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Spontaneous oscillator synchrony is a form of self-organization in which populations of interacting
oscillators ultimately cycle together. This phenomenon occurs in a wide range of physical and biological
systems. In rats and humans, oestrous/menstrual cycles synchronize through social stimulation with
pheromones acting as synchronizing signals. In previous work, we showed that glaucous-winged gulls
(Larus glaucescens) can lay eggs synchronously on an every-other-day schedule, and that synchrony
increases with colony density. We posed a discrete-time mathematical model for reproduction during the
breeding season based on the hypothesis that pre-ovulatory luteinizing hormone surges synchronize by
means of visual, auditory and/or olfactory cues. Here, we extend the seasonal model in order to inves-
tigate the effect of ovulation synchrony on population dynamics across reproductive seasons. We show
that socially stimulated ovulation synchrony can enhance total population size and allow the population to
persist at lower birth rates than would otherwise be possible.

Keywords: bifurcation; cannibalism; discrete-time model; gull colony; ovulation synchrony

AMS 2000 Mathematics Subject Classification: 92B25; 39A28

1. Introduction

‘Spontaneous oscillator synchrony’ is a phenomenon of self-organization in which a popu-
lation of interacting oscillators ultimately cycles together. Spontaneous oscillator synchrony
occurs in a wide range of physical and biological systems, including cardiac pacemaker cells,
Malaysian fireflies, pendulum clocks, lasers and chemical reactions [21,27]. In Norway rats and
humans, ovulation cycles can synchronize through social stimulation with pheromones acting as
synchronizing signals [16–19].

Females of a wide range of taxa experience similar kinds of hormonal fluctuations that drive
ovulation cycles. Mammals and birds experience a surge of luteinizing hormone (LH) before
each ovulation in a periodic fashion [31]. In women, LH surges approximately every 28 days;
in domestic fowl, LH surges every 24 h during the laying season [14]. For animals that breed or
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congregate in dense social groups, there is at least the possibility that ovulation synchrony may
occur. This has been tested, however, only in Norway rats and humans; currently, we are testing
for ovulation synchrony in glaucous-winged gulls (Larus glaucescens).

Glaucous-winged gulls lay eggs at approximately 2-day intervals [30]; this suggests a 48-h
ovulation cycle. We would expect that ovulation synchrony in these birds might be manifest by
synchronous every-other-day egg-laying. In previous work [12], we collected egg-laying data for
three summers in a glaucous-winged gull colony on Protection Island, Washington, and showed
that eggs were laid synchronously on an every-other-day schedule. We also showed that synchrony
increased with colony density. The study suggested the possibility of socially stimulated synchrony
of 48-h ovulation cycles. To probe this hypothesis, we posed a discrete-time mathematical model
for population-level ovulation dynamics within the breeding season based on the hypothesis that
48-h LH surges synchronize by means of olfactory, visual and/or auditory cues. Model predictions
were consistent with the data.

If socially stimulated ovulation synchrony is found to occur across a wide range of taxa, the
question of selective advantage becomes paramount. There are at least three possibilities. First,
synchrony could be an epiphenomenon with no selective advantage but could be associated with
some other advantageous trait. Second, synchrony might have been advantageous in a common
ancestor and may or may not retain selective advantage. Third, synchrony could arise convergently
in a number of taxa in which similar mechanisms confer similar selective advantage. For example,
in many taxa, including many that experience periodic LH surges such as rats, gulls and primates,
adult animals cannibalize the young of conspecifics in densely populated environments [13,22]. If
ovulation synchrony, induced by social stimulation in crowded living conditions, were to confer
a selective advantage in the presence of cannibalism, then synchrony might arise convergently in
a number of such taxa.

The goal of this paper is to investigate the effect of avian ovulation synchrony on popula-
tion dynamics in the presence of egg cannibalism. We show how socially stimulated ovulation
synchrony can enhance total population size and allow the population to persist at lower birth rates
than would otherwise be possible. Section 2 presents an overview of the life history and breed-
ing phenology of glaucous-winged gulls. Section 3 reviews the method by which we measured
the level of synchrony in time series data in [12], as well as the within-breeding season model
proposed in that study. Section 4 extends the within-breeding season model to track population
dynamics across breeding seasons. Section 5 presents a linear stability analysis at the origin and
proves the existence of a transcritical bifurcation of nontrivial cycles. Section 6 contains analy-
ses of two limiting models: one with no social stimulation and one with infinitely strong social
stimulation. These special cases provide a framework for simulation studies that categorize the
dynamic possibilities.

2. Life history and breeding phenology of glaucous-winged gulls

Glaucous-winged gulls breed in large colonies along the west coast of North America from Alaska
to Oregon.At Protection Island, Washington where our field work is based, gulls return in February
from winter feeding grounds, set up territories in early spring, build nests from early to mid-May,
and lay eggs in late May/early June. From one to three (rarely four) eggs are laid at approximately
two-day intervals per female per season [30]. Territories begin to break down in late summer, and
by mid-October most gulls have left the island ( [7], unpublished data).

Birds such as glaucous-winged gulls that breed in temperate regions experience yearly cycles
controlled by the endocrine system in interaction with the external environment. As days
lengthen in the spring, direct photic stimulation of the female hypothalamus results in release
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of neurohormones which are carried to the anterior pituitary gland. In response, the pituitary
begins to synthesize and secrete LH and follicle-stimulating hormone (FSH) which promote dra-
matic growth of the ovaries. FSH, in concert with LH, is primarily responsible for maturation of
the ova contained within the ovarian follicles at the surface of the ovary [5]. Proximate factors
such as cool weather can delay this process [25,29].

Maturation of the ovum involves yolk deposition and growth and development of the germ cell
itself. Yolk deposition in glaucous-winged gulls takes about 12 days [24]. During this time yolk
materials pass from the follicle cells into the ovum via intercellular bridges. At the end of the
12-day period, an LH surge causes the ovum to break through the follicle (ovulation). Once in the
body cavity, it is engulfed by the infundibulum, or upper end of the oviduct, where fertilization
takes place. The fertilized egg is propelled by peristalsis through the oviduct to the vagina. Along
the way, the albumin, egg membranes and shell are added, in sequence, over the yolk. In gulls,
this process apparently takes approximately 48 h. The next LH surge occurs, followed directly
by oviposition (the laying of the egg) and the ovulation of the next follicle in the hierarchy. This
process is repeated until the clutch is complete [5].

Following clutch completion, the ovaries begin to shrink due to photorefractoriness, the state
in which photic stimulation loses effectiveness. At this time the female enters a period of repro-
ductive senescence, similar to menopause, until the next spring, when once again it enters a phase
analogous to adolescence accompanied by sexual maturity.

