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GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙

R. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)

(Received 30 May 2020; revised 19 June 2020; accepted 9 July 2020; published 2 September 2020; corrected 23 October 2020)

On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration
gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an
estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is
from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black
holes with masses of 85þ21

−14 M⊙ and 66þ17
−18 M⊙ (90% credible intervals). We infer that the primary black

hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a
0.32% probability of being below 65 M⊙. We calculate the mass of the remnant to be 142þ28

−16 M⊙, which
can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is
5.3þ2.4

−2.6 Gpc, corresponding to a redshift of 0.82þ0.28
−0.34 . The inferred rate of mergers similar to GW190521 is

0.13þ0.30
−0.11 Gpc−3 yr−1.

DOI: 10.1103/PhysRevLett.125.101102

Introduction.—Advanced LIGO [1] and Advanced Virgo
[2] have demonstrated a new means to observe the Universe
through the detection of gravitational waves (GWs). In their
first two observing runs (O1 and O2), the LIGO Scientific
Collaboration and the Virgo Collaboration (LVC) have
reported the detection of GWs from 10 binary black hole
(BH) mergers, and a binary neutron star inspiral [3,4]. The
third observing run (O3) started on April 1, 2019, and was
suspended on March 27, 2020; numerous public alerts
pertaining to possible detections have been sent to the
astronomical community [5], with three confirmed detec-
tions [6–8].
The discovery of GW150914 [9] and subsequent events

has revealed a population of binary BHs with total masses
between ∼19 and 84 M⊙, with component masses ranging
from ∼8 to 50 M⊙ [3]. Signals consistent with heavier BHs
(e.g., 170817þ 03∶02∶46UTC) have also been reported in
[10–12], albeit with a non-negligible chance of having an
instrumental origin. For the parametrized population mod-
els considered in [13] it was inferred that no more than 1%
of primary BH masses in merging binaries are greater
than 45 M⊙.
In this Letter we expand this mass range with the

confident detection of GW190521, a GW signal consistent
with a binary BH merger of total mass ∼150 M⊙, leaving
behind a ∼140 M⊙ remnant. Waveform models for

quasicircular binary BHs indicate that a precessing orbital
plane is slightly favored over a fixed plane. The observation
of the ringdown signal from the remnant BH provides
estimates for the final mass and spin that are consistent with
those from the full waveform analysis.
It is predicted that stars with a helium core mass in the

range of ∼32–64 M⊙ are subject to pulsational pair
instability, leaving behind remnants with mass less than
∼65 M⊙. Stars with helium core mass in the range
∼64–135 M⊙ would be susceptible to pair instability
and leave no compact remnant, while stars with helium
mass ≳135 M⊙ are thought to directly collapse to inter-
mediate mass BHs (IMBHs) [14–19]. The LVC O1-O2
observations are consistent with the prevention of heavy
BH formation by pair-instability supernova (PISN) [13].
For GW190521, the mass of the heavier binary component
has a high probability to be within the PISN mass gap
[17,20–22]. In dense stellar systems or active galactic
nuclei disks, BHs with mass in the PISN gap might form
via hierarchical coalescence of smaller BHs [23–28], or via
direct collapse of a stellar merger between an evolved star
and a main sequence companion [29,30].
BHs of mass 102–105 M⊙, more massive than stellar

mass BHs and lighter than supermassive BHs (SMBHs),
are traditionally designated IMBHs [31–33]. A conclusive
observation of these objects has thus far remained elusive,
despite indirect evidence. These include observations of
central BHs in galaxies, kinematical measurements of
massive star clusters, scaling relations between the mass
of the central SMBH and their host galaxies, and the mass
range of globular clusters [34]. The LVC has also pre-
viously searched for binaries of IMBHs explicitly in their
GW data, for example [35–37], obtaining null results and
establishing an upper limit of 0.2 Gpc−3 yr−1 on their
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coalescence rate [38]. The remnant of GW190521 fulfills
the above definition of an IMBH.
GW190521 was detected by searches for quasicircular

binary coalescences, and there is no evidence in the data for
significant departures from such a signal model. However,
for any transient with high inferred masses, there are few
cycles observable in ground-based detectors, and therefore
alternative signal models may also fit the data. This is
further addressed in the companion paper [39] that also
provides details about physical parameter estimation, and
the astrophysical implications of the observation of GWs
from this massive system.
Observation.—On May 21, 2019 at 03:02:29 UTC, the

LIGO Hanford (LHO), LIGO Livingston (LLO), and Virgo
observatories detected a coincident transient signal. A
matched-filter search for compact binary mergers,
PYCBC LIVE [40,41,42], reported the transient with a
network signal-to-noise ratio (SNR) of 14.5 and a false-
alarm rate of 1 in 8 yr, triggering the initial alert. Aweakly
modeled transient search based on coherent wave burst
(CWB) [43] in its IMBH search configuration [35] reported
a signal with a network SNR of 15.0 and a false-alarm rate
lower than 1 in 28 yr. Two other matched-filter pipelines,
SPIIR [44] and GSTLAL [45], found consistent candidates
albeit with higher false-alarm rates. The identification,
localization, and classification of the transient as a binary
BH merger were reported publicly within ≈6 min, with the
candidate name S190521g [46,47].

