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The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of
general relativity, including direct study of the polarization of gravitational waves. While general relativity
allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two
vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of
the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-
unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we
search for a stochastic background of generically-polarized gravitational waves. We find no evidence for a
background of any polarization, and place the first direct bounds on the contributions of vector and scalar
polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we
limit the energy-densities of tensor, vector, and scalar modes at 95% credibility to ΩT

0 < 5.6× 10−8, ΩV
0 <

6.4× 10−8, and ΩS
0 < 1.1× 10−7 at a reference frequency f0 = 25 Hz.

Introduction – The direct detection of gravitational waves
offers novel opportunities to test general relativity in previ-
ously unexplored regimes. Already, the compact binary merg-
ers [1–5] observed by Advanced LIGO (the Laser Interfer-
ometer Gravitational Wave Observatory) [6, 7] and Advanced
Virgo [8] have enabled improved limits on the graviton mass,
experimental measurements of post-Newtonian parameters,
and inference of the speed of gravitational waves, among other
tests [3, 9–11].

Another central prediction of general relativity is the exis-
tence of only two gravitational-wave polarizations (the tensor
plus and cross modes). Generic metric theories of gravity,
however, can allow for up to four additional polarizations: the
x and y vector modes and the breathing and longitudinal scalar
modes [12–14]. The observation of vector or scalar modes
would be in direct conflict with general relativity, and so the
direct measurement of gravitational-wave polarizations offers
a promising avenue by which to test theories of gravity [14].

Recently, the Advanced LIGO-Virgo network has suc-
ceeded in making the first direct statement about the polar-
ization of gravitational waves. The gravitational-wave sig-

nal GW170814, observed by both the Advanced LIGO and
Virgo detectors, significantly favored a model assuming pure
tensor polarization over models with pure vector or scalar
polarizations [4, 15]. In general, however, the ability of
the Advanced LIGO-Virgo network to study the polariza-
tion of gravitational-wave transients is limited by several fac-
tors. First, the LIGO-Hanford and LIGO-Livingston detec-
tors are nearly co-oriented, preventing Advanced LIGO from
sensitively measuring more than a single polarization mode
[4, 9, 10, 15]. Second, at least five detectors are needed to
fully characterize the five polarization degrees of freedom ac-
cessible to quadrupole detectors. Quadrupole detectors (those
measuring differential arm motion) have degenerate responses
to breathing and longitudinal modes, and can therefore mea-
sure only a single linear combination of scalar breathing and
longitudinal polarizations [14–17].

Beyond compact binary mergers, another target for Ad-
vanced LIGO and Virgo is the stochastic gravitational-wave
background. An astrophysical stochastic background is ex-
pected to arise from the population of distant compact bi-
nary mergers [18–23], core-collapse supernovae [24–26], and
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rapidly-rotating neutron stars [27–29]. In particular, the astro-
physical background from compact binary mergers is likely
to be detected by LIGO and Virgo at their design sensitivi-
ties [23]. A background of cosmological origin may also be
present, due to cosmic strings [30, 31], inflation [32–35], and
phase transitions in the early Universe [32, 33, 36–38].

Long duration gravitational-wave sources, like the stochas-
tic background [39–42] or persistent signals from rotating
neutron stars [43–45], offer a viable means of searching
for non-standard gravitational-wave polarizations. Unlike
gravitational-wave transients, which sample only a single
point on the LIGO/Virgo antenna response patterns, long-
duration signals contain information about many points on the
antenna patterns. Long-duration signals therefore enable the
direct measurement of gravitational-wave polarizations using
the current generation of gravitational-wave detectors, with-
out the need for additional detectors or an independent elec-
tromagnetic counterpart. The stochastic background is thus
a valuable laboratory for polarization-based tests of general
relativity [42].

In this Letter, we present the first direct search for vector
and scalar polarizations in the stochastic gravitational-wave
background. We analyze data recorded during Advanced
LIGO’s first observing run (O1), which has previously been
searched for both isotropic and anisotropic backgrounds of
standard tensor polarizations [46, 47]. First, we describe the
O1 data set and its initial processing. We then discuss the
stochastic analysis, including the construction of Bayesian
odds that indicate the non-detection of a generically-polarized
stochastic background in our data. Finally, we present upper
limits on the joint contributions of tensor, vector, and scalar
polarizations to the stochastic gravitational-wave background.
Additional details and results are presented in the Supplemen-
tal Materials, available online.