Incubation may begin after the first egg is laid, but most commonly is delayed until the laying
of the second or third egg. Male and female parents take turns incubating. Following an average
incubation period of 27.5 days, the semiprecocial chicks hatch. During the first day or so post-
hatching, chicks usually remain within the nest cup. Afterwards, young chicks hide nearby in
vegetation, under logs, or within crevices. Chicks are fed by both parents until fledging, approxi-
mately six weeks following hatching. Glaucous-winged gulls reach sexual maturity at four years
of age, at which point they choose a mate for life and often return to their natal colony to breed.
Glaucous-winged gulls rarely survive more than 15 years [7,30] but have been known to live up
to 32 years in the wild [1].

Eggs and chicks are vulnerable to conspecific cannibals. Any gull will eat an unprotected
egg, but a few adults in the colony specialize in cannibalizing the eggs of neighbours [8,20,28].
Territories of cannibalistic gulls are littered with large numbers of eggshell fragments. Canni-
bals, typically males, prey on nests when the incubation activities in neighbouring territories are
disturbed by eagles or other predators. Parent gulls temporarily flee their territories during these
disturbances, leaving eggs exposed and unprotected. Chicks that run into neighbouring territories
during disturbances are sometimes cannibalized as well. On Protection Island, egg cannibal-
ism was significantly higher during an El Niño year when food was scarce than during other
years [9].

A variety of predators take gull eggs, chicks and adults [10]. On the Protection island colony,
however, nearly all predation is due to bald eagles, cannibalism and the predation of eggs by
crows. During the gull incubation period, it is common to find all eggs in entire sections of the
colony destroyed after eagles have hopped from nest to nest devouring the contents. Chicks are
taken by eagles that swoop down from perch sites and snatch them from the colony surface. Adult
gulls are taken while on territory, or, less often, while in flight. Eagle predation and flyovers cause
large numbers of gulls to flee their nests, providing opportunity for gull cannibals and crows to
snatch unprotected eggs.

The chance that a glaucous-winged gull egg on Protection Island will be fertile, avoid predation,
and hatch ranges from 29% to 88%, depending on nest habitat, degree of predation, parent age
and year (unpublished data). Fledging success is difficult to determine, but estimates range from
51% to 55%, depending on time of clutch onset [30]. Survivorship post-fledging ranges from 40%
to 87% per year of life, with first year mortality being the highest [7].
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3. Egg-laying and ovulation synchrony

We collected egg-laying data for three summers in a glaucous-winged gull colony on
Protection Island, Washington [12]. We showed that egg-laying occurred synchronously on an
every-other-day schedule, and that the level of synchrony increased with colony density. We also
posed a mathematical model based on the hypothesis that ovulation cycles synchronize as a result
of social stimulation. In order to validate the model, we estimated its parameters on one of 15
data sets and successfully predicted the remaining 14 data sets without re-parameterizing. Model
predictions were consistent with the data. In this section, we give a brief review of (1) the method
used to measure egg-laying synchrony in noisy time series of egg-laying data, (2) the argument
used to show that the observed levels of synchrony were significantly different from those that
arise by chance, (3) the mathematical model introduced in [12], and (4) the connection between
social stimulation and ovulation synchrony in that model. Details are found in [12].

3.1. Measuring egg-laying synchrony in time series

If a group of gulls were perfectly synchronized, the number of eggs laid per day, and the number
of clutches initiated per day, would look like the simulation in Figure 1a. Such a time series
would have two distinguishing characteristics. First, it would have a 2-cycle-like oscillation with
every-other-day ‘highs’ of (probably) irregular height. Second, the ‘lows’ of the oscillation would
equal zero. Because the egg-laying interval of these birds is slightly greater than two days [30],
and because there might be days on which no eggs were laid, the time series could have ‘skips’
of two or more zeros in a row (Figure 1a). Observed time series, of course, are noisy. Figure 1b
shows one of the 15 observed time series analysed in [12]. To measure the level of egg-laying
synchrony in noisy time series, we defined a measure � of synchrony for time series of the form
E0, E1, E2, E3, . . . , Em, where Ei is the number of eggs laid on day i, days 1 and m refer to the
first and last days on which eggs were laid, and E0 and Em+1 are defined to be zero:

� =
∑m

i=0 |Ei+1 − Ei |
2

∑m
i=1 Ei

. (1)
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Figure 1. Clutch initiation data, simulations, and distributions of �-values. (a) Simulation of perfect synchrony. (b)
Data from 2006. (c) Monte Carlo simulation of null hypothesis. (d) Simulation of stochastic version of egg-laying model
in [12]. (e) Distribution of �-values generated from Monte Carlo simulations of null hypothesis. Vertical bar indicates
distribution mean; arrow indicates observed �-value. The null hypothesis is rejected (p = 0.0006). (f) Distribution of
�-values generated from stochastic version of egg-laying model. Vertical bar indicates distribution mean; arrow indicates
observed �-value. The egg-laying model is not rejected.
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The numerator measures the total variation of the time series; the denominator gives the total
variation for any perfectly synchronous time series with the same total number of eggs. The value
� = 1 indicates perfect synchrony (Figure 1a) and � < 1 indicates a departure from perfect
synchrony (Figure 1b).

3.2. Testing the null hypothesis

In order to test whether the observed time series showed a level of synchrony significantly different
from that which is expected to occur by chance, we tested the predictions of three null Monte
Carlo models.

The first null model was based on the hypothesis that clutch initiations were random-normally
distributed in time. For each observed time series of clutch initiations, we computed the total
number of clutches initiated (W ), the number of days spanning the clutch initiation period (X),
and the sample mean clutch initiation date and standard deviation (Y and Z). In each Monte
Carlo simulation, we randomly selected W real numbers from a truncated normal distribution
Norm(Y, Z2) lying within the time interval [0, X], and then we binned the W numbers by 1-day
intervals to produce a simulated clutch initiation time series.

The second null model was based on the hypothesis that clutch initiations were random-
uniformly distributed in time. The simulations were computed as above except the truncated
normal distribution was replaced by a uniform distribution on the time interval [0, X].

The third null model was based on the hypothesis that ovipositions (egg-laying events) were
random-normally distributed in time. In each Monte Carlo simulation, we random-normally
distributed the observed clutches by random-normally distributing clutch initiation dates, as above.
Within each clutch, we randomly selected laying intervals from a normal distribution with mean
and variance equal to those of the observed intervals. Finally, we binned all simulated ovipositions
into one-day intervals in order to produce a simulated oviposition time series.

For each null model, we used the program Matlab to compare �obs for the observed time
series to the distribution of �-values estimated from 106 simulated time series. p-values were
computed as the proportion of simulations satisfying � > �obs. Each of the resulting p-values
was computed five times to check convergence of the result.

