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Pathogens inflict a wide variety of disease manifestations on their hosts, yet

the impacts of disease on the behaviour of infected hosts are rarely studied

empirically and are seldom accounted for in mathematical models of trans-

mission dynamics. We explored the potential impacts of one of the most

common disease manifestations, fever, on a key determinant of pathogen

transmission, host mobility, in residents of the Amazonian city of Iquitos,

Peru. We did so by comparing two groups of febrile individuals (dengue-

positive and dengue-negative) with an afebrile control group. A retrospective,

semi-structured interview allowed us to quantify multiple aspects of mobility

during the two-week period preceding each interview. We fitted nested

models of each aspect of mobility to data from interviews and compared

models using likelihood ratio tests to determine whether there were statisti-

cally distinguishable differences in mobility attributable to fever or its

aetiology. Compared with afebrile individuals, febrile study participants

spent more time at home, visited fewer locations, and, in some cases, visited

locations closer to home and spent less time at certain types of locations.

These multifaceted impacts are consistent with the possibility that disease-

mediated changes in host mobility generate dynamic and complex changes

in host contact network structure.

1. Background
It is well known that pathogens are capable of effecting a wide range of disease

manifestations in their hosts. Disease manifestations can significantly alter

behaviour in human and non-human animal hosts [1], leading to important con-

sequences for the ecology of both host [2] and pathogen [3] populations. They can

also mediate behavioural changes in susceptible, uninfected hosts seeking to

avoid infection and illness [4]. Such behavioural responses by susceptible hosts

have been recently shown to exert important dynamic feedbacks on the course

of epidemics [4–6].

One effect of many disease manifestations on host behaviour is modification

of host mobility; e.g. changes in home range, distance and speed of movement, or

locations visited. Although pathogens such as Toxoplasma gondii have been shown

to greatly increase host mobility in rodents [7], it is likely that disease manifes-

tations more typically lead to an overall reduction in mobility—anyone who
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has ever stayed at home from work or school owing to illness is

a case in point. Such effects have potentially broad significance

throughout epidemiology, ecology and evolution. Hypo-

thesized consequences of disease-mediated reductions in

mobility range from shifts in the seasonality of avian influenza

outbreaks in waterfowl [8] to the evolution of virulence attenu-

ation in directly transmitted pathogens when compared with

vector-borne pathogens, such as Plasmodium spp. [9]. More gen-

erally, how disease impacts host mobility and contact has been

proposed as a key determinant of how within-host infection

dynamics affect population-level transmission dynamics [10].

Despite the expected ubiquity of disease impacts on

mobility and their documentation in animal systems [11],

they have seldom been measured empirically in humans.

One of the few studies of this phenomenon in humans was

based on self-completed written questionnaires administered

by mail to 179 Britons diagnosed with swine flu [12]. That

study, which focused on the measurement of contacts suit-

able for influenza transmission, showed that illness reduced

contacts by approximately 50%. A follow-up study [13]

estimated that reductions in contact owing to the impacts of

disease on behaviour caused a 71% reduction in the patho-

gen’s basic reproductive number, R0, compared with what

it would have been had sick people engaged in as many con-

tacts as healthy people. Thus, it is clear that the pervasive

effects of disease manifestations on host behaviour could

have important epidemiological consequences, yet these

effects are almost completely absent from transmission

models of infectious diseases of humans (although see [14]).

Quantifying the impacts of illness on direct contacts [12,13]

was a significant advance for understanding the epidemiology

of influenza and other directly transmitted pathogens. None-

theless, there remain a number of gaps in knowledge about

the impacts of illness on contact that merit additional study.