A second significant GW trigger occurred on the same
day at 07:43:59 UTC, S190521r [48]. Despite the short
time separation, the inferred sky positions of GW190521
and S190521r are disjointed at high confidence, and so the
events are not related by gravitational lensing. Further
discussions pertaining to gravitational lensing and
GW190521 are presented in the companion paper [39].
GW190521, shown in Fig. 1, is a short transient signal

with a duration of approximately 0.1 s and around four
cycles in the frequency band 30–80 Hz. A frequency of
60 Hz at the signal peak and the assumption that the source
is a compact binary merger imply a massive system.
Data.—The LIGO and Virgo strain data are conditioned

prior to their use in search pipelines and parameter
estimation analyses. During online calibration of the data
[53], narrow spectral features (lines) are subtracted using
auxiliary witness sensors. Specifically, we remove from the
data the 60 Hz U.S. mains power signature (LIGO), as well
as calibration lines (LIGO and Virgo) that are intentionally
injected into the detectors to measure the instruments’
responses. During online calibration of Virgo data, broad-
band noise in the 40–1000 Hz frequency range is subtracted
from the data [54]. The noise-subtracted data produced by
the online calibration pipelines are used by online search
pipelines and initial parameter estimation analyses.
Subsequent to the subtraction conducted within the

online calibration pipeline, we perform a secondary offline
subtraction [55] on the LIGO data with the goal of

FIG. 1. The GW event GW190521 observed by the LIGO Hanford (left), LIGO Livingston (middle), and Virgo (right) detectors.
Times are shown relative to May 21, 2019 at 03:02:29 UTC. The top row displays the time-domain detector data after whitening by each
instrument’s noise amplitude spectral density (light blue lines); the point estimate waveform from the CWB search [43] (black lines); the
90% credible intervals from the posterior probability density functions of the waveform time series, obtained via Bayesian inference
(LALINFERENCE [49]) with the NRSur7dq4 binary BH waveform model [50] (orange bands), and with a generic wavelet model
(BayesWave [51], purple bands). The ordinate axes are in units of noise standard deviations. The bottom row displays the time-
frequency representation of the whitened data using the Q transform [52].
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removing nonlinear sidebands around the U.S. mains
power frequency, caused by low frequency modulation
of the 60 Hz noise coupling. Since the subtraction of these
sidebands is not expected to significantly improve the
sensitivity of search algorithms, it is only used in offline
parameter estimation of GW190521. Although GW190521
demonstrates a peak frequency of about 60 Hz, there is no
evidence that the power mains contribute coherent power to
the recovered signal. Voltage monitors and magnetometers
installed at each LIGO site show no evidence of significant
power fluctuations at the time of the event. These sensors
are more sensitive to mains voltage transients than the
interferometers are, detecting voltage fluctuations that are
much smaller than those that produce transient noise in the
strain data.
At the time of GW190521, the LHO, LLO, and Virgo

detectors were observing in their nominal operational O3
state. Low-latency data quality checks [56] did not indicate
any transient noise in the vicinity of this event. Four
minutes after GW190521, LHO microphones recorded
the sound of a nearby helicopter, which also affected the
GW strain data. This noise does not impact the confidence
of the detection and the affected data are not used for
parameter estimation. More thorough analyses performed
at higher latency [3,56] find no evidence that GW190521 is
due to, or influenced by, instrumental or environmen-
tal noise.
To further confirm that GW190521 is not a noise artifact,

we followed the treatment in [3,56] and investigated
potential sources of nonstationary noise typically found
in the same frequency band measured for GW190521. The
false-alarm rates calculated by the search pipelines estimate
the rate of random coincidences of all glitches from the
analysis period. Subsequent evaluation of the background
noise relevant to an event does not change its calculated
false-alarm rate, but serves solely as an event validation
procedure. During local daytime hours, the LLO detector
exhibits nonstationary noise that is consistent with scattered
light due to excess ground motion in the 1–10 Hz band [3].
It produces a variation of the detector noise below 50 Hz,
appearing as a periodic sequence of short duration tran-
sients. A similar type of noise is also observed in the LHO
detector but at significantly lower rate. GW190521 was
detected at 03:02:29 UTC, at which time the 1–10 Hz
ground motion was low and the GW strain data are not
exhibiting the characteristic nonstationarity associated
with excessive scattered light. Both detectors also exhibit
populations of short duration, band-limited transients (blip
glitches) [57,58], which often demonstrate a characteristic
frequency of ∼50 Hz. These transients are not found in
coincidence between the LHO and LLO detectors (except
by random occurrence) and GW190521 does not demon-
strate the typical frequency-domain power distribution of
blip glitches.

Detection significance.—After the identification by the
low-latency analyses described above, GW190521 was also
identified by offline analyses. These analyze strain data
with improved calibration and updated data-quality vetoes,
which are not available in low latency and hence update the
low-latency results. The offline analyses use the CWB
[43,59,60], GSTLAL [45,61–65], and PYCBC [40,66–71]
pipelines. CWB searches for short transient signals with
minimal assumptions on their waveform. GSTLAL and
PYCBC search for coalescences of compact objects using
matched filtering with banks of quasicircular, quadrupolar-
mode-only, nonprecessing templates [72–78].
We performed the offline CWB analyses (see the

Supplemental Material [79]) using two detector configu-
rations: one restricted to the LIGO detectors, and one
including Virgo as well. These two analyses identified
GW190521 with network SNRs of 14.4 and 14.7, respec-
tively, and with event parameters well within the limits
defined by the analysis selection cuts. The LIGO-only
analysis was used to establish the false-alarm rate for
GW190521. The analysis including Virgo produced the
waveform reconstruction. The GW190521 false-alarm rate
was estimated from the analysis of time-shifted LIGO data.
The background is equivalent to 9800 yr of observation and
contains only two events ranked higher than GW190521,
both consistent with random coincidences of short duration
(∼1 cycle) glitches observed in the LIGO frequency band
20–100 Hz. The estimated background results in a false-
alarm rate of 1 in 4900 yr for GW190521, which constitutes
a confident detection of a GW transient.
The offline analysis conducted by GSTLAL (see the