For a particular time series, rejection of the null models indicates a level of synchrony unlikely
to be attained by chance. Details of the Monte Carlo hypotheses, analyses, and results appear
in [12].

Figure 1c shows a single Monte Carlo simulation of the first null model, along with its corre-
sponding �-value. Figure 1e shows the null distribution of 106 such simulated �-values, along
with the observed �-value (arrow) for the observed time series shown in Figure 1b. For the
observed time series in Figure 1b, p = 0.0006, and so the null hypothesis was rejected.

3.3. Within-season model

We posed the following reproduction model in [12]:

xt+1 = P̂ (xt )xt , (2)

where xt = (wt , xt , yt )
�, x0 = (w0, 0, 0)�, and

P̂ (x) =
⎛
⎝1 − f e−cx 0 0

f e−cx 0 qe−cx

0 1 q(1 − e−cx)

⎞
⎠
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Figure 2. Conceptual diagrams for models. (a) Within-season dynamics model (2). Here wt is the number of adult gulls
that have not yet begun ovulation cycling by day t in the spring, xt is the number of adults that ovulate on day t and yt

is the number of adults that are cycling but did not ovulate on day t . (b) Across-season dynamics model (3). Here wt , xt

and yt are as above, and zt is the number of eggs, chicks and adults that are incubating and chick-rearing. See text for
complete description.

with a time step of one day. Figure 2a shows a conceptual diagram of the model. Here wt is the
number of adult gulls that have not yet begun ovulation cycling by day t in the spring, xt is the
number of adults that ovulate on day t and yt is the number of adults that are cycling but did not
ovulate on day t . The fraction f ∈ (0, 1) is the probability that a non-cycling individual is ready
to begin ovulation cycling, and (1 − e−cx) is the probability that a cycling individual or one ready
to cycle will ‘skip’a day in order to synchronize, where c ≥ 0 is the strength of social stimulation.
The fraction 1 − q, for q ∈ (0, 1), is the probability that a bird in the second phase of the cycle
(the y class) will stop cycling and incubate.

Remark 1 Note that the number of ovulations x on day t is the number of eggs laid on day
t + 2; in this model egg-laying is synchronized if and only if ovulation cycles are synchronized.
Ovulation (and hence egg-laying) synchrony therefore is measured in the x component of the time
series of model (2) using Equation (1). Perfect ovulation synchrony occurs when the x component
shows 2-cycle-like oscillations with ‘lows’ equal to zero, as in Figure 1a.

We presented a stochastic version of model (2) in [12]. Figure 1d shows a stochastic simulation
with its � -value. Figure 1f shows the estimated distribution of �-values arising from the stochastic
model, along with the observed value of � (arrow) from the observed time series in Figure 1b.
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The model in [12] was nonautonomous; both f and c were expressed with time-dependent
submodels in order to model the relationship between temperature-related delays in the onset of
ovulation and the fixed endpoints of the reproductive season as set by photoperiod. In this study,
however, we disregard the possibility of temperature-related delays in ovulation, and we take f

and c to be constant.
Ovulation synchrony is measured in the x component of transient time series of model (2).

The asymptotic dynamics are uninteresting, as the following argument shows.
Both the open positive cone R3+ and its closure R̄3+ are forward invariant under the map defined

by P̂ (x)x. For any orbit in R3+ we have the inequalities

0 ≤ wt+1 + xt+1 + yt+1

= (1 − f e−cxt )wt + f e−cxt wt + qe−cxt yt + xt + q(1 − e−cxt )yt

= wt + xt + qyt

≤ wt + xt + yt

and hence

0 ≤ wt + xt + yt ≤ w0 + x0 + y0

for all t ≥ 0. It follows that all orbits in R̄3+ are forward bounded. These inequalities also show that
the function V (x) = w + x + y is a Lyapunov function on R̄3+, since they imply that V decreases
along orbits: V (xt+1) ≤ V (xt ). The largest invariant set contained in

E = {x ∈ R̄3
+|V (P̂ (x)x) − V (x) = 0} = {x ∈ R̄3

+|y = 0}
is the origin x = 0. It follows from LaSalle’s invariance principle [15, Theorem 6.3] that xt

approaches the origin, that is to say, the origin is a global attractor relative to R̄3+. The origin is
also locally asymptotically stable because the eigenvalues 1 − f and ±√

q of the Jacobian P̂ (0)

at the origin are all less than 1 in absolute value. Thus, we have the following theorem:

Theorem 2 For the matrix model (2) the origin is a globally asymptotically stable equilibrium
relative to R̄3+.

3.4. Connection between social stimulation and ovulation synchrony

In this study our goal is to extend model (2) across breeding seasons and to categorize the effect
of socially stimulated ovulation synchrony on population-level dynamics. We wish to do this
by studying the population dynamics as a function of the social stimulation parameter c. First,
however, we must mention the connection between the level of ovulation synchrony � in transient
time series of model (2) and the level of social stimulation c. Model (2) was designed to express
the hypothesis that increasing social stimulation c increases ovulation synchrony. The nonlinear
mechanism by which this is accomplished is that birds in the w and y classes can ‘skip’returning to
the x class until the x class is large. The relationship between � and c is illustrated in Figure 3a,
which shows a graph of � as a function of c for deterministic time series of model (2). The
three arrows indicate pairs of (c, �) for which time series (for x) are shown in Figure 3b–d. In
Figure 3b, social stimulation is zero and the synchrony level is low. In Figure 3c, social stimulation
is moderately high and the synchrony level is near 0.5. In Figure 3c, social stimulation is very
high and the time series is almost perfectly synchronous.

In the next section we extend model (2) to include births and deaths across breeding seasons.
We then study the effect of socially stimulated ovulation synchrony on population dynamics by
studying the effect of the parameter c.
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Figure 3. The relationship between social stimulation and ovulation synchrony in model (2), as illustrated with param-
eters f = 0.1, q = 0.6, μ = 0.05, d = 0.01, ν = 0.2 and initial condition (30, 0, 0)�. (a) �-value (level of ovulation
synchrony) as a function of c (level of social stimulation). For each value of c, the �-value was computed for the deter-
ministic time series of length 31. The arrows indicate the (c, �) pairs corresponding to the time series shown in (b)–(d).
(b) Time series for x when c = 0. (c) Time series for x when c = 0.40. (d) Time series for x when c = 1.0.

4. Across-season population model

Extending model (2) across breeding seasons requires tracking births and deaths from year to
year. Figure 2b shows a conceptual diagram of the extended model, in which we make a number
of simplifying assumptions in order to reduce dimensionality.

