 21s −48° 18′ Fermi 15.616 2.429 Long L1V1 L L L 71 32
200208A 01:14:17 1h 46m 55s 25° 19′ Fermi 20.992 6.931 Long L1V1 L L L 95 46
200211A 07:26:28 23h 00m 48s −7° 09′ Fermi 78.594 0.362 Long H1L1a L L L 188 72
200212A 10:49:49 8h 19m 11s 22° 57′ Fermi 10.50 1.95 Long H1L1 L L L 94 34
200215A 14:39:31 2h 16m 24s 12° 47′ Swift 11.148 2.155 Long H1V1 L L L 101 33
200216A 09:07:25 20h 45m 45s −11° 39′ Swift 8.192 1.639 Long H1L1V1 L L L 155 51
200216B 13:32:33 10h 41m 49s 19° 28′ Swift 67.448 6.568 Long H1L1V1a L L L 93 33
200219B 09:54:14 19h 56m 31s 6° 39′ Fermi 9.984 1.305 Long H1L1V1 L L L 122 46
200219A 07:36:49 22h 50m 22s −59° 06′ Swift 288.0 50.6 Long H1L1V1a L L L 215 76
200221A 03:52:58 10h 28m 24s 33° 08′ Fermi 1.728 1.336 Ambiguous H1L1V1 213 247 377 152 55
200223A 19:32:03 16h 33m 33s −55° 47′ Fermi 65.281 10.555 Long L1V1a L L L 102 33
200224B 05:05:49 11h 51m 36s −28° 52′ Fermi 299.525 2.862 Long H1L1V1a L L L 94 34
200224C 09:58:44 12h 28m 04s −19° 33′ Fermi 0.064 1.922 Short H1L1V1 120 160 220 112 33
200224A 03:24:49 16h 34m 58s 41° 40′ Swift 45.0 9.2 Long H1L1 L L L 10 7
200227A 07:20:08 3h 45m 43s 9° 29′ Swift 30.328 9.202 Long H1L1V1 L L L 69 21
200228A 06:58:33 21h 52m 02s −46° 27′ Fermi 3.584 0.345 Ambiguous H1L1V1(H1L1) 282 399 528 231 76
200228B 11:14:41 16h 48m 01s 16° 58′ Swift 7.368 1.576 Long H1L1 L L L 203 73
200301320 07:40:46 21h 20m 33s 7° 30′ Fermi 18.176 1.145 Long H1L1V1 L L L 155 48
200303A 02:34:57 14h 10m 47s 51° 22′ Swift 94.22 6.40 Long H1L1V1a L L L 100 30
200306B 22:25:25 23h 18m 07s 5° 06′ Fermi 0.992 1.226 Ambiguous L1V1 98 156 221 28 19
200306C 22:50:39 13h 14m 18s 11° 16′ Swift 53.152 13.725 Long L1V1a L L L 101 32
200307A 21:26:59 5h 36m 43s −46° 13′ Fermi 1.664 0.659 Ambiguous H1L1(H1L1V1) 121 172 195 96 34
200308A 22:35:15 21h 49m 45s −27° 45′ Fermi 43.01 2.56 Long H1L1V1 L L L 124 39
200311A 15:16:12 13h 35m 57s −49° 41′ Fermi 52.48 0.81 Long H1L1 L L L 133 49
200313A 01:41:36 5h 03m 09s 20° 53′ Fermi 13.568 0.572 Long H1L1V1 L L L 210 73
200313B 10:57:12 13h28m41s 40° 30′ Fermi 5.184 4.362 Ambiguous L1V1 181 219 286 L L
200317A 00:40:30 4h 22m 09s −46° 19′ Fermi 7.616 0.529 Long H1L1V1 L L L 54 16
200319A 07:44:40 4h 21m 09s −21° 15′ Fermi 20.48 3.17 Long H1L1 L L L 137 47
200320A 09:56:46 12h 17m 21s −38° 44′ Fermi 9.021 1.072 Long H1L1V1 L L L 44 15
200323006 00:08:42 22h 56m 50s 53° 02′ Fermi 7.168 2.521 Long L1V1 L L L 62 17
200323A 18:46:32 10h25m53s −55° 32′ Fermi 2.11 0.58 Ambiguous V1 19 25 38 L L
200326A 12:24:47 16h 21m 19s −21° 05′ Fermi 96.512 4.419 Long H1L1V1a L L L 104 33