First, for indirectly transmitted pathogens and for exposure

to environmentally mediated agents of disease, a highly rel-

evant concept is that of the activity space [15,16], which is a

description of a person’s time allocation across the set of all

locations that she or he frequents [17], similar to the concept

of a utilization distribution in the animal movement litera-

ture [18]. Establishing that illness reduces direct contacts does

not address how illness might affect time allocation at key

locations for exposure to environmental contaminants or

biting by insect vectors. Second, a gap that could not possibly

be filled by the aforementioned study [12] alone is that it per-

tained to a single geographical and cultural context, leaving

open the possibility of different behavioural consequences

of illness under different circumstances. People in resource-

poor, tropical environments, for example, are known to have

comparatively complex patterns of intra-urban mobility,

which has important consequences for transmission dynamics

[19]. Third, the nature and severity of disease manifestations

vary considerably across different diseases and could, therefore,

impact behaviour, mobility and contact in different ways.

To begin to address these gaps in the understanding of

disease impacts on mobility, we used retrospective, semi-

structured interviews of 926 participants in a longitudinal

study of dengue epidemiology in the Amazonian city of Iquitos,

Peru. Because these data came from a longitudinal study of

dengue, a disease caused by viruses transmitted by day-biting

mosquitoes, interviews were designed to characterize individ-

uals’ activity spaces rather than their contacts with other

people [20,21]. Symptoms associated with dengue are classically

described as acute fever, headache, musculoskeletal pain and

rash [22,23]. For analytical tractability, however, we restricted

our analysis to a binary classification of study participants as

either febrile or afebrile based on a threshold body temperature

of 388C. Nonetheless, there is extensive variation in the severity

of fever and other symptoms of dengue, which allowed disease

to impact multiple features of the measured activity spaces of our

study participants. Additionally, while some febrile participants

had laboratory confirmed dengue virus infections (DENVþ),

others did not (DENV2) and were instead probably infected

with some other pathogen, such as influenza or a bacterial

agent. This allowed us to explore the possibility that impacts of

fever on mobility depend on the fever’s aetiology.

2. Material and methods
(a) Overview
Our primary goal was to identify aspects of human mobility for

which there are clear and unambiguous effects of fever. To do

so, we used interview data collected from residents of Iquitos,

Peru (salient characteristics of which are described in the electronic

supplementary material, Methods). Interview data were stratified

by demographic status, fever status and fever aetiology to perform

separate comparisons among these strata for each aspect of

mobility that we considered. We performed comparisons under

a hypothesis-testing framework, e.g. is a given aspect of mobility

perceptibly different between febrile and afebrile people? We

prioritized the identification of effects over detailed quantification

of effect sizes or probabilistic statements about what level of

detail best explains the data. Although effect sizes or probabilistic

statements could be insightful, we restricted our analysis to a

series of hypothesis tests because of strengths and limitations of

our interview data and because of the need to establish basic

knowledge about the impacts of fever on human mobility.

(b) Mobility data collection and processing
We collected data on intra-urban mobility by characterizing study

participants’ activity spaces with retrospective, semi-structured

movement interviews (SSIs). The SSI was designed in accordance

with focus group discussions with local residents [20], validated

against comparable data collected using global positioning

system data-loggers [21] and used to parametrize models of

intra-urban human mobility [24]. A detailed description of the

SSI is available in the electronic supplementary material, Methods.

At its conclusion, each interview yielded a table describing

the activity space of a study participant in the two-week period

prior to the interview. Each row of this table corresponded to a

location visited by the study participant, and respective columns

of this table contained a unique identifier for each location, its

latitude, its longitude, its designation as belonging to one of

the eight aforementioned land-use types, the frequency per day

of visits to the location by the study participant and the average

duration of each visit to the location by the study participant.

These tables were then used to derive tables that aggregated

specific features of the activity spaces of all study participants,

including: (i) a table containing the total number of locations

visited by each study participant; (ii) eight tables containing

the number of locations of each type visited by each study

participant; (iii) eight tables containing the geographical coordi-

nates of each location of a given type that was visited by a given

study participant, as well as, the geographical coordinates of that

study participant’s home; (iv) nine tables containing the fre-

quency per day of visits to each study participant’s home and

to locations of each type visited by each study participant; and

(v) nine tables containing the average duration of visits to each
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study participant’s home and to locations of each type visited by

each study participant.

