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Forschungszentrum Jülich, Institut für Kernphysik, Jülich, Germany
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T. Tsurugai
Meiji Gakuin University, Faculty of General Education, Yokohama, Japan

V. Bashkirov, B.A. Dolgoshein, A. Stifutkin
Moscow Engineering Physics Institute, Moscow, Russial

G.L. Bashindzhagyan, P.F. Ermolov, Yu.A. Golubkov, L.A. Khein, N.A. Korotkova, I.A. Korzhavina, V.A. Kuzmin,
O.Yu. Lukina, A.S. Proskuryakov, L.M. Shcheglova31, A.N. Solomin31, S.A. Zotkin
Moscow State University, Institute of Nuclear Physics, Moscow, Russiam
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Abstract. The inclusive forward jet cross section in deep inelastic e+p scattering has been measured in
the region of x–Bjorken, 4.5 · 10−4 to 4.5 · 10−2. This measurement is motivated by the search for effects
of BFKL–like parton shower evolution. The cross section at hadron level as a function of x is compared to
cross sections predicted by various Monte Carlo models. An excess of forward jet production at small x is
observed, which is not reproduced by models based on DGLAP parton shower evolution. The Colour Dipole
model describes the data reasonably well. Predictions of perturbative QCD calculations at the parton level
based on BFKL and DGLAP parton evolution are discussed in the context of this measurement.
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c supported by the German Federal Ministry for Education
and Science, Research and Technology (BMBF), under con-
tract numbers 057BN19P, 057FR19P, 057HH19P, 057HH29P
d supported by the MINERVA Gesellschaft für Forschung
GmbH, the German Israeli Foundation, the U.S.-Israel Bina-
tional Science Foundation, and by the Israel Ministry of Science
e supported by the German-Israeli Foundation, the Israel Sci-
ence Foundation, the U.S.-Israel Binational Science Founda-
tion, and by the Israel Ministry of Science
f supported by the Italian National Institute for Nuclear
Physics (INFN)
g supported by the Japanese Ministry of Education, Science
and Culture (the Monbusho) and its grants for Scientific Re-
search
h supported by the Korean Ministry of Education and Korea
Science and Engineering Foundation

i supported by the Netherlands Foundation for Research on
Matter (FOM)
j supported by the Polish State Committee for Scientific Re-
search, grant No. 115/E-343/SPUB/P03/002/97, 2P03B10512,
2P03B10612, 2P03B14212, 2P03B10412
k supported by the Polish State Committee for Scientific Re-
search (grant No. 2P03B08308) and Foundation for Polish-
German Collaboration
l partially supported by the German Federal Ministry for Ed-
ucation and Science, Research and Technology (BMBF)
m supported by the Fund for Fundamental Research of Russian
Ministry for Science and Education and by the German Federal
Ministry for Education and Science, Research and Technology
(BMBF)
n supported by the Spanish Ministry of Education and Science
through funds provided by CICYT
o supported by the Particle Physics and Astronomy Research
Council



The ZEUS Collaboration: Forward jet production in deep inelastic scattering at HERA 243

1 Introduction

One of the significant discoveries made at HERA was the
steep rise of the proton structure function F2(x, Q2) in
the region of small x–Bjorken (x ≤ 10−3) [1,2]. Vari-
ous attempts have been made to predict the behaviour
of F2. In one approach the x dependence of F2 is fitted
at a fixed value of the scale Q2 and then evolved tak-
ing into account lnQ2 terms according to the DGLAP
[3] evolution equations [4,5]. Different starting scales have
been chosen for the evolution, down to values as small
as Q2 ≈ 0.3 GeV2 [6]. In another approach the lead-
ing terms in ln(1/x) which appear together with lnQ2

terms in the evolution equations are resummed to yield
the BFKL equation [7]. The appeal of the BFKL ap-
proach is the fact that it directly predicts the behaviour
of F2 as a function of x. The CCFM equation [8] inter-
polates between the two approaches and reproduces both
the DGLAP and the BFKL behaviour in their respective
ranges of validity. From the existing F2 data it is not possi-
ble to determine unambiguously whether the BFKL mech-
anism plays a significant role in the HERA x-range.

Several exclusive measurements have been proposed
in order to find evidence for BFKL effects [9–12]. The
method proposed by Mueller [13,14] starts from the ob-
servation that the BFKL equation predicts a different or-
dering of the momenta in the parton cascade (see Fig. 1).
The DGLAP equation predicts strong ordering of the par-
ton transverse momenta kT,i while the BFKL equation
relaxes this ordering but imposes strong ordering of the
longitudinal momenta xi:

DGLAP: x = xn < xn−1 < ... < x1,
Q2 = k2

T,n � k2
T,n−1 � ... � k2

T,1;
BFKL: x = xn � xn−1 � ... � x1,

No ordering in kT .