Notes. The GRB Name column reports each GRB’s formal designation (Barthelmy et al. 2009) or the Fermi GBM trigger ID when a formal designation has not been assigned. The UTC times reported are rounded to the
earlier integer second. The Satellite column gives the satellite that provided the GRB sky localization used in the GW analysis. The Network column lists the GW detector network used: H1 = LIGO Hanford,
L1 = LIGO Livingston, V1 = Virgo.
a The symbol indicates that the GRBʼs T90 > 60 s, so the generic transient search’s on-source window was extended. Where the generic transient search (Section 3.2) and the modeled search (Section 3.1) used a different
IFO network, the network used by the modeled search is shown in parentheses. The last five columns show the 90% confidence exclusion distances for each GRB (D90) for the following emission scenarios: BNS,
generic, and aligned-spin NSBH from the modeled search, and from the generic transient search, ADI-A and CSG GW burst at 150 HZ with total radiated energy EGW = 10−2 M☉ c2.

15

T
h
e
A
stro

ph
y
sica

l
Jo
u
rn

a
l,

928:186
(20pp),

2022
A
pril

1
A
bbott

et
al.



and CSG simulated signals with a central frequency of 150 Hz
in Table 2, at the end of this paper.

5. Population Studies

We use the results obtained from the GW follow-up analysis
of GRBs to put constraints on the low-luminosity short GRB
population. For this purpose, we describe the short GRB
population through a simple luminosity function model
following (Wanderman & Piran 2015), extended at low
luminosities following the procedure described in (Abbott
et al. 2019d). We can then model the luminosity distribution
through a power law with two breaks
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where Liso is the isotropic equivalent GRB luminosity and for
which we have L* = 2× 1052 erg s−1, L** = 5× 1049 erg s−1,
αL= 0.94, and βL= 2 (Wanderman & Piran 2015). We do not
take into account the measurement uncertainties for those fixed
parameters as they would not significantly influence the
analysis. The parameters on which we aim to put constraints
using the joint GW–GRB analysis are the low-luminosity
power index γL and the low-luminosity cutoff for our

population L0. To make the dependence from these parameters
clearer, we refer to the luminosity distribution as f0(Liso)≡
f0(Liso, γL, L0). A Bayesian analysis constrains the parameters
γL and L0 using the results from the O1, O2, O3a, and O3b
PyGRB searches (Harry & Fairhurst 2011; Williamson et al.
2014; Abbott et al. 2019d, 2020) and the results on BNS rates
from Abbott et al. (2021c).
Under certain conditions, NSBH mergers can also produce

short GRBs (Narayan et al. 1992) and a small fraction of short
GRBs can arise from local magnetar giant flares (Burns et al.
2021). For simplicity, we ignore those relatively uncommon
possibilities here. We assume that BNS coalescences are the
only progenitors for short GRBs, since there are restricted
conditions under which an NSBH coalescence results into a
short GRB (Pannarale & Ohme 2014).
First, we compute the observed cumulative rate distribution

C z L, ,R L
obs

0g( ) as a function of redshift z, γL, and L0. To do so,
we take into account the cosmic rate density for short GRB
explosions ψ(z) adopting its form given in Wanderman &
Piran (2015). A Band function models the energy spectrum
of the short GRBs (Band et al. 1993) with power
indices αBand=−0.5, βBand=−2.25 and peak energy
Epeak= 800 keV, and we use Equation (1) as the luminosity
distribution function for our population of short GRBs. As in
Wanderman & Piran (2015), we consider short GRBs
detectable in gamma-rays when their 64 ms peak photon flux
is above P 2.37 photons cm s64

th 2 1= - - in the energy window
considered for Fermi/GBM, i.e., [50–300] keV. We then
compute the cumulative observed rate distribution as