(c) Study participant enrollment and classification
Participants in our study were enrolled as part of a longitudinal,

cluster-based investigation of dengue epidemiology. In total, that

study involved 2444 participants aged 5 years or older living in

two intensively studied neighbourhoods, Maynas and Tupac

Amaru (electronic supplementary material, figure S1). This longi-

tudinal cohort study has been described in full detail by

Stoddard et al. [25]. Salient details of that study include that febrile

participants were identified by members of the field team who

actively monitored for fever (defined as body temperature

�388C) in each house, which was visited at least three times per

week during the study period. Blood was drawn upon detection

of fever (acute sample) and approximately 15 days later (convales-

cent sample), and, for participants who were willing, an SSI was

performed within 24 h of detection of fever in 92% of cases. In

addition, residents of other houses visited by febrile participants

were recruited into the study and asked to participate in an SSI

upon initiation, rather than requiring detection of fever. We desig-

nated study participants who were interviewed without a

detectable fever as ‘afebrile’ and those who participated in an SSI

at the time at which fever was detected as ‘febrile’.

In addition to being febrile or afebrile, we further classified

study participants according to two dimensions (table 1). First,

febrile participants were classified as either having an active

dengue infection at the time of the SSI (DENVþ), or having a

fever for presumably some other reason (DENV2). This determi-

nation was made by testing acute and convalescent blood

samples for dengue-specific IgM antibodies by antibody-capture

ELISA and by testing acute samples for dengue viruses by real-

time polymerase chain reaction [26]. Second, we categorized

study participants according to four demographic classifications

that we presume account for a large portion of inter-individual

variation in mobility. Classifications included: school-age children

aged 5–17 (whose mobility is probably dominated by school,

home and neighbours’ houses), college students aged more than

or equal to 18 (whose mobility is probably dominated by attending

college but may have more variability than children), homemakers

and unemployed adults (who presumably spend more time at

home than other adults) and adults aged more than or equal to

18 who work outside the home (who probably spend a great

deal of time outside the home at diverse locations).

The high degree of informality in the Iquitos labour market [19]

precluded further refinement of the working adult population,

because a large proportion of the population has more than one

job, leading to over 150 self-reported occupations among our study

participants. Although impacts of fever on mobility were our pri-

mary interest, accounting for other sources of variation in mobility

was important, because it reduced the potential for confounding,

e.g. there were relatively more school-age children among febrile par-

ticipants than there were among afebrile participants (table 1). Had

we not disaggregated study participants according to these demo-

graphic categories, differences in movement attributable solely to

demographic differences could have been mistakenly attributed to

differences associated with fever or its aetiology.

(d) Models and statistical analyses
For each aspect of mobility encoded in the aforementioned

tables, we used models with the same level of detail and para-

metric forms used in the analysis by Perkins et al. [24], with

some minor modifications. For the number of locations visited,

we assumed a negative binomial distribution for the total

number of locations of all types, but a Poisson distribution for

the number of locations of each type. We modelled the prob-

ability of choosing a location of a given distance from home d
as the product of the number of locations at distance d weighted

by an exponential function exp(2m d) with a unique parameter m

for each location type. For the frequency and duration of periods

of time at home and at locations of each type, we assumed

separate bivariate normal distributions on a log-log scale with

non-zero correlations, and we assumed that distance from

home had no effect on the frequency or duration of visits.

To test hypotheses about differences in mobility attributable to

fever, its aetiology, and demographic category, we fitted models

for each aspect of mobility with study participants agglomerated

in different ways. For example, in the simplest model, a given

aspect of mobility for all study participants was assumed to be

described by a single set of parameters. By contrast, in the most

complex model, a given aspect of mobility was described by dis-

tinct parameter sets for each of 12 groups: four demographic

categories by three fever statuses (i.e. febrile and DENVþ, febrile

and DENV2, afebrile). With respect to fever status, we considered

models denoted F3 (mobility of each group explained by distinct

parameters), F2 (mobility of individuals with no fever distinct

from those with any fever) and F1 (mobility indistinguishable with

respect to fever status). With respect to demographic category, we

considered models denoted C4 (mobility of individuals in each

group explained by distinct parameters) and C1 (mobility of indi-

viduals indistinguishable with respect to demographic category).