Thus the BFKL equation predicts additional contribu-
tions to the hadronic final state from partons with large
transverse and longitudinal momenta, i.e. high transverse
momentum partons going forward in the HERA frame1.
These partons may be resolved experimentally as jets and
result in an enhancement of the forward jet cross section at
small x over NLO calculations and parton shower models
based on DGLAP evolution.

The H1 collaboration has published results on the for-
ward jet cross section [9] and the transverse energy flow
in the forward direction [10] and found trends compatible
with the expectations of BFKL dynamics.

In this paper we study forward jet production in a
region which is expected to be sensitive to BFKL par-
ton dynamics (E2

T,Jet ≈ Q2). The comparison with stan-
dard QCD-inspired Monte Carlo models is also extended
p supported by the US Department of Energy
q supported by the US National Science Foundation

1 In this paper we use the standard ZEUS right-handed co-
ordinate system, in which X = Y = Z = 0 is the nominal
interaction point. The positive Z-axis points in the direction
of the proton beam, which is referred to as the forward direc-
tion. The X-axis is horizontal, pointing towards the centre of
HERA
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Fig. 1. Parton ladder diagram contributing to jet production
in DIS. The emitted partons in the ladder extend from the
bottom of the quark box down to the proton. The transverse
momenta, kT,i, and the longitudinal momentum fractions, xi,
with respect to the momenta of the incoming proton, evolve
along the ladder

to the range where either E2
T,Jet � Q2 or E2

T,Jet � Q2.
The measurement of the forward jet cross section is based
on an order-of-magnitude increased statistics compared to
[9]. Comparisons with different Monte Carlo models are
presented and theoretical predictions are discussed in the
context of this measurement.

2 Experimental setup and trigger

In 1995 HERA operated with 174 colliding bunches of
Ep = 820 GeV protons and Ee = 27.5 GeV positrons. Ad-
ditionally 21 unpaired bunches of protons or positrons cir-
culated to determine the beam–related background. The
integrated luminosity taken in 1995 and used in this anal-
ysis is 6.36 pb−1. A detailed description of the ZEUS de-
tector can be found in [15]. In the following the detector
components relevant for this analysis are briefly described.

The central tracking detector (CTD) is surrounded by
a superconducting solenoid. Outside the solenoid is the
uranium calorimeter [16], which is divided in three parts:
forward (FCAL), barrel (BCAL) and rear (RCAL) cover-
ing the polar angle region of 2.6o to 176.2o. The calorime-
ter covers 99.9% of the solid angle, with holes of 20×12
cm2 in the centre of the rear and of 20 × 20 cm2 in the
forward calorimeter to accommodate the beam pipe. Each
of the calorimeter parts is subdivided into towers which
are segmented longitudinally into electromagnetic (EMC)
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and hadronic (HAC) sections. These sections are further
divided into cells, each of which is read out by two pho-
tomultipliers. The size of the central FCAL EMC (HAC)
cells is 20 × 5 cm2 (20 × 20 cm2). From test beam data,
energy resolutions of σE/E = 0.18/

√
E for positrons and

σE/E = 0.35/
√

E for hadrons (E in GeV) were obtained.
The effects of uranium noise are minimised by discard-
ing cells in the EMC or in the HAC sections if they have
energy deposits of less than 60 MeV or 110 MeV, respec-
tively.

A three–level trigger is used to select events online [15].
The selection criteria are similar to those for the measure-
ment of F2 [17]. For Q2 greater than 10 GeV2 the trigger
efficiency for DIS events is above 97%. About 7·106 events
survive our trigger requirements.

3 Event selection

Events are selected offline if the Z-component of their
primary vertex reconstructed from tracks in the CTD lies
within ±50 cm around the nominal vertex. A positron can-
didate with an energy Ee′ above 10 GeV is required. Can-
didates hitting the RCAL front face within a box of X ×
Y = 26×16 cm2 around the beam line are rejected because
of possible energy loss into the beam hole. The fractional
energy transfer yJB by the virtual photon in the proton
rest frame, calculated from the hadronic energy [18] in the
calorimeter, is required to be yJB > 0.1. This assures suf-
ficient hadronic energy in the calorimeter to measure the
event parameters with good accuracy. The yel, i.e. the y
parameter calculated from the positron energy and angle,
is required to be below 0.8. This rejects photoproduction
events with low energy fake positron candidates in the
FCAL. The quantity E − PZ = ΣiEi(1 − cos θi) is re-
quired to lie between 35 and 65 GeV. This requirement
also removes photoproduction background. Here Ei and
θi are the energies and the polar angles of the calorimeter
cells. For DIS events in an ideal detector E−PZ is equal to
twice the energy of the incoming positron. Events within
the x range of 4.5 · 10−4 to 4.5 · 10−2 are finally selected
for the cross section measurement.