First, in this model we assume that the total number of ‘births’ (eggs laid) on day t + 1 is the
number of ovulations x on day t reduced by a factor b ∈ (0, 1] to account for unfertilized/addled
eggs and also reduced by a factor e−d(x+y) with d ≥ 0 to account for the cannibalism of eggs by
neighbouring nesting gulls. (Note, however, that in the biological system the number of eggs laid
on day t + 1 is the number of ovulations on day t − 1, and that an egg is subject to cannibalism
every day before hatching, instead of just the day it is laid). Thus, b is the ‘birth rate per ovulation’
in the absence of cannibalism. The parameter b plays an important role in the analysis that follows.
In particular, we will use b as a bifurcation parameter in proving the existence of periodic solutions
of the across-season model.

Second, in this model we place eggs and chicks, along with adults that are incubating and
chick-rearing, into a single class (z) with a common death rate (per day) of μ ∈ (0, 1) due to
predation by eagles. We assume no other source of mortality during the breeding season other
than egg cannibalism. In particular, the model does not include the cannibalism of chicks by
neighbouring adults.
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Third, we track the dynamics of the breeding season using a time step of one day as in model
(2), and at the end of the breeding season we assess (in one time step) an over-winter mortality
ν ∈ (0, 1) on all birds and return the survivors to the w class to begin the next breeding season. In
this model, therefore, juveniles are assumed to mature in one year. This is a major simplification,
given that in the biological system juveniles require four years to mature.

Mathematically, we pose the model in the following way.
Let k ∈ Z

+\{1, 2, 3} be the number of days in the breeding season. The periodically forced
population-level model is

xt+1 = M(t, xt )xt , (3)

where x = (w, x, y, z)�. The time step is one day, and the k-periodic projection matrix is
defined by

M(t, x) =
{

P(x) for t = 0, 1, . . . , k − 2,

Q for t = k − 1

and extended periodically for t ≥ k, with

P(x) =

⎛
⎜⎜⎝

1 − f e−cx 0 0 0
f e−cx 0 qe−cx 0

0 1 q(1 − e−cx) 0
0 be−d(x+y) 1 − q 1 − μ

⎞
⎟⎟⎠

Q =

⎛
⎜⎜⎝

1 − ν 1 − ν 1 − ν 1 − ν

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

We take t = 0 to be the beginning of the initial breeding season; hence the times t =
k, 2k, 3k, . . . mark the beginnings of subsequent breeding seasons. Note that the application
of matrix Q at t = k − 1 returns the over-winter survivors in all classes back to class w to begin
the next breeding season.

The initial condition has the form

x0 = (w0, 0, 0, 0)� (4)

since all birds are in the pre-ovulatory class at t = 0. This, together with the form of matrix Q,
implies that the (k − 1)th composite map

xnk+k = QP(xnk+k−2)P (xnk+k−3) · · · P(xnk)xnk (5)

has orbits of the form ⎛
⎜⎜⎝

w0

0
0
0

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

wk

0
0
0

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

w2k

0
0
0

⎞
⎟⎟⎠ −→ · · · .

We also can write the composite map (5) as

xnk+k = [QP(xnk+k−2)P (xnk+k−3) · · · P(xnk)1]wnk,

where

1 � (1, 0, 0, 0)�,

xnk = 1wnk = (wnk, 0, 0, 0)�.
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Figure 4. Simulation of model (3) with initial condition (100, 0, 0, 0)� and parameters b = 0.9, k = 31, f = 0.1,
q = 0.6, μ = 0.05, d = 0.01, ν = 0.2. (a)–(e) Without synchrony (c = 0). (f)–(j) With synchrony (c = 0.7).

The composite map is therefore equivalent to an autonomous scalar map of the form

wt+1 = g(wt)wt , (6)

where the time unit is equal to k time units in the original model.

Remark 3 In this study, we will focus on the asymptotic dynamics of the composite model (5).
Note, however, that ovulation synchrony is still measured in the x component of within-season
transient time series of model (3) using Equation (1), just as it was for the within-season model
(2). Also, as in model (2), we increase ovulation synchrony by increasing the social stimulation
parameter c. For example, Figure 4(b,g) show the x time series for two trajectories of model (3).
There is essentially no ovulation synchrony in time series with c = 0 (Figure 4b), whereas the
time series shown for c = 0.7 exhibits strong ovulation synchrony (Figure 4g).

Our first goal will be to study the asymptotic dynamics of the across-season population model
(3). Using bifurcation theoretic methods, we will study the existence and stability of (annual)
periodic solutions of this nonautonomous, periodically forced matrix model. We will then obtain
results on how these attractors (or more specifically, how bifurcating branches of periodic solu-
tions) depend on the social stimulation coefficient c. According to Remark 3, this will permit us
to determine the relationship between socially stimulated ovulation synchrony and characteristics
of the population dynamics (e.g., total population size).

5. Existence and stability of periodic solutions of model (3)

In this section, our goal is to prove the existence of nontrivial k -periodic solutions of model (3).
We do this by proving the existence of nontrivial equilibria of the scalar map (6), and hence the
composite map (5), using a bifurcation theoretic approach. Specifically, we use b as a bifurcation
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parameter and show that the trivial equilibrium destabilizes as b increases through a critical value
bk . This destabilization results in the bifurcation of a continuum of nontrivial equilibria. The
bifurcating branch consists of two sub-branches, one of positive equilibria, and one of negative
equilibria that have no biological relevance. The bifurcation is called supercritical (or forward, or
to the right) if the positive equilibria near the origin correspond to b > bk; it is called subcritical
(or backward, or to the left) if they correspond to b < bk . The branches of nontrivial equilibria
of the scalar map (6), and hence the composite map (5), correspond to branches of nontrivial
k-periodic solutions of the k-periodically forced map (3), and the stabilities of the corresponding
branches are the same.

Thus, in this section our goal is to prove the following theorem.

Theorem 4 Consider the model (3) with d > 0.

(a) There exists a unique critical value bk > 0 for which the origin is locally asymptotically stable
for 0 < b < bk and unstable for b > bk .

(b) As a function of b there exists a branch of positive k-cycles that bifurcates from the origin at
b = bk . If g′(0) < 0, where g is given in Equation (6), the bifurcation is supercritical and the
bifurcating k-cycles are (at least for b near bk) locally asymptotically stable. If g′(0) > 0,

the bifurcation is subcritical and the bifurcating k-cycles are (at least for b near bk) unstable.

We begin by posing a slightly different model and proving several technical lemmas that will
be useful in this section as well as in Section 6.