The letter in each of these codes denotes the factor (i.e. F ¼ febrile

status, C ¼ demographic category), whereas the numeral denotes

the number of distinct subgroups considered in the corresponding

model, e.g. 2 ¼ each individual fell into one of two possible cat-

egories. Combining models of fever status and demographic

Table 1. Numbers of study participants who provided information about time spent at home or time spent at locations other than home, stratified by fever
status and demographic category.

school-age children college student homemaker/unemployed adult working adult

time at home

afebrile 34 14 36 44

febrile, DENVþ 91 15 24 41

febrile, DENV – 214 53 94 116

time elsewhere

afebrile 43 25 52 53

febrile, DENVþ 143 25 32 59

febrile, DENV – 241 66 121 128
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category yielded the following set of models describing both:

F3,C4; F2,C4; F1,C4; F3,C1; and F2,C1.

To compare these models, and thereby to test hypotheses

about the influence of fever status and demographic category

on each aspect of mobility, we performed a series of pairwise

likelihood ratio tests for each aspect of mobility. Likelihood

ratio tests are applicable to nested models and quantify the prob-

ability that the observed deviance between two models is due

to chance [27]. For example, F1,C4 is nested within F2,C4,

because the former is a special case of the latter, but with some

of the parameters constrained to be equal. For each aspect of

mobility, we fitted all candidate models by likelihood maximiza-

tion and performed a likelihood ratio test for each pair of nested

models in the R language [28]. Given 12 pairs of nested models

for each aspect of mobility, we addressed each hypothesis

by considering the results of those statistical tests on the whole

rather than by parsing each statistical test as corresponding

to a meaningful and distinct hypothesis. For example, if a differ-

ence in mobility attributable to fever was detected when all

participants were pooled, but not when they were disaggregated

by demographic category (e.g. F2,C1 . F1,C1 but F2,C4 ¼

F1,C4), then our overall conclusion was that there was no

difference in mobility attributable to fever because the difference

that was detected could be attributable solely to demographic

differences. Furthermore, because we performed 12 separate

tests for each aspect of mobility, we regarded support for signifi-

cance between two models as strongest if the p-value of a test

was less than a ¼ 0.05/12 ¼ 4.17 � 1023, which was obtained by

applying a Bonferroni correction [29]. Although our analysis

could have been performed under alternative frameworks, such

as information theoretic or Bayesian approaches, our choice of a

series of nested likelihood ratio tests was appropriate given our

hypothesis testing goals and the nested relationships among our

models [30].

3. Results
Fever had consistent and discernable effects on all aspects of

mobility that we examined (summarized in table 2). For the

total number of locations that people visited, febrile study par-

ticipants visited 30% fewer locations on average than afebrile

participants (figure 1), with all pairwise tests of models with

F3 or F2 against models with F1 having p , 10213 (electronic

supplementary material, table S1). This difference could be

owing to febrile participants visiting fewer locations of many

types, but given the available data and the statistical approach

that we used, commercial locations were the only location

type for which there were consistent reductions across all

demographic categories (electronic supplementary material,

figure S5). All pairwise tests of models with F3 or F2 against

F1 had p , 10210 (electronic supplementary material, table

S3). This effect was weaker for school-age children, but for

other demographic categories, febrile participants visited at

least one fewer commercial location on average (electronic

supplementary material, figure S5).

There were also differences in the tendencies for febrile and

afebrile participants to visit locations of varying distances from

home. After removing the effect of the distribution of locations

within a given distance of a person’s home, parameters describ-

ing the strength of one’s preference for visiting locations closer

to home differed significantly between febrile and afebrile

participants and between those who were DENVþ and

DENV2, with all pairwise tests of models with F3 against F2

or F1 having p , 1024 (electronic supplementary material,

table S10). We could not identify systematic differences

(e.g. we could not conclude that febrile participants consistently

Table 2. Summary of differences between febrile and afebrile study participants with respect to different aspects of mobility.