C z L
dP

dz
dz, , , 2R L

z
obs

0
0

obs
GRB
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¢
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where the differential probability of having an observed short
GRB is defined as
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Here in Equation (3), ψ(z) is the short GRB redshift
distribution, dV/dz is the differential comoving volume and ò(z,
γL, L0) is the fraction of short GRBs bright enough to be
detected by Fermi/GBM as a function of redshift and of the
low-luminosity parameters of the luminosity distribution.
Starting from C z L, ,R L

obs
0g( ), an uninformative prior prob-

ability density function (PDF) Πu(γL, L0) is built considering a
flat probability distribution in the logarithms of the local
observed rate density and of L0. We then impose the total local
short GRB rate to have the local BNS rate as an upper limit:
using the inferred BNS local rate density RBNS 0

BNS ( ) (Abbott
et al. 2021c) we define

f L R dR, . 4L

R L

0
0

,

BNS 0
BNS

0
BNSL0

GRB
0

òg = ¢ ¢
g

( ) ( ) ( )
( )

Here, R L,L0
GRB

0g( ) is the short GRB local rate density,
calculated using Equation (1) as luminosity distribution, and
normalized requiring consistency with the observed short GRB
rate and with the analysis done by Wanderman & Piran (2015),
i.e., considering the part of the population with Liso> L** to
have a local rate density of 4.1 Gpc−3 s−1. Our final,

Figure 4. Cumulative histograms of the 90% confidence exclusion distances,
D90, for the ADI signal model A (orange, thin line) and the CSG 150 Hz model
(green, thick line). For a given GRB and signal model, this is the distance
within which 90% of simulated signals inserted into off-source data are
successfully recovered with a significance greater than the loudest on-source
trigger.
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informative prior is then defined as

fL L L, 1 , , . 5L L u L0 0 0g g gP = - P( ) ( ( )) ( ) ( )

We define the likelihood function L x L,L 0g( ∣ ) (where x
indicates our set of data) as the probability of detecting no GW
transients associated with short or ambiguous GRBs during O1,
O3a, and O3b and of detecting one single GW transient
associated with a GRB observed during the O2 run. Further-
more, we impose that the joint detection occurred at the redshift
measured for NGC 4993, the host galaxy of the event
GW170817 (zNGC4993= 0.009783; Levan et al. 2017) and that
the luminosity of the corresponding GRB is in the luminosity
range measured for GRB 170817A LGRB170817A= (1.6± 0.6)×
1047 erg s−1 (Abbott et al. 2017a). For our purpose we use the
set of GW efficiency curves computed through the PyGRB
analysis of the short and ambiguous GRBs events detected
during the O1, O2, O3a, and O3b runs (respectively 20, 41, 32,
and 17 events analyzed).299

Given a detected GRB i during O2, we compute the
probability of a joint GW detection like the one observed
during this run

P L L L L d L
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Here, ηi(z) is the efficiency curve corresponding to the given
GRB and dP dzobs

GRB has been defined in Equation (3). In order
to set the joint detection to have the same luminosity of
GRB 170817A and the same redshift of GW170817, we
choose LL ( )˜ to be a log-normal distribution with mean
L LGRB170817A =  with Ls ˜ being the error on the measurement
of L̃, and we use a Dirac delta distribution δ(z− zNGC4993)
because our analysis is insensitive to small variations in the
assumed redshift.

Analogously, we can compute the probability of not having a
joint GW detection associated to a given GRB detected during
one of the observing runs
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We then obtain that the probability of a single joint detection
during O2 is
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while the probability of not having a joint detection during O1,
O3a, and O3b is
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then the obtained likelihood is

L P Px L L L, , , . 10L L L0 O2 0 O1 O3 0g g g= +( ∣ ) ( ) ( ) ( )