Supplemental Material [79]) identified GW190521 with a
network matched-filter SNR of 14.7 and a false-alarm rate
of 1 in 829 yr. The large difference in GSTLAL significance
reported by its online and offline configurations is due to an
improvement in the template bank during O3 that greatly
enhanced GSTLAL’s sensitivity to mergers of high-mass
compact objects.
The offline analysis performed by PYCBC (see

Supplemental Material [79]) identified GW190521 with
a network matched-filter SNR of 12.6 and a false-alarm rate
of 1 in 0.94 yr. The smaller SNR and relatively high false-
alarm rate are due to the sparseness of PYCBC’s template
bank in the parameter region of GW190521, coupled with
the fact that instrumental transients cause different high-
mass templates to produce very different rates of high-
SNR triggers. The Supplemental Material [79] describes
PYCBC’s response to GW190521 in greater detail.
The most massive binary BH merger previously reported

by the LVC, GW170729, had the same ordering of
significances in CWB, GSTLAL, and PYCBC as
GW190521, and a simulation campaign showed that larger
significances in CWB for such heavy BH mergers are not
uncommon [3]. Matched-filter searches based on quasicir-
cular nonprecessing templates and CWB have also been
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compared using broader simulations of heavy BH mergers,
including precession and higher-order multipole moments,
also concluding that CWB is often more sensitive
[80,81]. We performed a similar simulation campaign for
GW190521 in order to further understand the different
significances. We simulated thousands of signals compat-
ible with the parameters inferred for the event under the
assumption of a quasicircular BH merger, using the
NRSur7dq4 waveform model described in the next section,
which includes precession and higher-order multipole
moments. The simulated sources have merger times dis-
tributed uniformly over several days surrounding
GW190521, so as to sample many different realizations
of the detector noise. The right ascensions have been
correspondingly corrected in order to cancel the effect of
Earth’s rotation, which would lead to different projections
of the strain polarizations on the detectors. We added the
signals into the data surrounding the event, reran the search
pipelines with the same configuration used for the offline
analysis, and counted the number of signals recovered by
each pipeline. CWB, GSTLAL, and PYCBC recovered,
respectively, 36%, 45%, and 11% of the simulated signals
at a false-alarm rate better than 1 in 4900 yr. The fraction of
signals found at a false-alarm rate in CWB better than 1 in
4900 yr and a false-alarm rate in PYCBC worse than 1 in
0.94 yr is 2.7%, which is small but not negligible. The
fraction found at a false-alarm rate in CWB better than 1 in
4900 yr and a false-alarm rate in GSTLAL worse than 1 in
829 yr is 7.8%.
We conclude that the outputs of CWB, GSTLAL, and

PYCBC are fully consistent with expectations for a qua-
sicircular binary merger signal with the parameters of
GW190521. The reported false-alarm rates do not include
a trials factor for the number of analyses performed. If one
were to choose a single representative false-alarm rate, one
should use the CWB rate multiplied by a trials factor of 3,
resulting from the conservative assumption [37,38] that
CWB, GSTLAL, and PYCBC are equally sensitive and
statistically independent. The resulting rate would still
point to a significant detection.
Astrophysical source.—GW190521 is qualitatively dif-

ferent from previous detections [3,6–8] due to the small
number of cycles and maximum frequency in the sensitive
band of the detectors. Hence, its astrophysical interpreta-
tion as a quasicircular compact binary merger warrants
more discussion than previous events. Alternative scenar-
ios, such as an eccentric collision [82], become more
relevant and are discussed in the companion paper [39].
Nevertheless, the quasicircular BH merger scenario
remains the most plausible and we will proceed under this
assumption in the rest of this Letter.
We performed Bayesian parameter inference on

GW190521 using three waveform models for quasicircular
binary BHs including the effects of higher order multipole
moments and precession. These are the numerical relativity

surrogate model NRSur7dq4 [50], the effective-one-body
model SEOBNRv4PHM [83,84], and the phenomenologi-
cal model IMRPhenomPv3HM [85]. To compute the
evidence for the presence of higher-order modes, orbital
precession and nonzero spin, we also compared the data
with the aforementioned models after removing these
effects from the models. We analyzed 8 s of data around
the time of GW190521. We impose uniform priors on the
redshifted component masses, on the individual spin
magnitudes and on the square of the luminosity distance.
We have checked that imposing an uniform-in-co-moving-
volume prior changes the results by less than 1%. We
impose an isotropic prior on the source and the spin
orientations. We produce posterior distributions margin-
alized over calibration uncertainties. For the NRSur7dq4
and IMRPhenomPHM runs, we made use of the
LALINFERENCE software package [49] while the
SEOBNRv4PHM runs were done using the RIFTalgorithm
[86]. We find that despite differences in how these wave-
form models are computed, and the fact that we needed to
sample over parameters outside their calibration regions
[87], all yield broadly consistent results [39]. In addition,
direct comparison of the data to numerical relativity
simulations [88–90], using the RIFT algorithm, yields
consistent results. In the following we quote results
obtained using the NRSur7dq4 model. This choice is
motivated by this being the only model that has been
calibrated to numerical simulations of precessing BH

TABLE I. Parameters of GW190521 according to the
NRSur7dq4 waveform model. We quote median values with
90% credible intervals that include statistical errors.