aspect of mobility impact of fever tables and figures

total number of

locations visited

febrile study participants from all demographic categories consistently visited

fewer locations

electronic supplementary material,

table S1; figure 1

types of locations

visited

febrile study participants from all demographic categories consistently visited

fewer commercial locations. Consistent differences between the numbers of

locations of all other types that febrile and afebrile participants visited were

not as perceptible

electronic supplementary material,

tables S2 – S9 and figures S4 – S11

distance from home

of locations visited

on the whole, there were significant differences between the distances from

home to locations visited by febrile and afebrile study participants,

particularly when accounting for demographic category. Notable differences

included that homemakers with dengue fever visited residential and

commercial locations closer to home, and febrile children and college

students visited recreational locations closer to home

electronic supplementary material,

table S10 and figures S12 and S13

time spent at home febrile study participants from all demographic categories consistently spent

more time at home overall, which resulted from coming and going from

home less frequently and from staying there longer each time they were

at home

electronic supplementary material,

table S12; figure 2

time spent per location

at locations other

than home

the most perceptible difference in time spent per location at locations other

than home was that febrile school-aged children spent less time at

educational locations. This difference appeared to be driven more by a lower

frequency of visits than by a shorter duration

electronic supplementary material,

tables S12 – S19 and

figures S14 – S21
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exhibited a stronger preference for visiting locations closer

to home), but instead detected wholesale differences between

multiple sets of eight location-type-specific parameters (elec-

tronic supplementary material, figure S12). Although not

tested statistically on an individual basis, effects that appeared

particularly notable and that seemed logical included that

febrile, DENVþ adults who do not work outside the home

tended to restrict their movements to residential and commer-

cial locations closer to home than their afebrile counterparts

did, and school-age children and college students visited rec-

reational locations closer to home when febrile (electronic

supplementary material, figures S12 and S13).

Febrile study participants generally spent more time at

home than afebrile participants, although the extent of this

effect varied across demographic categories (figure 2). Febrile

school-age children spent 26.6% more time at home than

their afebrile counterparts when DENVþ and 21.6% more

when DENV2. Among adults, those who do not work outside

the home exhibited the greatest increase in time spent at home

due to fever (DENVþ: 3.8% more than afebrile, DENV2: 12.8%

more than afebrile), whereas differences in time spent at

home between febrile and afebrile college students and

adults working outside the home were less consistent

(figure 2). A pairwise test of F2,C1 and F1,C1 models was stat-

istically significant ( p ¼ 0.003), as were tests of F2,C4 against

F1,C4 ( p , 10212) and tests comparing models with F3 against

those with F2 ( p , 1023) (electronic supplementary material,

table S11). The only location type besides home for which

there was a significant difference in time spent per location

was the educational location type. Febrile school-age children

spent less time at each educational location they visited

than afebrile children did, primarily due to a difference in the

frequency of visits rather than the duration of visits (electro-

nic supplementary material, figure S17). Pairwise tests of

models with differences in both fever status and demographic

category were statistically significant with p , 0.01 (electronic

supplementary material, table S15).

Beyond differences attributable to fever on the whole, there

were no clear differences in any aspect of mobility between

febrile study participants with differing aetiologies. The

majority of pairwise comparisons of models with F3 against

those with F2 were not significant (electronic supplementary

material, tables S1–S19), and those that were significant

tended to support differences that were relatively weak or

equivocal compared with differences attributable to fever

on the whole (figures 1 and 2, electronic supplementary

material, S12). For example, although there were statistically

significant differences in the tendency to visit locations closer

to home among afebrile, DENVþ febrile, and DENV2 febrile

study participants ( p , 1023; electronic supplementary

material, table S10), there were no clear, systematic differences

across all location types (electronic supplementary material,

figures S12 and S13).

Irrespective of fever status, there were substantial dif-

ferences in mobility among participants from different

demographic categories. School-age children tended to visit

fewer unique locations overall (figure 1), spend more time at

home (figure 2), visit locations closer to home (electronic

supplementary material, figures S12 and S13), visit more

residential locations (electronic supplementary material,

figure S4) and spend more time at each residential (electronic

supplementary material, figure S14) and educational loca-

tion that they visited (electronic supplementary material,

figure S17) than participants from the other demographic cat-

egories. College students also spent more time at educational

locations that they visited (electronic supplementary material,

figure S17), but were otherwise similar to other adults.