4 Monte Carlo simulation

Monte Carlo event simulation was used to correct the mea-
sured distributions for detector acceptance and smearing
effects. The detector simulation is based on the GEANT
[19] program and incorporates our understanding of the
detector and of the trigger. Events were generated with
DJANGO 6.24 [20], which interfaces HERACLES 4.5.2
[21] to either the Colour Dipole model [22] as implemented
in ARIADNE 4.08 [23] or to LEPTO 6.5 [24]. HERACLES
includes photon and Z0 exchanges and first order elec-
troweak radiative corrections. All samples were generated
with the proton structure function CTEQ4D [4] which de-
scribes the measured F2 structure function [1].

The Colour Dipole model treats gluons emitted from
quark–antiquark pairs as radiation from a colour dipole

between two partons. This results in partons which are
not ordered in their transverse momenta kT . Thus ARI-
ADNE is frequently referred to as “BFKL–like” although
it does not make explicit use of the BFKL equation. The
hadronisation in ARIADNE is based on the LUND string
model as implemented in JETSET [25].

Another event sample was generated with the MEPS
option of DJANGO, as implemented into LEPTO. Here
the hard interaction is taken from the first order matrix
element, but the higher orders are simulated by a parton
shower based on the DGLAP equation. Thus this sam-
ple provides a kT –ordered parton shower. The hadronisa-
tion of the partons is done in the same way as in ARI-
ADNE, i.e. via JETSET. In addition to the hard pro-
cesses, this version of LEPTO has non–perturbative effects
implemented, so–called Soft Colour Interaction (SCI),
which affect the investigated phase space region.

A third sample was generated with HERWIG 5.9 [26],
which like LEPTO has a parton shower evolution based on
DGLAP. However, there are some differences with respect
to LEPTO, such as the implementation of colour coher-
ence effects or gluon splitting in the cluster hadronisation
of the fragmentation phase.

A fourth sample was generated at hadron level only
with the Linked Dipole Chain model option (LDC, version
1.0) [27] of ARIADNE, which uses its own structure func-
tions. The parametrisation of “set A” was used, which fits
data from H1 and ZEUS. In this model the parton shower
evolution is based on a reformulation [28] of the CCFM
approach [8] which approximates the BFKL prediction at
low x and the DGLAP prediction in the high-x limit.

All Monte Carlo events were generated with the default
settings of the input parameters. The first three samples
were passed through the full trigger and detector simula-
tion and were analysed in the same way as the real data.
Additional Monte Carlo samples were generated but not
passed through the detector simulation in order to study
the parton and hadron–level properties of the jets.

The effect of initial and final state QED radiation was
studied by generating ARIADNE events with and without
QED corrections. After applying all event and jet selection
cuts the jet cross sections as a function of x with and
without QED corrections agree within 5%. We conclude
that QED radiation effects are small and ignore them in
the following.

5 Jet finding algorithm and jet selection

5.1 Jet algorithm

The analysis is performed with the cone jet algorithm ac-
cording to the Snowmass convention [29]. The algorithm is
applied to calorimeter cells in the laboratory frame where
the cells assigned to the scattered positron are excluded.

The algorithm maximises the transverse energy flow
ET through a cone of radius R =

√
(4η)2 + (4φ)2. Here

R = 1 is used and 4η and 4φ are the differences of pseu-
dorapidities and azimuthal angles with respect to the jet
direction. The axis of the jet is calculated as the transverse
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Table 1. Selected phase space region for the cross section mea-
surement

Ee′ > 10 GeV
y > 0.1

ηJet < 2.6
ET,Jet > 5 GeV

xJet > 0.036
0.5 < E2

T,Jet/Q2 < 2
pZ,Jet(Breit) > 0 GeV

4.5 · 10−4 < x < 4.5 · 10−2

energy weighted mean of the pseudorapidity and azimuth
of all calorimeter cells belonging to the jet. The transverse
energy threshold for the seed cells in the algorithm is set
to 0.5 GeV. Two jets are merged if the overlapping energy
exceeds 75% of the total energy of the jet with the lower
energy. Otherwise two jets are formed and the common
cells are assigned to the nearest jet. The massless option,
where ET,Jet = pT,Jet, is used.