5.1. Some lemmas

Let {st } be a real-valued k-periodic sequence satisfying s0 > 0 and 0 ≤ st ≤ 1 for all t ≥ 0.
Consider the k-periodic map

xt+1 = N(t, xt )xt (7)

with initial condition (4), where

N(t, x) =
{

R(t, x) for t = 0, 1, . . . , k − 2

Q for t = k − 1

and

R(t, x) =

⎛
⎜⎜⎝

1 − f st 0 0 0
f st 0 qst 0
0 1 q(1 − st ) 0
0 be−d(x+y) 1 − q 1 − μ

⎞
⎟⎟⎠ .

Because of the structure of matrix Q, the Jacobian

J � QR(k − 2, 0)R(k − 3, 0) · · · R(0, 0) (8)

of the (k − 1)th composite of Equation (7) evaluated at the origin has zero entries in all but
the first row. The eigenvalues of J are therefore 0 (multiplicity three) and the upper left-hand
entry of J , which we denote by λ(k). Note that λ(k) is the product of 1 − ν and the sum of the
entries of the first column of R(k − 2, 0)R(k − 3, 0) · · · R(0, 0). The first column of R(k − 2, 0)
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R(k − 3, 0) · · · R(0, 0) is generated by applying the map

p1(t + 1) = (1 − f st+1)p1(t), (9a)

p2(t + 1) = f st+1p1(t) + qst+1p3(t), (9b)

p3(t + 1) = p2(t) + q(1 − st+1)p3(t), (9c)

p4(t + 1) = bp2(t) + (1 − q)p3(t) + (1 − μ)p4(t) (9d)

k − 2 times starting with initial conditions

p1(0) = 1 − f s0, p2(0) = f s0, p3(0) = 0, p4(0) = 0.

Thus, the dominant eigenvalue of the Jacobian J is

λ(k) = (1 − ν)[p1(k − 2) + p2(k − 2) + p3(k − 2) + p4(k − 2)] > 0. (10)

Remark 5 The linearization of model (5) at the origin is

ut+1 = QP k−1ut ,

where

P � P(0) =

⎛
⎜⎜⎝

1 − f 0 0 0
f 0 q 0
0 1 0 0
0 b 1 − q 1 − μ

⎞
⎟⎟⎠ .

Note that if st = 1 ∀t ≥ 0 in model (7), Equation (8) becomes J = QP k−1. In that case, λ(k) is
the dominant eigenvalue of the linearization of the composite model (5) at the origin, and λ(k) is
also the eigenvalue of the linearization of scalar map (6) at the origin.

Lemma 6 For all t ≥ 0, p1(t), p2(t) and p3(t) are nonnegative and independent of b. For all
t ≥ 1, p4(t) is linear in b with a nonnegative intercept at b = 0 and slope m(t) > 0.

Proof It is obvious that pi(t) ≥ 0 for all t . Since Equations (9a)–(9c) are uncoupled from (9d),
it is clear that p1(t), p2(t), and p3(t) are independent of b.

We prove the rest of the lemma by induction on t . Let t = 1. Then

p4(1) = bf s0

is linear in b with slope m(1) = f s0 > 0 and intercept equal to 0. For purposes of induction, let
t ≥ 2 and assume that p4(t − 1) is linear in b with slope m(t − 1) > 0 and nonnegative intercept
at b = 0. Now,

p4(t) = bp2(t − 1) + (1 − q)p3(t − 1) + (1 − μ)p4(t − 1).

Since p2(t − 1) and p3(t − 1) are nonnegative and independent of b, it is clear that p4(t) is linear
in b with a nonnegative intercept and slope

m(t) = (1 − μ)m(t − 1) + p2(t − 1) > 0. �
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Lemma 7 For all k ∈ Z
+\{1, 2, 3}, the eigenvalue λ(k) has the form

λ(k) = bα(k) + β(k),

where α(k) and β(k) are independent of b and satisfy

α(k) > 0, β(k) < 1.

Proof Equation (10) and Lemma 6 imply that λ(k) is linear in b with slope

α(k) = (1 − ν)m(k − 2) > 0.

We proceed by induction on k to show that the intercepts β(k) are less than 1. Let k = 4. Given
Equations (9a)–(9d) and (10), it is straightforward to calculate

λ(4) = bf (1 − ν)[s1(1 − f s0) + (1 − μ)s0] + (1 − ν)

which has intercept β(4) = 1 − ν < 1. Let k ≥ 5 and assume, for purposes of induction, that

λ(k − 1) = bα(k − 1) + β(k − 1), β(k − 1) < 1,

where α(k − 1) and β(k − 1) are independent of b. Now, by Equations (9a)–(9d) and (10),

λ(k) = (1 − ν)[(1 − f sk−2)p1(k − 3) + f sk−2p1(k − 3) + qsk−2p3(k − 3)

+ p2(k − 3) + q(1 − sk−2)p3(k − 3) + bp2(k − 3)

+ (1 − q)p3(k − 3) + (1 − μ)p4(k − 3)]
= (1 − ν)[p1(k − 3) + p2(k − 3) + p3(k − 3) + p4(k − 3)

+ bp2(k − 3) − μp4(k − 3)]
= λ(k − 1) + (1 − ν)[bp2(k − 3) − μp4(k − 3)]
= bα(k − 1) + β(k − 1) + (1 − ν)[bp2(k − 3) − μp4(k − 3)].

By Lemma (6), p2(k − 3) is nonnegative and independent of b, and p4(k − 3) is linear in b with
positive slope m(k − 3) and nonnegative intercept. Thus, λ(k) has the form

λ(k) = bα(k) + β(k),

where

α(k) = α(k − 1) + (1 − ν)p2(k − 3) − (1 − ν)μm(k − 3),

β(k) = β(k − 1) − (1 − ν)μp4(k − 3)|b=0,

are independent of b. Moreover, β(k) ≤ β(k − 1) < 1 by the induction hypothesis, and the
induction is complete. �
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Lemma 8 Let d > 0 in model (7). Given initial condition (4) we can, for each t = 2, . . . , k −
1, write

xt =

⎛
⎜⎜⎝

ωt

ξt

θt

γt (w0) + ζt

⎞
⎟⎟⎠ w0,

where ωt, ξt , θt and ζt are scalar sequences that are independent of w0 and satisfy

ωt, ξt , θt , ζt ≥ 0,

ωt + ξt + θt + ζt = 1 (11)

and where the sequence of functions γt (·) satisfies

γ ′
t (0) < 0. (12)

Proof Given initial condition (4), it is straightforward to calculate

x2 =

⎛
⎜⎜⎝

(1 − f s1)(1 − f s0)

f s1(1 − f s0)

f s0

be−df s0w0f s0

⎞
⎟⎟⎠ w0.

Here the constants ω2 = (1 − f s1)(1 − f s0), ξ2 = f s1(1 − f s0), θ2 = f s0, and ζ2 = 0 satisfy
(11) and γ2(w0) � be−df s0w0f s0 satisfies Equation (12).