Adults who did not work outside the home were distinguished

by spending more time at home than participants from other

categories (figure 2).

There also appeared to be a select few interactions between

the effects of fever and demographic category on mobility.

School-age children tended to visit approximately the same

number of commercial locations (2.5–2.7) regardless of their

febrile status, whereas febrile participants from other demo-

graphic categories consistently visited on average one fewer

commercial location when febrile (electronic supplementary

material, figure S5 and table S3). Differences between partici-

pants’ overall preferences for visiting locations closer to

home also depended on demographic category, as stated
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Figure 1. Number of locations visited by study participants, stratified by participant fever status (rows) and demographic category (columns). Grey bars show the
empirical distribution, the black line shows the empirical mean (numerical value printed in each panel), and the balls and stems show the fitted negative binomial
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earlier (electronic supplementary material, figure S12 and table

S10). Time spent at home by college students did not appear to

depend on fever status, whereas febrile participants from other

demographic categories spent significantly more time at home

than their afebrile counterparts (figure 2).

4. Discussion
We used retrospective, semi-structured interviews to assess a

very basic, but surprisingly neglected, question about host–

pathogen interaction in humans: what is the impact of fever

on an infected person’s mobility? Our results revealed differ-

ences in all aspects of mobility between study participants

who were febrile during the time they were interviewed and

those who were afebrile. Reductions in the number of locations

visited and time spent outside the home were among the most

unambiguous differences between febrile and afebrile partici-

pants, regardless of their demographic category. These and

other effects, such as visiting locations closer to home and

changes in the types of locations visited, are logically consistent

with one another and with previous reports from urban set-

tings in developed countries [12,13]. These results are also

consistent with the concept of ‘sickness behaviours’ in the

animal behaviour literature, where impaired mobility and

other effects are better studied and are thought to have impor-

tant adaptive consequences [11,31]. Together, our results

suggest that fever significantly impairs human mobility and,

by extension, could modulate the potential for infectious

people with clinically apparent infections to engage in contacts

and contribute to onward transmission.

The effects that we observed pertained to a two-week

period prior to presentation of fever, which exceeds the dur-

ation of fever for people infected with dengue, influenza and

many other pathogens [32,33]. Thus, it is most likely that par-

ticipants in our study experienced fever for only a few days

prior to their interviews. If so, it would imply that impacts of

fever on mobility during the time when study participants

were actually febrile may have been stronger than the effects

that we were able to measure. For example, rather than spend-

ing 26.6% more time at home (figure 2), this would suggest that

DENVþ febrile children may have spent nearly all of their time

at home on days when they experienced fever. Similarly, some

effects could have gone undetected altogether. For example,

it is noteworthy that we detected no increase in visits to health-

care locations among febrile individuals. This is not altogether

surprising, however, given the common occurrence of rela-

tively mild disease associated with dengue infection [34].

This result could also be an artefact of our study design, as

some study participants may have waited for a visit from a pro-

ject physician rather than seeking healthcare at a local clinic or

hospital. For these and similar reasons, our quantitative results

should be interpreted as conservative underestimates of the

impacts of fever on mobility.

Although our results are of limited value quantitatively,

they provide an important starting point for determining the
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Figure 2. Joint probability distributions of the frequency and mean duration of periods of time spent at home. Colours represent continuous probabilities that range
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or fever due to some other cause. Sample means of duration, frequency and proportion of total time spent at home for each group are noted in each panel.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160390