5.2 Jet selection criteria

In order to account for the energy loss of the jets in the
inactive material of the detector an energy correction pro-
cedure is applied both to the total and transverse energies
of the jets. The correction functions were obtained from
the Monte Carlo simulations and are parametrised as a
function of the total and transverse jet energy.

After the energy correction, several cuts are applied
to select forward jets. The pseudorapidity of the jet is re-
stricted to ηJet < 2.6 (equivalent to θJet > 8.5◦). In this
region the jets are well reconstructed. The transverse en-
ergy of the jets, measured with respect to the direction of
the incoming proton, is above 5 GeV. The scaled longitu-
dinal momentum xJet = pZ,Jet/820 GeV is above 0.036.
This selects forward jets. The cut 0.5 < E2

T,Jet/Q2 < 2,
together with the xJet cut, selects the phase space re-
gion where BFKL effects are expected. In about 2% of
the events, two forward jets survive our selection cuts. In
these cases the jet with the largest xJet is selected. All
these cuts restrict the Q2 of the selected events to values
above ≈ 12 GeV2.

For events at large values of x, the jet coming from the
scattered quark can go sufficiently far forward to survive
our cuts. In order to reject these events, all found jets are
boosted into the Breit frame [30]. The boost is calculated
from the four–momentum of the virtual photon, which
is taken as the difference between the incoming and the
outgoing four–momenta of the positron. Those jets which
are in the current region of the Breit frame, i.e. which have
negative Z–momentum, are rejected. This only affects the
two highest x bins where up to 50% of the jets are rejected.

All the selection criteria relevant for the phase space
region which defines our cross section measurement are
listed in Table 1. A total of 2918 events with forward jets
survive these cuts.
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Fig. 2. Uncorrected detector–level cross sections after the
event and jet selection cuts as a function of a Q2, b Ee′ , c y,
d E − PZ . Data are shown as points, ARIADNE as the full
histogram, LEPTO as the dashed histogram and HERWIG as
the dotted histogram. Only statistical errors are shown

6 Comparison of data
and Monte Carlo distributions

The measured cross sections of the Q2, yJB , xBj and Ee′

distributions have been compared to the corresponding
Monte Carlo predictions of the ARIADNE, LEPTO and
HERWIG models after selecting the BFKL-relevant phase
space but before applying the jet selection criteria (not
shown). They agree well in absolute normalisation and in
shape. This shows that all these models describe well the
event properties as long as the characteristic topology of
hard forward jets is not requested.

After applying the jet selection cuts the uncorrected
differential cross sections as a function of the event re-
lated quantities Q2, Ee′ , yJB and E − PZ are compared
in Fig. 2. ARIADNE describes the measured distributions
reasonably well while the LEPTO and HERWIG cross sec-
tions are too small.

In Fig. 3 we show uncorrected detector–level cross sec-
tions as a function of the jet–related quantities ET,Jet,
xJet, ηJet and E2

T,Jet/Q2. The distributions are compared
to the predictions of the various Monte Carlo models. All
selection criteria are applied except the one for the dis-
played variable. The data in the shaded areas are excluded
from the final cross section measurement. ARIADNE de-
scribes the data in the first three distributions both in
shape and in absolute value over the entire range. HER-
WIG and LEPTO underestimate the cross section signif-
icantly and also disagree in shape.
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Fig. 3. Uncorrected detector–level cross sections are shown as
a function of a ET,Jet, b xJet, c ηJet, d E2

T,Jet/Q2. All event
and jet selection cuts are applied (see text) apart from the cut
on the displayed variable. Data are shown as points, ARIADNE
as the full histogram, LEPTO as the dashed histogram and
HERWIG as the dotted histogram. The data in the shaded
areas are excluded from the final cross section measurement.
Only statistical errors are shown

The distribution in Fig. 3d can be subdivided into
three regions. For small E2

T,Jet/Q2, i.e. in the classical DIS
regime, all three models agree in absolute size reasonably
well with the data. Here Q2 is large compared to E2

T,Jet
and the DGLAP–based Monte Carlo models are expected
to describe the data. In the unshaded region, which is se-
lected for this analysis, only ARIADNE reproduces the
data. HERWIG and LEPTO predict much smaller cross
sections. In this area we expect significant contributions
from BFKL-based parton showers. For higher values of
E2

T,Jet/Q2 no model agrees with the data. The cross sec-
tion of ARIADNE is too large, whereas those of LEPTO
and HERWIG are too small. In this regime the hard scale
is no longer given by the invariant mass squared, Q2, of
the virtual photon, but by the E2

T of the jets.
A study of energy flows similar to [31] has been per-

formed in order to investigate whether jets in the forward
region of the detector still have a pronounced signature
and how the beam hole and the proton remnant affect the
selected jets.