Suppose, for purposes of induction, that

xt−1 =

⎛
⎜⎜⎝

ωt−1

ξt−1

θt−1

γt−1(w0) + ζt−1

⎞
⎟⎟⎠ w0,

where the scalar sequences ωt−1, ξt−1, θt−1, ζt−1 are independent of w0 and satisfy Equation (11)
and where γt−1(·) satisfies (12). Then

xt = R(t − 1, xt−1)xt−1

=

⎛
⎜⎜⎝

(1 − f st−1)ωt−1

f st−1ωt−1 + qst−1θt−1

ξt−1 + q(1 − st−1)θt−1

be−d(ξt−1+θt−1)w0ξt−1 + (1 − q)θt−1 + (1 − μ)(γt−1(w0) + ζt−1)

⎞
⎟⎟⎠ w0.

By the induction hypotheses, the quantities

ωt � (1 − f st−1)ωt−1,

ξt � f st−1ωt−1 + qst−1θt−1,

θt � ξt−1 + q(1 − st−1)θt−1,

ζt � (1 − q)θt−1 + ζt−1

are independent of w0 and satisfy Equation (11). Also,

γt (w0) � be−d(ξt−1+θt−1)w0ξt−1 + (1 − μ)γt−1(w0) − μζt−1

satisfies

γ ′
t (0) = −d(ξt−1 + θt−1)bξt−1 + (1 − μ)γ ′

t−1(0) < 0. �
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5.2. Proof of Theorem 4

We are now ready to prove Theorem 4. The proof appeals to the bifurcation theory for nonlinear
scalar maps. In particular, the proof verifies a list of sufficient conditions that are stated in existence
and stability theorems for primary bifurcations in scalar maps. The reader can obtain these con-
ditions for scalar maps from more general versions, which can be found, for example, in [2,3,11].

Proof of Theorem 4 (a) Let st = 1 ∀t ≥ 0. By Remark 5, λ(k) is the eigenvalue of the lineariza-
tion of scalar map (6) at the origin. By Lemma 7, we know that λ(k) is a linear, increasing function
of b that is less than 1 for b = 0. Clearly there exists a unique bk > 0 such that

λ(k)|b=bk
= 1 (13)

and
d

db
λ(k)|b=bk

= α(k) > 0. (14)

Thus, the origin is stable for 0 < b < bk and unstable if b > bk .
(b) Given Equations (13)–(14), the bifurcation theory of nonlinear scalar maps implies the

bifurcation of a branch of positive equilibria at b = bk for the scalar map (6). Since

d2

dw2
[g(w)w]|w=0 = 2g′(0), (15)

it follows that the bifurcation is supercritical if g′(0) < 0 and subcritical if g′(0) > 0. Moreover,
the bifurcating positive equilibria are (locally asymptotically) stable if the bifurcation is super-
critical, and they are unstable if the bifurcation is subcritical. These results, when pulled back to
the composite map (5) and the k-periodic map (3), establish Theorem (4). �

It is not easy to determine the direction of bifurcation (and stability of the bifurcating branch)
since in general we do not have a formula for g(w). We will see in the next section that the bifur-
cation can be either supercritical or subcritical. We will also see that in the subcritical bifurcation
case, the branch of bifurcating k-cycles bends back to the right—and even back again to the left
and back again to the right—producing multiple attracting states and hystereses (Figure 5b).

6. The effect of socially stimulated synchrony

We begin this section by considering two limiting cases that superscribe the geometry of all
possible bifurcating branches: the case in which there is no social stimulation and essentially no
ovulation synchrony (c = 0), and the case in which there is strong social stimulation and perfect
ovulation synchrony (c → ∞).

6.1. First limiting case: c = 0

For the case of no social stimulation, we will show that the bifurcation described in Theorem 4 is
supercritical. Note that when c = 0 we have

P(x) =

⎛
⎜⎜⎝

1 − f 0 0 0
f 0 q 0
0 1 0 0
0 be−d(x+y) 1 − q 1 − μ

⎞
⎟⎟⎠

in model (3).
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Figure 5. Possible bifurcation structures. (a) k = 31, f = 0.1, q = 0.6, μ = 0.05, d = 0.01, ν = 0.2. (b) k = 25,
f = 0.1, q = 0.22, μ = 0.05, d = 0.05, ν = 0.1. (c) k = 7, f = 0.1, q = 0.6, μ = 0.15, d = 0.1, ν = 0.2. (d) Same as
for (c).

Theorem 9 If c = 0, then the bifurcation described in Theorem 4 is supercritical and the
bifurcating branch is stable.

Proof By Theorem 4, it is sufficient to show that g′(0) < 0 when c = 0. We determine the
function g by a direct calculation of the map g(w0)w0 in Equation (6). Let ‖ · ‖1 denote the L1

norm. An application of Lemma 8 with d > 0 and st = 1 ∀t ≥ 0 implies

g(w0)w0 = ‖xk‖1

= ‖QP(xk−2)P (xk−3) · · · P(x0)x0‖1

= (1 − ν)‖P(xk−2)P (xk−3) · · · P(x0)x0‖1 (16)

= (1 − ν)‖xk−1‖1 (17)

= (1 − ν)(ωk−1 + ξk−1 + θk−1 + ζk−1 + γk−1(w0))w0

= (1 − ν)(1 + γk−1(w0))w0.

Thus, g(w) = (1 − ν)(1 + γk−1(w)). Since γk−1(·) satisfies γ ′
k−1(0) < 0 it follows that

g′(0) = (1 − ν)γ ′
k−1(0) < 0. �

6.2. Second limiting case: c → ∞
It turns out, as we will see in Section 6.3, that the limiting case as c → ∞ in the population model
(3) serves as a second reference point for the geometry of the bifurcating branches of periodic
solutions as they depend on c.
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Define

A(x) �

⎛
⎜⎜⎝

1 − f 0 0 0
f 0 q 0
0 1 0 0
0 be−d(x+y) 1 − q 1 − μ

⎞
⎟⎟⎠

and

B(x) �

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 q 0
0 be−d(x+y) 1 − q 1 − μ

⎞
⎟⎟⎠ .

Formally, as c → ∞, the nonlinear expression e−cx becomes a step function that equals 0 for
x > 0 and equals 1 for x = 0. Thus, because x0 = 0 in the initial condition (4), for this limiting
case of model (3) we have

M(0, x0) = A(x0).

Therefore x1 = f w0 + qy0 = f w0 > 0, and hence

M(1, x1) = B(x1),

which implies that x2 = 0. It is easy to see that x3 > 0, x4 = 0, and so on. The limiting case of
matrix equation (3) with initial condition (4) as c → ∞ is therefore

xt+1 = C(t, xt )xt , (18)

where

C(t, x) =

⎧⎪⎨
⎪⎩

A(x) for t even, t < k − 1,

B(x) for t odd, t < k − 1,

Q for t = k − 1.