6



extent to which the impacts of disease manifestations on mobi-

lity are perceptible with interviews, one of several common

instruments for measuring detailed, individual-level mobility

[35,36]. One limitation of the retrospective SSI that we used is

that it relied on study participant recall, which is subject to

recall bias. Even so, in a previous study in Iquitos [21], we com-

pared data obtained from the SSI with comparable data

obtained from wearable GPS data-loggers and found that,

overall, the SSI was a superior means of measuring activity

spaces due to behavioural limitations associated with GPS

methods; e.g. forgetting to wear the GPS data-logger. With

regard to this study, it is possible that recall bias may have

impaired our ability to detect the full extent of the true effect

of fever on mobility, in which case our estimates of the

impact of fever on mobility are conservative. This could be so

if individuals who have visited more locations (i.e. afebrile

individuals) are less likely to recall all the locations they

have visited compared with those who have visited fewer

locations; i.e. febrile individuals. Addressing this and other

open questions—such as the impact of other disease mani-

festations on mobility or how suppression of fever with

antipyretics affects mobility during key times in the course

of a person’s infectiousness—was beyond the scope of our

study, but constitutes an important direction for future studies

designed with similar objectives in mind.

Future studies should examine behavioural modification

owing to fever across the period of time that a person is infec-

tious. For dengue, infectiousness often lasts longer than fever.

In experimental feeding studies, infection of mosquitoes was

documented up to 2 days before [37] and 2 days after [38] the

period of fever, which typically lasts between 2 and 7 days

[32]. In a more recent study [39], at a given viremia level,

dengue virus infected people with no detectable symptoms

or whose symptoms had not yet begun were more infectious

to mosquitoes than people who were bitten when they were

symptomatic. Fully addressing how fever and other disease

symptoms affect an individual’s contribution to transmission

will require combining data on human mobility with data

on infectiousness at multiple time points over the course of

infection [10,40].

Pathogen natural history, particularly mode of trans-

mission, will also affect how impacts of fever on mobility

influence impacts fever on contact and opportunities for

pathogen transmission. For dengue and other vector-borne dis-

eases, the impact of spending more time at home and visiting

fewer locations on vector–human contact will depend on the

densities of competent vectors at those locations [15]. If there

are more vectors at a person’s home than at the locations

where they spend less time due to fever, then they could effec-

tively be engaging in more mosquito contacts than if fever had

not reduced their mobility. Conversely, if there are fewer vec-

tors at home than elsewhere in a person’s activity space, the

converse would be true. Densities of the DENV mosquito

vector Aedes aegypti in Iquitos are sufficiently heterogeneous

in time and space that both of these possibilities probably

happen [38]. For directly transmitted pathogens, spending

more time at home and visiting fewer locations should result

in fewer opportunities for transmission, on average [13].

Other effects of fever could counteract this tendency, including

increased visitation by members of a sick person’s family or

social network [6]. Furthermore, because the impacts of fever

on an infected person’s mobility are inherently dynamic and,

as we have shown, multifaceted, they are likely to generate

dynamic and complex changes in contact network structure

over time. For both directly and indirectly transmitted patho-

gens, mathematical modelling will play an essential role in

future studies seeking to elucidate how disease-mediated

changes in the mobility of infected hosts affect the dynamic

nature of contact networks and pathogen transmission.

Accurately quantifying a realistic balance between the

various effects of fever on contact and the relationship bet-

ween fever and infectiousness is important for applications of

population-level models to forecast future dynamics, infer

information about key parameters from historical dynamics,

and assess intervention impacts [5,41]. In addition to disease-

mediated changes in contact rates within a population, it is

also likely that fever and other disease manifestations could

modify mobility and contact between humans and mosquitoes.

Spatial models used for forecasting the spread of pandemics

[42] and for estimating sources and sinks of transmission [43]

routinely use movement data from flight records, call data

records and other sources, or a continuum of models derived

from physical principles [44], such as gravity [45] and radiation

[46] models. These approaches rely on data or assumptions

about healthy individuals and do not consider how disease

manifestations might impact mobility and, consequently,

spatial transmission dynamics. Based on effects that we

detected—such as a tendency for febrile people to visit fewer

locations and to spend more time at home—spatial models

ignoring these effects could overestimate the potential for a dis-

ease to become pandemic or overemphasize the importance of

mobility in identifying sources and sinks of transmission.

Better understanding the impacts of disease manifestations

on mobility during times when hosts are infectious merits

increased attention in infectious disease epidemiology.
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