In Fig. 4 we show the transverse energy flow with re-
spect to the forward jet axis averaged over all selected
events as a function of 4φ and 4η, the difference in az-
imuth and pseudorapidity of the cells with respect to the
jet direction. The grey bars indicate energy deposits in
cells which are attributed to the forward jet. The black

bars indicate the contributions from those cells situated
in the towers directly surrounding the forward beam hole.
As can be seen, some black bars also belong to the jet. The
white bars indicate energy deposits which belong neither
to the jet nor to the cells surrounding the FCAL beam
hole. For increasing ηJet the black band–like structure in
the forward direction of the jet, which we attribute to
the proton remnant, becomes more and more prominent.
For ηJet > 2.6 the selected jets pick up significant contri-
butions from the proton remnant in their tails. Studies of
the reconstruction accuracy of the angle and of the energy
of the jets also show a degradation at ηJet values above
2.6 (not shown). Therefore, we require ηJet < 2.6 for this
analysis.

In Fig. 5 we show the integrated jet shape ΨDet(r), i.e.
the relative amount of transverse energy deposited inside
a cone of radius r < R with respect to the jet axis. This
function is defined as

ΨDet(r) =
1

NJets

∑

Jets

ET (r)
ET (r = R)

,

where ET (r) is the sum of the transverse energies of all
cells of a given jet within a radius r with respect to the
jet axis. ARIADNE describes the distribution well for all
values of ET,Jet. LEPTO generates broader jets than ob-
served in the data. The jets are more collimated as ET,Jet

increases. A similar level of agreement between the data
and the Monte Carlo events is found when bins of ηJet

instead of ET,Jet are investigated (not shown).

7 Jet finding efficiencies and purities

A detailed study of the jet reconstruction quality was per-
formed in order to find acceptable cuts for the analysis.

ARIADNE was used for the study of the efficiencies
and purities of the jet reconstruction and of the accep-
tance correction since it describes the data best in shape
and absolute rate. The efficiency ε and purity p of the jet
finding are determined as a function of x and are defined
by:

ε =
Number of jetsdet⊕had

Number of jetshad
,

p =
Number of jetsdet⊕had

Number of jetsdet
.

The indices det and had correspond to jets found at
the detector or hadron level, respectively. Hadron–level
jets are defined as jets found by the jet algorithm when
applied to the stable hadrons from the event generator.
The symbol det⊕had means that the jet has to be found
at both levels in the relevant variable range and in the
same x–bin. The det jets are those surviving all the event
and jet selection criteria and the had jets have to survive
only those cuts which define the phase space region for
which the final forward jet cross section is given, see Ta-
ble 1. Figure 6 shows as a function of x the efficiencies
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Fig. 4. The transverse energy flow
around the forward jet axis averaged
over all selected forward jets for var-
ious ηJet regions. Grey bars indicate
the transverse energy in the calorime-
ter cells attributed to the jet, black bars
correspond to the transverse energy in
the cells around the beam hole, and
white bars correspond to the transverse
energy elsewhere in the calorimeter

ε, purities p and correction factors c = p/ε for the accep-
tance correction from detector to hadron level. The x bins
are chosen such that the bin width is at least 2–3 times
the x resolution and the statistical errors are below 20%.
The values for ε and p lie between 20% and 50%, while
those of the correction factors are between 1.0 and 1.5.
The drop in ε and p for x > 10−2 is due to the degraded
resolution of x in this region of x. The small overall values
of ε and p are a result of the jet selection cuts and of the
finite resolutions of the jet variables. The resolutions are:
∆ET,Jet/ET,Jet ' 10%, ∆ηJet ' 0.1, ∆xJet/xJet ' 11%,
and ∆(E2

T,Jet/Q2) / (E2
T,Jet/Q2) ' 25%. The latter has

the largest effect on ε and p. When the cut on E2
T,Jet/Q2

is dropped the efficiencies and purities increase by about a
factor of two. The measured detector–level rates are mul-
tiplied bin–by–bin using the correction factor c in order
to obtain the hadron–level distributions.

In an independent analysis the acceptance correction
was evaluated using the Bayes unfolding method [32] with
the five parameters ηJet, xJet, ET,Jet, E

2
T,Jet/Q2 and xBj .

These are the variables which are relevant for the analysis
and can introduce migrations between entries in neigh-
bouring bins. The Bayes method takes migrations into
account and is a cross check of the reliability of the bin–
by–bin acceptance correction. The extracted forward jet
cross sections agree well between the two methods.