An application of Lemmas 7–8 with

st =

⎧⎪⎨
⎪⎩

1 for t even, t < k − 1,

0 for t odd, t < k − 1,

0 for t = k − 1,

yields the following result.

Theorem 10 Consider the model (18) with d > 0. There exists a unique critical value b∞
k > 0 for

which the origin is locally asymptotically stable for 0 < b < b∞
k and unstable for b > b∞

k . There
exists a branch of positive k-cycles that bifurcates supercritically from the origin as a function of
b, and the bifurcating k-cycles are (at least for b near b∞

k ) locally asymptotically stable.

As we illustrate in the next section, the relative positions of bk (as defined in Theorem 4) and
b∞

k (as defined in Theorem 10) provide the framework for understanding the effect of social
stimulation c, and hence of ovulation synchrony, on the behaviour of model (3).
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6.3. Direction of bifurcation for 0 < c < ∞
By Equation (15), the direction of bifurcation at the origin is determined by the sign of g′(0) at the
bifurcation point. The goal of this section is to develop a computational method for calculating
the direction of bifurcation in model (3) for general values of c > 0 and to illustrate the various
bifurcation configurations that can arise.

We begin by scaling the state variables of model (3) by a factor 1/w0. Setting x̂ � x/w0, we
see that the scaled model is

x̂t+1 = M(t, w0x̂t )x̂t

with initial condition

x̂0 = (1, 0, 0, 0)�,

where

M(t, w0x̂) =
{

P(w0x̂) for t = 0, 1, . . . , k − 2,

Q for t = k − 1.

The orbits of the original model (3) are w0 times the orbits of the scaled model, that is,

(wt , xt , yt , zt )
� = w0(ŵt , x̂t , ŷt , ẑt )

�.

Thus, from Equation (16) we calculate

g(w0)w0 = ‖w0x̂k‖1

= ‖QP(w0x̂k−2)P (w0x̂k−3) · · · P(w0x̂0)x̂0‖1w0

= (1 − ν)‖P(w0x̂k−2)P (w0x̂k−3) · · · P(w0x̂0)x̂0‖1w0

= (1 − ν)‖x̂k−1‖1w0

and hence

g(w0) = (1 − ν)‖x̂k−1‖1 = (1 − ν)(ŵk−1 + x̂k−1 + ŷk−1 + ẑk−1).

The sign of g′(0) is therefore the same as the sign of

�k �
[

dŵk−1

dw0
+ dx̂k−1

dw0
+ dŷk−1

dw0
+ dẑk−1

dw0

]
w0=0

.

In what follows, we simplify the notation by dropping the ‘hats’ from the scaled state variables,
replacing w0 with r � w0, and denoting dx/dw0 by x′. For each t = 0, 1, . . . , k − 2, we have

wt+1 = (1 − f e−crxt )wt , (19)

xt+1 = f e−crxt wt + qyte
−crxt , (20)

yt+1 = xt + qyt (1 − e−crxt ), (21)

zt+1 = bxte
−dr(xt+yt ) + (1 − q)yt + (1 − μ)zt . (22)

Differentiation with respect to r followed by evaluation at r = 0 yields

w′
t+1 = (1 − f )w′

t + cf xtwt , (23)

x ′
t+1 = f w′

t − cf xtwt + qy ′
t − cqxtyt , (24)

y ′
t+1 = x ′

t + cqxtyt , (25)

z′
t+1 = bx ′

t − bdxt (xt + yt ) + (1 − q)y ′
t + (1 − μ)z′

t , (26)



Journal of Biological Dynamics 513

where the wt, xt and yt on the right-hand sides of Equations (23)–(26) are computed by iterating
Equations (19)–(22) with r = 0.

We can therefore calculate �k by iterating a nonlinear map that acts on
(wt , xt , yt , zt , w

′
t , x

′
t , y

′
t , z

′
t ) with block triangular matrix

(
P(0) 0

D(x) P (0)

)
, (27)

P(0) =

⎛
⎜⎜⎜⎝

1 − f 0 0 0

f 0 q 0

0 1 0 0

0 b 1 − q 1 − μ

⎞
⎟⎟⎟⎠ , D(x) �

⎛
⎜⎜⎜⎝

0 cf w 0 0

0 −cf w −cqx 0

0 0 cqx 0

0 −bd(x + y) 0 0

⎞
⎟⎟⎟⎠ ,

k − 1 times starting from the initial condition (1, 0, 0, 0, 0, 0, 0, 0)�. Then

�k = w′
k−1 + x ′

k−1 + y ′
k−1 + z′

k−1

= w′
k−2 + x ′

k−2 + y ′
k−2 + z′

k−2 (28)

+ bx ′
k−2 − bdxk−2(xk−2 + yk−2) − μz′

k−2.

The bifurcation is supercritical if �k < 0 and subcritical if �k > 0, where �k is computed using
the parameter values at the bifurcation point.

This method is easily implemented on the computer, for example in MatLab. The bifurcations
shown in Figure 5, which illustrate the various types of bifurcation structures possible in this
model, were located in parameter space by computing �k for a range of periods and parameter
values using MatLab.

Our numerical explorations suggest that the primary bifurcations in this system have three basic
configurations.

In the first type, illustrated by the example in Figure 5a, the primary bifurcation for the system
with c = ∞ is to the left of the primary bifurcation for the system with c = 0; that is, b∞

k < bk . The
bifurcating branch corresponding to c > 0 (in this example, c = 0.7) is supercritical and below
the branch corresponding to c = 0. The branch corresponding to c = 0.7 eventually undergoes
two saddle-node bifurcations: first to the left and then back to the right, creating a hysteresis,
and then asymptotically approaches the branch corresponding to c = ∞. The second saddle-node
bifurcation in the hysteresis occurs at a value of b < bk .

The second type of configuration is illustrated by the example in Figure 5b. Here b∞
k < bk as

in Figure 5a, but in this case the bifurcation corresponding to c > 0 (in this example, c = 3) is
subcritical. The branch bends back to the right, back again to the left, and finally back to the right,
creating multiple attracting states at which the population can survive for b < bk .

The third type of configuration is illustrated by the example in Figure 5c. Here the primary
bifurcations are reversed, bk < b∞

k , and the bifurcation corresponding to c > 0 is supercritical
and the branch lies below the branch corresponding to c = 0. Figure 5d shows the configuration
in this example at larger values of b.

We summarize our findings in this section as follows.