Parameter

Primary mass 85þ21
−14 M⊙

Secondary mass 66þ17
−18 M⊙

Primary spin magnitude 0.69þ0.27
−0.62

Secondary spin magnitude 0.73þ0.24
−0.64

Total mass 150þ29
−17 M⊙

Mass ratio (m2=m1 ≤ 1) 0.79þ0.19
−0.29

Effective inspiral spin parameter (χeff ) 0.08þ0.27
−0.36

Effective precession spin parameter (χp) 0.68þ0.25
−0.37

Luminosity Distance 5.3þ2.4
−2.6 Gpc

Redshift 0.82þ0.28
−0.34

Final mass 142þ28
−16 M⊙

Final spin 0.72þ0.09
−0.12

P (m1 < 65 M⊙) 0.32%

log10 Bayes factor for orbital precession 1.06þ0.06
−0.06

log10 Bayes factor for nonzero spins 0.92þ0.06
−0.06

log10 Bayes factor for higher harmonics −0.38þ0.06
−0.06
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binaries. The NRSur7dq4 results are summarized in
Table I. Results for all three models are presented in the
companion paper [39].
Figure 2 shows our estimated 90% credible regions for

the individual masses of GW190521. We estimate indivi-
dual components with ðm1; m2Þ ¼ ð85þ21

−14 ; 66
þ17
−18Þ M⊙ and

a total mass 150þ29
−17 M⊙. This makes GW190521 the most

massive binary BH observed to date, as expected from its
short duration and low peak frequency. To quantify
compatibility with the PISN mass gap, we find the
probability of the primary component being below
65 M⊙ to be 0.32%. The estimated mass and dimensionless
spin magnitude of the remnant object areMf ¼ 142þ28

−16 M⊙
and χf ¼ 0.72þ0.09

−0.12 respectively. The posterior forMf shows
no support below 100 M⊙, making the remnant the first
conclusive direct observation of an IMBH.
The left panel of Fig. 3 shows the posterior distributions

for the magnitude and tilt angle of the individual spins,
measured at a reference frequency of 11 Hz. All pixels in
this plot have equal prior probability. While we obtain
posteriors with strong support at the χ ¼ 1 limit imposed by
cosmic censorship [91], these also show non-negligible
support for zero spin magnitudes. In addition, the maxi-
mum posterior probability corresponds to large angles
between the spins and the orbital angular momentum.
Large spin magnitudes and tilt angles would lead to a
strong spin-orbit coupling, causing the orbital plane to

FIG. 2. Posterior distributions for the progenitor masses of
GW190521 according to the NRSur7dq4 waveform model. The
90% credible regions are indicated by the solid contour in the
joint distribution and by solid vertical and horizontal lines in
the marginalized distributions.

FIG. 3. Left: posterior distribution for the individual spins of GW190521 according to the NRSur7dq4 waveform model. The radial
coordinate in the plot denotes the dimensionless spin magnitude, while the angle denotes the spin tilt, defined as the angle between the
spin and the orbital angular momentum of the binary at reference frequency of 11 Hz. A tilt of 0° indicates that the spin is aligned with
the orbital angular momentum. A nonzero magnitude and a tilt away from 0° and 180° imply a precessing orbital plane. All bins have
equal prior probability. Right: posterior distributions for the effective spin and effective in-plane spin parameters. The 90% credible
regions are indicated by the solid contour in the joint distribution, and by solid vertical and horizontal lines in the marginalized
distributions. The large density for tilts close to 90° leads to large values for χp and low values for χeff.
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precess [92,93]. The impact of precession in a GW signal is
commonly parametrized by the effective precession spin
parameter χp [94,95] while the effective inspiral spin
parameter χeff parametrizes the impact of the spin compo-
nents aligned with the orbital angular momentum [96–99].
The right panel of Fig. 3 shows the corresponding
posterior distributions. We estimate χeff ¼ 0.08þ0.27

−0.36 and
χp ¼ 0.68þ0.25

−0.37 .
We evaluated the Bayesian evidence for both a precess-

ing orbital plane and nonzero spin magnitudes by perform-
ing model selection with models omitting precession and
spins. We obtain a log10 Bayes factor of 1.06

þ0.06
−0.06 in favor

of precessing versus nonprecessing spins and 0.92þ0.06
−0.06 in

favor of nonzero spin magnitudes versus zero magnitudes.
This indicates a weak preference for both a spinning BBH
and a precessing orbital plane, consistent with the large
uncertainty in the spin parameters and the fact that the final
spin, χf ¼ 0.72þ0.09

−0.12 , is consistent with a nonspinning BBH
[3]. Future analyses of GW190521 with improved wave-
form models and more informed population priors may
well shift the maximum probability to other regions of the
spin parameter space.
We estimate the luminosity distance of GW190521 to be

5.3þ2.4
−2.6 Gpc, corresponding to a redshift of 0.82þ0.28

−0.34 ,
assuming a ΛCDM cosmology with Hubble parameter
H0 ¼ 67.9 km s−1 Mpc−1 [100]. Figure 4 shows the joint

posterior distribution for the luminosity distance and the
inclination angle between the total angular momentum of
the binary and the line of sight, θJN . We constrain
sinðθJNÞ < 0.79 at the 90% credible level. Signals emitted
at such inclinations are dominated by the quadrupolar
ð2; � 2Þ modes [101–104]. Indeed, we obtain a log10
Bayes factor of −0.38þ0.06