The analysis was also repeated using the kT clustering
algorithm [33] in the Breit frame with Q2 as scale and a
resolution parameter ycut = 0.5. With these settings the
algorithm creates a large number of jets at the detector
level, which do not have a corresponding jet at the hadron
or parton level. A change of the ycut–parameter does not
improve this situation. Purities and efficiencies in the low-
est x bins are therefore very small, around 5% and 15%,
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Fig. 5. Uncorrected integrated jet shapes in intervals of ET,Jet

which are chosen to contain approximately equal numbers of
jets. Data are shown as dots. Predictions from ARIADNE
(LEPTO) are shown as full (dashed) lines. All event and jet
selection cuts are applied. The statistical errors are negligible
compared to the size of the dots

respectively. Nevertheless, the kT analysis leads to conclu-
sions consistent with those drawn in this paper.

8 Comparison of DGLAP
and BFKL approaches

Perturbative QCD predicts the dynamics of the parton
evolution. The conventional method to solve the parton
evolution equations is the DGLAP approach [3], which re-
sums leading order (LO) terms proportional to (lnQ2)n.
This results in a parton cascade strongly ordered in trans-
verse momentum kT , where the parton with the highest
transverse momentum appears at the lepton vertex of the
chain. The longitudinal momenta xJet decrease towards
the photon vertex.

Next–to–leading–order (NLO) calculations, i.e. full
second order matrix element calculations including first
order virtual corrections, where parton densities are in-
corporated according to the DGLAP scheme, are avail-
able in three program packages MEPJET, DISENT and
DISASTER++ [34–36]. The programs use different tech-
niques to calculate cross sections but nevertheless agree
reasonably well in their predictions [36]. These NLO cal-
culations are not available in full Monte Carlo event sim-
ulations. They are purely parton–level calculations, deliv-
ering parton four momenta which can be analysed, such
that the parton level cross sections can be evaluated using
different jet algorithms and recombination schemes.

The BFKL approach [7] of the parton evolution resums
terms proportional to (ln 1/x)n, which become dominant
over the lnQ2 terms at small x. This approach is expected
to be valid in the high energy limit, where the total avail-
able energy, W , is large with respect to any other hard

scale, ET,Jet or Q, in DIS. The first term of this resum-
mation is second order in the strong coupling constant
αs and is therefore included in the next–to–leading order
tree–level diagrams in DGLAP–based calculations, e.g. in
MEPJET. In Fig. 1 this term corresponds to exactly one
parton rung in the gluon ladder between the quark box
and the proton. In the following it will be referred to as the
BFKL 1st term. Since the present approach is only leading
ln 1/x, the parton emissions are strongly ordered in xJet.
Recent calculations of next–to–leading ln 1/x terms in the
BFKL kernel [37] predict large negative corrections due
to a weakening of the strong ordering in xJet which are
expected to reduce the cross section significantly.

The present BFKL calculations do not allow the im-
plementation of a jet algorithm. Therefore this calcula-
tion can only be regarded as approximate, since the mea-
sured jet rates depend on the jet algorithm and on their
resolution parameters, scales and recombination schemes.
For example, in our selected phase space region MEPJET
yields cross sections for the cone and the kT algorithm
with their particular choice of parameters which differ by
up to 15%.

In Fig. 7 we compare the differential forward jet cross
section prediction from MEPJET to the BFKL 1st term
and to the leading order (LO) BFKL calculation. We have
applied the cone algorithm within MEPJET, the same
algorithm as used for the data. The renormalisation scale
in the MEPJET program is varied between 0.25 k2

T and
2 k2

T to study the scale dependence of the parton–level
cross section. Here kT is the scalar sum of the transverse
momenta of the jets in the Breit frame. The result changes
by ∼30% in the two small–x bins and less than 10% in the
other bins. This is indicated by the shaded band in Fig. 7.

The MEPJET NLO and the BFKL 1st–term calcula-
tions are similar and predict a much smaller cross section
than the LO BFKL calculation, which shows a steep rise
towards smaller values of x.

Also shown are the parton–level cross sections from
LEPTO, HERWIG, ARIADNE and from LDC. Both the
MEPS–based LEPTO and HERWIG models show reason-
able agreement with the MEPJET calculations, whereas
ARIADNE exhibits a stronger increase of the cross section
for small x. The LDC model is well below the ARIADNE
predictions. For increasing x all models and calculations
converge.