(1) In the first two types of bifurcation configurations (Figure 5a,b), the subcritical bifurcation and
hystereses show that socially stimulated ovulation synchrony can enhance total population
size by allowing the population to
(a) persist at birth rates less than the critical birth rate (b < bk) for which it could not persist

if c = 0, and



514 S.M. Henson et al.

(b) exist at a higher total population size for birth rates exceeding the critical birth rate
(b > bk) than it would if c = 0.

(2) In the first and third types (Figure 5a,c), socially stimulated ovulation synchrony can be
deleterious by depressing total population size for birth rates exceeding the critical birth rate
(b > bk).

7. Discussion

Our results indicate that socially stimulated ovulation synchrony in the presence of egg
cannibalism can enhance total population size in two ways.

First, for birth rates exceeding the critical birth rate, socially stimulated ovulation synchrony
can increase the total population size over what it would be without synchrony. Second, for
birth rates less than the critical birth rate, socially stimulated ovulation synchrony can allow
the population to persist even though it would go extinct in the absence of synchrony. In this
second case, the population persists if the population size exceeds an Allee Effect threshold, and
goes to extinction otherwise. The relationship between population size and fitness is complex
[23,26], and our model makes no direct predictions about fitness. It does suggest, however, that
reproductive synchrony could lead to increased fitness, an outcome often associated with increased
population size.

It is not straightforward to explain, intuitively or from a biological point of view, the mecha-
nisms by which population size is enhanced by socially stimulated ovulation synchrony in this
model – partly because this does not occur for every set of parameters. A partial mathematical
explanation is that, on average over time, the presence of socially stimulated ovulation synchrony
can depress recruitment from the w class (Figure 4a,f) into the x class (Figure 4b,g). This is related
to Jensen’s Inequality and the fact that the nonlinearity e−cx is concave up. This reduces x + y

(Figure 4c,h), which in turn increases egg survivorship from cannibalism e−d(x+y) (Figure 4d,i).
Also, the slower progression of birds through the series of classes decreases the average amount of
time an adult spends in class z (Figure 4e,j), which decreases its exposure to the mortality rate μ

by eagles.
Biologically speaking, the model suggests that total population size can be enhanced by socially

stimulated ovulation synchrony through the following mechanisms. On average over time, ovu-
lation synchrony can slightly delay the onset of ovulation in enough birds to (1) decrease the risk
that a given egg is cannibalized by neighbours, and (2) decrease the average amount of time an
adult spends incubating and chick-rearing (which decreases its risk of predation by eagles).

Several caveats and comments deserve mention.
First, the two mechanisms (stated above) for enhancing total population size rest on two model

assumptions: (1) only birds experiencing ovulation cycles (classes x and y) cannibalize eggs, and
(2) adults not yet incubating or chick-rearing (w, x, y classes) do not suffer eagle predation. The
first of these assumptions is plausible: adult birds that have not yet laid eggs (w class) leave their
territories unattended much of the day while loafing and foraging off the colony; hence they are
not as likely to cannibalize conspecifics on the colony. Similarly, an adult that is incubating or
tending chicks (z class) is less likely to leave its territory to predate neighbouring nests. The second
assumption is also plausible: adult birds that are incubating or rearing chicks (z class) probably
exhibit greater aggression and territory tenacity and are more likely to be taken by eagles, whereas
adult birds with less reproductive investment in their territories (w, x, y classes) may be more
likely to flee and escape. Note, however, that birds that delay ovulation and spend less time chick
rearing at the end of the season may have to abandon their unfledged chicks when the adults leave
the colony in the fall, hence reducing their fitness; this type of chick mortality is not accounted
for in our model.
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Second, the ovulation synchrony hypothesis remains to be verified by observations and experi-
ments. At the present we are certain only that egg-laying events can be synchronized. We currently
are doing experiments to test whether this corresponds to ovulation synchrony. We also are
doing experiments to test whether the means of oscillator ‘communication’ is olfactory, auditory,
and/or visual.

Third, the model in this study contains several major simplifications (listed in Section 4) that
will be addressed in a future paper. In particular, the current model assumes that juveniles mature
after one year, whereas glaucous-winged gulls mature after four years. A more realistic model
will require three juvenile classes in addition to the class for incubating/chick-rearing adults. At
the end of the breeding season (time t = k − 1) individuals in the first two juvenile classes will
advance to the next juvenile class rather than advancing to the w class.

Fourth, the type of reproductive synchrony addressed in this paper is different from the repro-
ductive synchrony posited by Fraser Darling [4]. Darling hypothesized that social stimulation in
colonial birds results in a tightened annual reproductive pulse. He suggested that birds in larger
colonies experience more social stimulation that accelerates the breeding cycles and leads to earlier
and more synchronous breeding than in smaller colonies. Increased breeding synchrony would be
advantageous to colonial birds, he argued, in that predators quickly become satiated and consume
fewer young than if reproduction were spread out over a longer period of time. Thus, selection
should favour increased breeding synchrony. This postulated phenomenon became known as the
‘Fraser Darling effect’.

Gochfeld [6] discussed Darling’s hypothesis and noted that evidence has been presented by some
investigators to support at least some aspects of Darling’s conjecture, while other investigators have
doubted the value of the concept. Gochfeld concluded that ‘in certain cases synchrony is occurring
and requires study and explanation’, and that ‘social factors contribute strongly to synchrony’
when it occurs. For example, he noted that studies with ring-billed gulls (L. delawarensis) and
common terns (Sterna hirundo) provide evidence that breeding displays such as wing-flashing
during copulation can be contagious and provide a medium through which social stimulation
could play a synchronizing role.

The difference between the Fraser Darling effect and the every-other-day synchrony described
by our model is, of course, the time scale. Our within-season model as given in [12], however,
pointed to an interesting prediction. If clutch initiation is delayed, say by cooler than average
spring weather, the breeding window is compressed and ovulation synchrony is disrupted [12].
Thus, the Fraser Darling effect should be most apparent during years with delayed breeding; by
contrast, ovulation synchrony should be most apparent during other years. Our limited field data
comport with this prediction. In 2008, an La Niña year, clutch initiation was delayed and the
breeding window was compressed, and egg-laying synchrony was not observed. By contrast, in
2006, a ‘normal year’, and 2007, an El Niño year, the breeding window was not compressed and
egg-laying synchrony was observed in both years [12].

In this study, we hint at the possible selective advantage of socially stimulated ovulation
synchrony by asking whether it enhances population size, that is, by asking whether ovulation
synchrony enhances the fitness of an individual in a population of identical individuals. The next
step is to assume a trait variation within the population on which selection can act. This leads to
Darwinian Dynamics models, in which the population model is coupled to a dynamic model for
an evolving trait. We will consider such a model in a future paper.
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