−0.06 disfavoring the presence of
higher order multipole moments in the data. Despite this
fact, as described in [105], models that include higher
modes still lead to more precise estimates of the distance
and inclination of the source. The reason is that higher
modes are more prominent in signals with large inclination
angles, especially when the signal is dominated by the
merger and ringdown portions, thereby allowing us to
discard those angles [103,104,106,107].
Given thatGW190521 has only a fewobservable cycles, a

barely observable inspiral, and shows no evidence for
higher-order modes, we investigate what aspects of the
signal can lead to a slight evidence for nonzero spins and a
precessing orbital plane. To do this, we compare the
posterior sample waveforms obtained by the analyses
including and omitting precession. We find that the most
prominent effect of precession is a slight amplitude sup-
pression of the lowest-frequency part of the waveform,
consistent with the amplitude modulation typically associ-
ated with precession [82,108,109]. Meanwhile, the spin
degrees of freedom that most affect χf are encapsulated in
χeff and not χp [110,111], so it is unlikely that our
measurement of the final mass and spin informs χp.
Hence, the shift of the posteriors towards large spin
magnitudes and tilt angles is more likely caused by the
dynamics immediately prior to the merger, rather than
postmerger features in the data.
Similarly, we have investigated how information about

themass ratio is being retrieved.We partially attribute this to
the measurement of the remnant spin χf from information
in the ringdown phase. This constrains the possible values
of q that can give rise to the measured χf . In addition, the
frequency at the signal peak amplitude [112,113], and the
phase and amplitude evolution of the (suppressed) pre-
merger signal can further constrain the measurement.
With only one such system so far confirmed, uncertain-

ties on the formation channel and corresponding merger
rate are necessarily very large. Under the simplifying
assumption that the component masses and spins of
GW190521 are representative of a population of merging
binaries, we estimate a merger rate 0.13þ0.30

−0.11 Gpc−3 yr−1

[39], consistent with the prior upper bounds set in [38].
Waveform reconstruction.—GW190521 waveform

reconstructions are obtained through a templated
LALINFERENCE analysis [49], and two signal-agnostic
analyses, CWB [43,114], and BayesWave [51,115]. Both
signal-agnostic analyses reconstruct signal waveforms as a
linear combination of wavelets: CWB obtains point esti-
mate waveforms with the constrained maximum likelihood

FIG. 4. Posterior distributions for the luminosity distance and
the inclination angle of GW190521, according to the NRSur7dq4
waveform model. The inclination angle indicates the angle
between the line-of-sight and the total angular momentum of
the binary. For nonprecessing binaries, this is equal to the angle
between the orbital angular momentum and the line of sight. We
find the total angular momentum is likely to be closer to the line
of sight than to the orthogonal direction. The solid lines and the
central contour denote 90% credible regions.
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method while BayesWave reconstructs waveforms by
drawing posterior samples from an unmodeled Bayesian
analysis. Figure 1 shows broad agreement between the
waveform reconstructions.
For a quantitative comparison of the CWB point estimate

waveformw and the template h, we calculate the overlap, or
match ðwjhÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðwjwÞðhjhÞp

, where ðwjhÞ denotes the
noise-weighted network inner product [116]. We randomly
draw signals from the templated inference analysis, inject
these into data surrounding GW190521, and reconstruct the
injections with CWB. The overlaps between the simulated
signals and the corresponding CWB reconstructions define
the null distribution, which takes into account the wave-
form reconstruction errors and fluctuations of the detector
noise. The median and 90% confidence interval for the null
distribution are 0.93þ0.03

−0.06 . The overlap between the CWB
point estimate for GW190521 and the maximum-likelihood
NRSur7dq4 template is 0.89 and is consistent with the null
distribution.
The overlap [115] between the median BayesWave

waveform and the maximum likelihood NRSur7dq4
template is 0.93. A signal residual test is performed
by subtracting the maximum likelihood NRSur7dq4
template from the data and then searching for a residual
signal using BayesWave [117]. The residual search
result is compared to the distribution found from the
analysis of the off-source data surrounding the event.
This comparison results in a p value (as first described
in [118]) of 0.4, indicating that the residual is fully
consistent with noise.
Black hole ringdown.—We analyzed the ringdown por-

tion of GW190521 using a damped sinusoid to fit the
least-damped ringdown mode [119,120]. Starting 12.7 ms
after the peak of the complex strain [corresponding to
∼tpeak þ 10Gð1þ zÞMf=c3 in units of the redshifted
remnant mass ð1þ zÞMf [121], using median values from
the NRSur7dq4 approximant], the analysis estimates a
frequency f ¼ 66þ4

−3 Hz and damping time τ ¼ 19þ9
−7 ms,

with a Bayes factor between signal and noise of
log10ðBs=nÞ ¼ 25.45� 0.02. By imposing predictions of
perturbation theory on the frequency of the GW emission
[122] we infer the final redshifted mass and dimensionless
spin to be ð1þ zÞMf ¼ 252þ63

−64 M⊙ and χf ¼ 0.65þ0.22
−0.48 .