Finally, we compute the posterior LP L x x L, ,L L0 0g gµ( ∣ ) ( ∣ )
L, ,L 0gP( ) the contour plot for which is shown on Figure 5,

with contours in blue and red corresponding, respectively, to
the posterior 90% and 50% credible regions. The constant rate
curves shape the posterior: if we fix a value of the rate, higher
values for the low-luminosity cutoff L0 favor higher values of
the low-luminosity power index γL. Each credible region’s L0
value is compatible with the luminosity value range of
GRB 170817A. Finally, the 90% credible region curve does
not close for low values of L0: this is due to the fact that we do
not have any information about events down to those
luminosities and for this reason we did not explore lower
values for L0. By marginalizing the posterior PDF over L0, we
obtain that γL= 0.28± 0.45.
To present these results in the luminosity function space, we

compute the rate curves dR d Llog0 10 for pairs of values (γL,
L0) sampled according to the posterior distribution P(γL, L0|x).
From this set of curves we obtain the median and credible
intervals on the luminosity distribution.
The plot in the top panel of Figure 6 shows the dR d Llog0 10

90% and 50% credible intervals as functions of Llog10 and
compares them to other estimations performed in other works
(Ghirlanda et al. 2016; Salafia et al. 2020; Tan & Yu 2020). It
illustrates how the short GRB luminosity function in our model
peaks around L∼ LGRB 170817A, considering this the only short
GRB event observed at such a low luminosity.
The plot in the bottom panel of Figure 6 shows the inverse

cumulative short GRB rate density distribution R0(>L) as a

Figure 5. Contour plot of the two-dimensional posterior as a function of the γL
parameter (horizontal axis) and of the base 10 logarithm of L0 (vertical axis)
with plots of the corresponding marginalized posterior curves (in green). The
contours correspond to the 90% and 50% credible regions (respectively in blue
and red) for the two parameters. The bounds regions for those two parameters
are compatible with the measured luminosity from GRB 170817A (yellow
dashed line with shaded area) as its value is greater than L0 for the bulk of the
values inside the regions. The marginalized posterior for L0 peaks around
L = LGRB170817A because of the likelihood factor, which requires that the joint
detection happened around that value.

299 There are actually 42 efficiency curves available from the O2 PyGRB
analysis, but the efficiency curve corresponding to GRB 170817A was not
computed properly since the pipeline considered the GW170817 event as a
background event.
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function of the luminosity L. The credible intervals corresp-
onding to the sampled curve are compatible with the BNS rate
density measured for Abbott et al. (2021c).

Given the present results on the low-luminosity short GRB
population and the expected sensitivity for the fourth observing
run of Advanced LIGO and Advanced Virgo (O4; Abbott et al.
2020), and only considering short GRBs detected by Fermi/

GBM as onboard triggers, we estimate a joint GW–GRB
detection rate of R 1.04 yrGW GRB

O4
0.27
0.26 1=- -

+ - during the next
data collecting period.

6. Conclusions

We followed up on Fermi/GBM and Swift/BAT GRBs
reported during LIGO–Virgo’s O3b and performed a targeted
search using the times of the GRBs and their sky localizations
to search for possible GW associations. For GRBs flagged
as either short or ambiguous (see Section 2), we ran a
template-based search for BNS and NSBH waveforms (Harry
& Fairhurst 2011; Williamson et al. 2014). We also ran on all
GRBs a generic transient analysis to look for GW signals
(Sutton et al. 2010; Was et al. 2012). We did not find any
significant GW candidate in coincidence with the GRBs we
analyzed. Our results are consistent with the previously
predicted detection rate of 0.07–1.8 yr−1 for O3 (Abbott et al.
2019a). We also performed a weighted binomial test to search
for a population of subthreshold GW signals in our sample. We
did not find strong evidence for any such event. We used
different emission models to put a lower bound on the distances
of the GRB progenitors. The 90% exclusion distances are
reported in Table 2 for all the GRBs in our sample, along with
timing and localization information as well as information on
detectors used in the analyses. Finally, we performed a
population study for all GRBs analyzed with the modeled
search in O1 (Abbott et al. 2017e), O2 (Abbott et al. 2019a),
O3a (Abbott et al. 2020), and O3b. Starting from a broken
power law to model our population and constraining two of its
parameters through Bayesian inference, we found that our
luminosity function peaks around the luminosity value
measured for GRB 170817A with this model. Furthermore,
the local rate density for short GRBs is compatible with that of
BNS events. Based on the present population study, we
provided an estimate of the joint GW–GRB detection rate for
the O4 run.
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