For a direct comparison of the data to the theoretical
calculations, the measurements need to be evaluated at
the parton level, where partons are defined in the Monte
Carlo at the stage after the last branching of the parton
shower and before the hadronisation. The size of the cor-
rections from hadron to parton level is studied using the
Monte Carlo simulation programs and are displayed in
Fig. 8. ARIADNE yields factors close to unity and shows
no dependence as a function of x. LEPTO and HERWIG
show large corrections for small x values. This is expected,
because these DGLAP based models, which have LO ma-
trix element calculations implemented, can only produce
a significant number of forward jets due to hadronisation
effects and detector smearing. The LDC corrections are
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intermediate to LEPTO/HERWIG and ARIADNE. As
shown above LEPTO and HERWIG also fail to describe
the cross section both in absolute size and in shape. Fur-
thermore, the relation between the parton level in par-
ton shower Monte Carlo programs and partons in exact
NLO calculations is not obvious. Therefore we refrain from
quoting measurements corrected to the parton level.

9 Systematic studies

We have studied the effects of the variation of several se-
lection cuts and reconstruction uncertainties on the final
cross section. Figure 9 shows the percentage change of the
final cross section in each x interval for the major contri-
butions to the overall systematic error.

Change of the E − PZ cut from > 35 to > 40 GeV

This tests the amount of photoproduction background in
the sample and changes the result by less than 6%.
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Fig. 8. Correction factors corresponding to the ratio of the
parton level to the hadron–level forward jet cross section as a
function of x. The factors for ARIADNE are shown as full cir-
cles, for LDC as open circles, for HERWIG as open rectangles
and for LEPTO as full rectangles

Alignment uncertainty between the CTD and the FCAL
The primary event vertex is determined from tracks in the
CTD. In order to account for an alignment uncertainty
between CTD and FCAL, the Z–position of the vertex is
shifted by ± 0.4 cm. This affects mostly parameters calcu-
lated for the scattered positron and related quantities like
x, Q2 and the boost to the Breit frame. The uncertainty
from this effect is around 5%, except in the highest x bin
where it reaches 14%. Here, due to the misreconstruction
of the kinematic variables the current jet may be recon-
structed sufficiently far forward to survive our selection
cuts.

Jet energy scale uncertainty
The energy of the jets is scaled by ±5% in the Monte
Carlo, reflecting a global uncertainty of the hadronic en-
ergy scale in the forward region of the FCAL. The result
changes by less than 15%.

Electromagnetic energy scale uncertainty of the calorimeter
The energy of the scattered positrons in the RCAL is
scaled by ±1% in the Monte Carlo corresponding to the
global uncertainty of the electromagnetic energy scale in
the calorimeter. The result changes typically by less than
5%.
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Fig. 9. Percentage change of the forward jet cross
section due to various systematic checks in the dif-
ferent x bins. The vertical lines indicate the sta-
tistical errors in each interval. Empty bins contain
values outside the displayed range (see text)

Uncertainty from jet selection criteria
A possible mismatch between the distributions of jet vari-
ables in the data and in the Monte Carlo is tested by a
variation of the cut values by about one sigma of their res-
olution followed by the determination of the cross sections
at the nominal value of the cuts at the hadron level. The
tested cuts are: the minimum ET,Jet (changed from 5 GeV
to 4.5 and 5.5 GeV), the minimum xJet (changed from
0.036 to 0.042 and to 0.030), the maximum ηJet (changed
from 2.6 to 2.7 and 2.5), and the minimum and maximum
E2

T /Q2 (changed from 0.5 to 0.6 and 0.4 or from 2 to 2.4
and 1.6, respectively). All these effects are at the level of a
few percent, except in the lowest x bin, where they add up
to 18%. They are combined (i.e. added in quadrature sep-
arately for the positive and negative changes) and shown
as “jet cuts” in Fig. 9.

Acceptance correction with LEPTO

The full acceptance correction is performed with LEPTO
instead of ARIADNE. Since the E2

T,Jet/Q2 distribution of
LEPTO differs substantially from the measured one, the
LEPTO events were reweighted to reproduce the observed
E2

T,Jet/Q2 distribution. This test changes the cross section
by less than 15%, except in the lowest and the highest x
bins, where it increases the result by +20% and +60%,
respectively.

The last two studies take into account the uncertain-
ties arising from possible migrations of events in neigh-
bouring bins of the cross section plot. However, the fact
that the Bayes unfolding method yields results consistent
with those of the bin-by-bin correction method indicates
that the migration effects are well under control.
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Fig. 10a,b. Forward jet cross section
at hadron level as a function of x in
the kinematic region ηJet< 2.6, xJet>
0.036, 0.5 < E2

T,Jet/Q2 < 2, ET,Jet >
5 GeV, Ee′ > 10 GeV, y > 0.1. a Lin-
ear scale, b logarithmic scale. Statis-
tical errors are shown as thick error
bars, and statistical and systematic er-
rors added in quadrature as thin error
bars. The errors due to the uncertainty
of the jet energy scale are shown as the
shaded band

Further checks included the variation of the accepted
ranges of the primary event vertex (±40 cm or ±60 cm
instead of ±50 cm), a change of the region for the rejected
scattered positrons within a box of 13 × 8 cm2 or 14 ×
14 cm2 around the RCAL beam pipe, and a variation of
the yel cut from < 0.8 to < 0.95. The effect on the cross
section is negligible. A global uncertainty of 1.5% coming
from the luminosity measurement is not included.