All quoted values correspond to median and 90% credible
intervals. The grey contour in Fig. 5 shows the corre-
sponding posterior two-dimensional 90% credible region.
Accounting for redshift, these results are consistent with
the full-waveform analysis when using NR fits to predict
the remnant quantities [50,110,122–125]. The correspond-
ing 90% credible region is shown in blue in the same
Fig. 5. Additional detailed investigations are reported in
the companion paper [39].
Summary.—GW190521 is a short duration signal con-

sistent with a binary BH merger. According to state of the

art models for quasicircular binaries, the progenitor BHs
show mild evidence for nonzero spins and a precessing
orbit, and the heavier component mass 85þ21

−14 M⊙ sits in the
PISN mass gap. The merger left behind a remnant with a
final mass of 142þ28

−16 M⊙, making this a direct observation
of the formation of an IMBH. The large individual and total
masses of GW190521, and the low likelihood that the
primary originated from a stellar collapse given theoretical
constraints on supernova physics, strongly suggest a differ-
ent formation channel from BH binaries previously
reported. The remnant ringdown signal is compatible with
the full waveform analysis and general relativity. The short
duration of GW190521 also invites other interpretations for
the source. Further details on the properties of GW190521
are discussed in the companion paper, together with its
astrophysical implications and possible formation channels
[39]. As the low frequency sensitivity improves for
Advanced LIGO and Advanced Virgo [126] further mas-
sive binary BH events should be observed. Third-
generation ground-based GW detectors [127–129] and
LISA [130] will be important instruments to study these
systems. An event like GW190521 may be observable by
both LISA and ground-based detectors, and observing the
earlier inspiral is essential to improve our understanding of
the source [131–134].

FIG. 5. Redshifted remnant mass and spin inferred from the
least-damped l ¼ m ¼ 2 ringdown mode. The analysis was
carried out 12.7 ms [∼10Gð1þ zÞMf=c3] after the reference
time tHpeak ¼ 1 242 442 967.4306 for the Hanford detector
(appropriately time shifted in the other detectors assuming the
maximum likelihood value on the sky position inferred from the
NRSur7dq4 approximant). The blue contour represents the 90%
credible region of the prediction from the full-waveform analysis.
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Strain data from the LIGO and Virgo detectors associ-
ated with GW190521, and supporting data for this Letter,
can be found at [135].
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Digital de la Generalitat Valenciana and the CERCA
Programme Generalitat de Catalunya, Spain, the
National Science Centre of Poland, the Swiss National
Science Foundation (SNSF), the Russian Foundation for
Basic Research, the Russian Science Foundation, the
European Commission, the European Regional
Development Funds (ERDF), the Royal Society, the
Scottish Funding Council, the Scottish Universities
Physics Alliance, the Hungarian Scientific Research
Fund (OTKA), the French Lyon Institute of Origins
(LIO), the Belgian Fonds de la Recherche Scientifique
(FRS-FNRS), Actions de Recherche Concertées (ARC)
and Fonds Wetenschappelijk Onderzoek—Vlaanderen
(FWO), Belgium, the Paris Île-de-France Region, the
National Research, Development and Innovation Office
Hungary (NKFIH), the National Research Foundation of
Korea, Industry Canada and the Province of Ontario
through the Ministry of Economic Development and
Innovation, the Natural Science and Engineering
Research Council Canada, the Canadian Institute for
Advanced Research, the Brazilian Ministry of Science,
Technology, Innovations, and Communications, the
International Center for Theoretical Physics South
American Institute for Fundamental Research (ICTP-
SAIFR), the Research Grants Council of Hong Kong,
the National Natural Science Foundation of China

(NSFC), the Leverhulme Trust, the Research
Corporation, the Ministry of Science and Technology
(MOST), Taiwan and the Kavli Foundation. The authors
gratefully acknowledge the support of the NSF, STFC,
INFN, and CNRS for provision of computational resour-
ces. We thank the referees for useful comments that have
improved the manuscript. In addition to the software cited
earlier, PESUMMARY [136] was used to produce the
publicly released samples and MATPLOTLIB [137] was
used for plotting.

Note added.—Recently, a candidate optical counterpart
to GW190521 was reported [138].

[1] J. Aasi et al. (LIGO Scientific Collaboration), Classical
Quantum Gravity 32, 074001 (2015).

[2] F. Acernese et al. (VIRGO Collaboration), Classical
Quantum Gravity 32, 024001 (2015).

[3] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. X 9, 031040 (2019).

[4] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 161101 (2017).

[5] Gravitational-Wave Candidate Event Database, LIGO/
Virgo Public Alerts, https://gracedb.ligo.org/superevents/
public/O3/.

[6] B. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. Lett. 892, L3 (2020).

[7] B. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 102, 043015 (2020).

[8] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. 896, L44 (2020).

[9] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[10] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M.
Zaldarriaga, Phys. Rev. D 101, 083030 (2020).

[11] A. H. Nitz, T. Dent, G. S. Davies, and I. Harry, Astrophys.
J. 897, 2 (2020).

[12] A. H. Nitz, T. Dent, G. S. Davies, S. Kumar, C. D. Capano,
I. Harry, S. Mozzon, L. Nuttall, A. Lundgren, and M.
Tápai, Astrophys. J. 891, 123 (2019).

[13] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. 882, L24 (2019).

[14] Z. Barkat, G. Rakavy, and N. Sack, Phys. Rev. Lett. 18,
379 (1967).

[15] A. Heger and S. E. Woosley, Astrophys. J. 567, 532 (2002).
[16] S. E. Woosley, S. Blinnikov, and A. Heger, Nature

(London) 450, 390 (2007).
[17] S. E. Woosley, Astrophys. J. 836, 244 (2017).
[18] R. Farmer, M. Renzo, S. E. de Mink, P. Marchant, and S.

Justham, Astrophys. J. 887, 53 (2019).
[19] M. Mapelli, M. Spera, E. Montanari, M. Limongi, A.

Chieffi, N. Giacobbo, A. Bressan, and Y. Bouffanais,
Astrophys. J. 888, 76 (2020).

[20] M. Spera and M. Mapelli, Mon. Not. R. Astron. Soc. 470,
4739 (2017).

[21] N. Giacobbo, M. Mapelli, and M. Spera, Mon. Not. R.
Astron. Soc. 474, 2959 (2018).

PHYSICAL REVIEW LETTERS 125, 101102 (2020)

101102-8

https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevLett.119.161101
https://gracedb.ligo.org/superevents/public/O3/
https://gracedb.ligo.org/superevents/public/O3/
https://gracedb.ligo.org/superevents/public/O3/
https://gracedb.ligo.org/superevents/public/O3/
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevD.101.083030
https://doi.org/10.3847/1538-4357/ab96c7
https://doi.org/10.3847/1538-4357/ab96c7
https://doi.org/10.3847/1538-4357/ab733f
https://doi.org/10.3847/2041-8213/ab3800
https://doi.org/10.1103/PhysRevLett.18.379
https://doi.org/10.1103/PhysRevLett.18.379
https://doi.org/10.1086/338487
https://doi.org/10.1038/nature06333
https://doi.org/10.1038/nature06333
https://doi.org/10.3847/1538-4357/836/2/244
https://doi.org/10.3847/1538-4357/ab518b
https://doi.org/10.3847/1538-4357/ab584d
https://doi.org/10.1093/mnras/stx1576
https://doi.org/10.1093/mnras/stx1576
https://doi.org/10.1093/mnras/stx2933
https://doi.org/10.1093/mnras/stx2933


[22] K. Belczynski et al., Astron. Astrophys. 594, A97
(2016).

[23] M. C. Miller and D. P. Hamilton, Mon. Not. R. Astron.
Soc. 330, 232 (2002).

[24] B. McKernan, K. E. S. Ford, W. Lyra, and H. B. Perets,
Mon. Not. R. Astron. Soc. 425, 460 (2012).

[25] M. Fishbach, D. E. Holz, and B. Farr, Astrophys. J. Lett.
840, L24 (2017).

[26] D. Gerosa and E. Berti, Phys. Rev. D 95, 124046 (2017).
[27] C. L. Rodriguez, M. Zevin, P. Amaro-Seoane, S.

Chatterjee, K. Kremer, F. A. Rasio, and C. S. Ye, Phys.
Rev. D 100, 043027 (2019).

[28] C. Kimball, C. Talbot, C. P. Berry, M. Carney, M. Zevin, E.
Thrane, and V. Kalogera, arXiv:2005.00023.

[29] U. N. Di Carlo, N. Giacobbo, M. Mapelli, M. Pasquato, M.
Spera, L. Wang, and F. Haardt, Mon. Not. R. Astron. Soc.
487, 2947 (2019).

[30] U. N. Di Carlo et al., Mon. Not. R. Astron. Soc., staa2286
(2020).

[31] T. Ebisuzaki, J. Makino, T. G. Tsuru, Y. Funato, S. F.
Portegies Zwart, P. Hut, S. McMillan, S. Matsushita, H.
Matsumoto, and R. Kawabe, Astrophys. J. 562, L19 (2001).

[32] M. Mezcua, Int. J. Mod. Phys. D 26, 1730021 (2017).
[33] F. Koliopanos, arXiv:1801.01095.
[34] J. E. Greene, J. Strader, and L. C. Ho, arXiv:1911.09678.
[35] J. Abadie et al. (LIGO Scientific and VIRGO Collabora-

tions), Phys. Rev. D 85, 102004 (2012).
[36] J. Aasi et al., Phys. Rev. D 89, 122003 (2014).
[37] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), Phys. Rev. D 96, 022001 (2017).
[38] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), Phys. Rev. D 100, 064064 (2019).
[39] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), Astrophys. J. Lett. 900, L13 (2020).
[40] A. Nitz et al., gwastro/pycbc: Pycbc, Release v1.14.1,

2019 Data, Zenodo, https://doi.org/10.5281/zenodo.
3265452 (2019).

[41] A. H. Nitz, T. Dal Canton, D. Davis, and S. Reyes, Phys.
Rev. D 98, 024050 (2018).

[42] T. Dal Canton, A. H. Nitz, B. Gadre, G. S. Davies, V. Villa-
Ortega, T. Dent, I. Harry, and L. Xiao, arXiv:2008.07494.

[43] S. Klimenko et al., Phys. Rev. D 93, 042004 (2016).
[44] S. Hooper, S. K. Chung, J. Luan, D. Blair, Y. Chen, and L.

Wen, Phys. Rev. D 86, 024012 (2012).
[45] C. Messick, K. Blackburn, P. Brady, P. Brockill, K. Cannon

et al., Phys. Rev. D 95, 042001 (2017).
[46] LIGO Scientific and Virgo Collaborations, Gamma-ray

Coordinates Network, Report No. 24621, 2019, https://gcn
.gsfc.nasa.gov/gcn3/24621.gcn3.

[47] LIGO Scientific and Virgo Collaborations, Gamma-ray
Coordinates Network, Report No. S190521g.lvc, 2019,
https://gcn.gsfc.nasa.gov/notices_l/S190521g.lvc.

[48] LIGO Scientific and Virgo Collaborations, Gamma-ray
Coordinates Network, Report No. 24632, 2019, https://gcn
.gsfc.nasa.gov/gcn3/24632.gcn3.

[49] J. Veitch, V. Raymond, B. Farr, W. Farr, P. Graff et al.,
Phys. Rev. D 91, 042003 (2015).

[50] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D.
Gerosa, L. C. Stein, L. E. Kidder, and H. P. Pfeiffer, Phys.
Rev. Research 1, 033015 (2019).

[51] N. J. Cornish and T. B. Littenberg, Classical Quantum
Gravity 32, 135012 (2015).