10 Hadron–level forward jet cross section

In Fig. 10 we present the hadron–level forward jet cross
section. The numerical values are given in Table 2. ARI-
ADNE describes the hadron–level forward jet cross section
reasonably well, apart from the small–x region, where it is
slightly below the data. LEPTO and HERWIG, as well as
LDC, predict significantly smaller cross sections. Switch-
ing off the Soft Colour Interaction in LEPTO decreases
the cross section in the smallest x bin by about 50%, but
does not affect the large–x region. Increasing the proba-
bility of Soft Colour Interaction from the default value of
50% to 100% does not increase the cross section.

The region of large x can be seen more clearly in
Fig. 10b. The data, ARIADNE and LEPTO converge at
larger x. In this region, where xJet approaches x, the phase
space for parton emission is small. Therefore, the cross
section is expected to be largely independent of the par-
ton shower mechanism. On the other hand, HERWIG and
LDC stay below the data.

The excess of forward jets at small x observed in the
data with respect to LEPTO and HERWIG may be inter-
preted as an indication of hard physics not implemented in
present models of DGLAP–based parton evolution. How-
ever, the current implementation of BFKL–type physics,
as exemplified by the LDC model, still underestimates the
measured forward jet cross section.

11 Summary and conclusions

An investigation of forward jet production including a
comparison to various Monte Carlo models has been per-
formed. Three regions are identified in the E2

T,Jet/Q2 dis-
tribution: i) the standard DGLAP region with E2

T,Jet �

Table 2. Forward jet cross sections and their errors for the
kinematic region given in Table 1. The last column shows the
correlated systematic error due to the energy scale uncertainty
of the calorimeter, which is not included in the central column.
It corresponds to the shaded band in Fig. 10

x range dσ
dx

± stat. ± syst. syst. (ECAL scale)
[nb] [nb]

4.5 · 10−4–8.0 · 10−4 114 ± 9.7+ 29
− 15 (−5.9, + 18)

8.0 · 10−4–1.4 · 10−3 96.2 ± 6.5+ 8.2
− 8.2 (−8.1, + 7.8)

1.4 · 10−3–2.5 · 10−3 77.8 ± 4.7+ 5.2
− 6.9 (−4.2, + 7.0)

2.5 · 10−3–4.5 · 10−3 34.4 ± 2.2+ 3.8
− 1.9 (−2.1, + 2.6)

4.5 · 10−3–8.0 · 10−3 14.1 ± 1.0+ 2.5
− 1.2 (−1.2, + 1.3)

8.0 · 10−3–1.4 · 10−2 6.53 ± 0.54+ 0.1
− 0.7 (−0.7, + 0.2)

1.4 · 10−2–2.5 · 10−2 2.65 ± 0.25+ 0.3
− 0.3 (−0.03, + 0.2)

2.5 · 10−2–4.5 · 10−2 0.65 ± 0.09+ 0.1
− 0.4 (−0.00, + 0.05)

Q2, where all Monte Carlo models are in agreement with
the data; ii) the region of phase space where BFKL dy-
namics is expected to contribute significantly with E2

T,Jet

≈ Q2, where only the Colour Dipole model describes the
data well, and iii) the region with E2

T,Jet � Q2, where
none of the models reproduces the data.

The forward jet cross section at hadron level is mea-
sured in the region ii) where E2

T,Jet ≈ Q2. The cross
section is compared to the predictions of several models:
ARIADNE, which includes one of the main features of
the BFKL–based phenomenology, that is the absence of
the strong ordering in the transverse momenta in the par-
ton shower; LDC, which is based on the CCFM approach
and which smoothly interpolates between the BFKL and
the DGLAP predictions in their range of validity; and,
LEPTO and HERWIG, which are based on leading order
DGLAP parton evolution. The measured cross section is
reasonably well described by ARIADNE while LEPTO,
HERWIG and LDC predict cross sections that are too low
at small x. The excess of forward jets at small x observed
in the data with respect to LEPTO and HERWIG may
be interpreted as an indication of hard physics not imple-
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mented in present models of DGLAP–based parton evolu-
tion. However, the current implementation of BFKL–type
physics, as exemplified by the LDC model, still underes-
timates the measured forward jet cross section.
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