[52] S. Chatterji, L. Blackburn, G. Martin, and E.
Katsavounidis, Classical Quantum Gravity 21, S1809
(2004).

[53] A. Viets et al., Classical Quantum Gravity 35, 095015
(2018).

[54] F. Acernese et al., Classical Quantum Gravity 35, 205004
(2018).

[55] G. Vajente, Y. Huang, M. Isi, J. C. Driggers, J. S. Kissel,
M. J. Szczepanczyk, and S. Vitale, Phys. Rev. D 101,
042003 (2020).

[56] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Classical Quantum Gravity 33, 134001 (2016).

[57] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Classical Quantum Gravity 35, 065010 (2018).

[58] M. Cabero et al., Classical Quantum Gravity 36, 155010
(2019).

[59] S. Klimenko and G. Mitselmakher, Classical Quantum
Gravity 21, S1819 (2004).

[60] S. Klimenko, S. Mohanty, M. Rakhmanov, and G.
Mitselmakher, Phys. Rev. D 72, 122002 (2005).

[61] K. Cannon, C. Hanna, and D. Keppel, Phys. Rev. D 88,
024025 (2013).

[62] K. Cannon, C. Hanna, and J. Peoples, arXiv:1504.04632.
[63] C. Hanna et al., Phys. Rev. D 101, 022003 (2020).
[64] S. Sachdev et al., arXiv:1901.08580.
[65] H. K. Y. Fong, Ph.D. thesis, Toronto University, 2018.
[66] B. Allen, Phys. Rev. D 71, 062001 (2005).
[67] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and

J. D. E. Creighton, Phys. Rev. D 85, 122006 (2012).
[68] T. Dal Canton et al., Phys. Rev. D 90, 082004 (2014).
[69] S. A. Usman et al., Classical Quantum Gravity 33, 215004

(2016).
[70] A. H. Nitz, T. Dent, T. Dal Canton, S. Fairhurst, and D. A.

Brown, Astrophys. J. 849, 118 (2017).
[71] A. H. Nitz, Classical Quantum Gravity 35, 035016 (2018).
[72] B. S. Sathyaprakash and S. V. Dhurandhar, Phys. Rev. D

44, 3819 (1991).
[73] B. J. Owen and B. S. Sathyaprakash, Phys. Rev. D 60,

022002 (1999).
[74] A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan, and B. S.

Sathyaprakash, Phys. Rev. D 80, 084043 (2009).
[75] S. Roy, A. S. Sengupta, and P. Ajith, Phys. Rev. D 99,

024048 (2019).
[76] S. Roy, A. S. Sengupta, and N. Thakor, Phys. Rev. D 95,

104045 (2017).
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A. Viceré,70,71 A. D. Viets,202 S. Vinciguerra,13 D. J. Vine,67 J.-Y. Vinet,72 S. Vitale,54 Francisco Hernandez Vivanco,6

T. Vo,44 H. Vocca,42,43 C. Vorvick,49 S. P. Vyatchanin,66 A. R. Wade,8 L. E. Wade,184 M. Wade,184 R. Walet,39 M. Walker,28

G. S. Wallace,24 L. Wallace,1 S. Walsh,23 J. Z. Wang,146 S. Wang,20 W. H. Wang,16 R. L. Ward,8 Z. A. Warden,37 J. Warner,49

M. Was,36 J. Watchi,111 B. Weaver,49 L.-W. Wei,9,10 M. Weinert,9,10 A. J. Weinstein,1 R. Weiss,54 F. Wellmann,9,10 L. Wen,73

P. Weßels,9,10 J. W. Westhouse,37 K. Wette,8 J. T. Whelan,68 B. F. Whiting,31 C. Whittle,54 D. M. Wilken,9,10 D. Williams,53

A. Williamson,130 J. L. Willis,1 B. Willke,10,9 W. Winkler,9,10 C. C. Wipf,1 H. Wittel,9,10 G. Woan,53 J. Woehler,9,10

J. K. Wofford,68 I. C. F. Wong,103 J. L. Wright,53 D. S. Wu,9,10 D. M. Wysocki,68 L. Xiao,1 H. Yamamoto,1 L. Yang,133

Y. Yang,31 Z. Yang,46 M. J. Yap,8 M. Yazback,31 D.W. Yeeles,113 Hang Yu,54 Haocun Yu,54 S. H. R. Yuen,103

A. K. Zadrożny,16 A. Zadrożny,161 M. Zanolin,37 T. Zelenova,30 J.-P. Zendri,60 M. Zevin,14 J. Zhang,73 L. Zhang,1

T. Zhang,53 C. Zhao,73 G. Zhao,111 M. Zhou,14 Z. Zhou,14 X. J. Zhu,6 A. B. Zimmerman,176 M. E. Zucker,54,1 and J. Zweizig1

(LIGO Scientific Collaboration and Virgo Collaboration)

1LIGO, California Institute of Technology, Pasadena, California 91125, USA
2Louisiana State University, Baton Rouge, Louisiana 70803, USA

3Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
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I-84081 Baronissi, Salerno, Italy
53SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom

54LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
55Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary

56Stanford University, Stanford, California 94305, USA
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111Université Libre de Bruxelles, Brussels 1050, Belgium

112Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain
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190Dipartimento di Fisica, Università degli Studi di Torino, I-10125 Torino, Italy
191Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India

192INAF, Osservatorio Astronomico di Brera sede di Merate, I-23807 Merate, Lecco, Italy
193Centro de Astrofísica e Gravitação (CENTRA), Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,
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