Data – We search Advanced LIGO data for evidence of
a stochastic background, analyzing data recorded between
September 18, 2015 15:00 UTC and January 12, 2016 16:00
UTC during LIGO’s O1 observing run. We do not include
several days of O1 data recorded before September 18, but
this has no impact on our analysis or results. The initial data
processing proceeds as in previous analyses [46, 48]. Time-
domain strain measurements from the LIGO-Hanford and
LIGO-Livingston detectors are down-sampled from 16384 Hz
to 4096 Hz and divided into half-overlapping 192 second seg-
ments. Each time segment is then Hann-windowed, Fourier
transformed, and high-pass filtered using a 16th order Butter-
worth filter with a knee frequency of 11 Hz. Finally, the strain
data is coarse-grained to a frequency resolution of 0.03125 Hz
and restricted to a frequency band from 20 – 1726 Hz. Within
each segment, we compute the LIGO-Hanford and LIGO-
Livingston strain auto-power spectral densities using Welch’s
method [49].

Standard data quality cuts are performed in both the time
and frequency domains to mitigate the effects of non-Gaussian
instrumental and environmental noise [46, 47, 50]. In the
time domain, 35% of data is discarded due to non-stationary

detector noise, leaving 29.85 days of coincident observing
time. In the frequency domain, an additional 21% of data is
discarded to remove correlated narrowband features between
LIGO-Hanford and LIGO-Livingston [46, 47, 50]. These nar-
rowband correlations are due to a variety of sources, includ-
ing injected calibration signals, power mains, and GPS timing
systems. To estimate possible contamination due to terrestrial
Schumann resonances [51–53], we additionally monitored co-
herences between magnetometers installed at both detectors.
Schumann resonances were found to contribute negligibly to
the stochastic measurement [46, 50].

We assume conservative 4.8% and 5.4% calibration uncer-
tainties on the strain amplitude measured by LIGO-Hanford
and LIGO-Livingston, respectively [54]. Phase calibration is a
much smaller source of uncertainty and is therefore neglected
[46, 55]. All results below are obtained after marginalization
over amplitude uncertainties; see the Supplemental Materials
for details.

Method – To search for a generically-polarized stochastic
background, we will apply the methodology presented in Ref.
[42]. This method is summarized below, and additional details
are discussed in the Supplemental Materials.

The stochastic background may be detected in the form of
a correlated signal between pairs of gravitational-wave detec-
tors. We will assume that the stochastic background is sta-
tionary, isotropic, and Gaussian. For simplicity, we also as-
sume that the background is uncorrelated between polariza-
tion modes. Finally, we assume that the tensor and vector
contributions to the background are individually unpolarized
(with equal contributions, for instance, from the tensor plus
and cross modes). Under these assumptions, the expected
cross-correlation between two detectors in the presence of a
stochastic background is of the form [39–41, 56]

〈s̃1(f)s̃∗2(f ′)〉 = δ(f − f ′)
∑
A

γA(f)HA(f). (1)

Here, HA(f) encodes the spectral shapes of the net tensor
(A = T ), vector (V ), and scalar (S) contributions to the
stochastic background. The detectors’ geometry is encoded
in the overlap reduction functions γA(f), which quantify the
sensitivity of the detector pair to isotropic backgrounds of
each polarization [39, 42, 56, 57]. The overlap reduction func-
tions for LIGO’s Hanford-Livingston baseline are shown in
Fig. 1. Because tensor, vector, and scalar modes each have
distinct overlap reduction functions, the shape of a measured
cross-correlation spectrum [Eq. (1)] will reflect the polariza-
tion content of the stochastic background [39, 42]. Of the
three curves in Fig. 1, the scalar overlap reduction function
is smallest in magnitude. This reflects the fact that the Ad-
vanced LIGO detectors have weaker geometrical responses to
scalar-polarized gravitational waves than tensor- and vector-
polarized signals.

Certain theories may violate one or more of the assump-
tions listed above. For example, the stochastic background
is unlikely to remain strictly unpolarized in the presence of
gravitational-wave birefringence, as in Chern-Simons gravity
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FIG. 1. Overlap reduction functions representing the Advanced
LIGO network’s sensitivity to stochastic backgrounds of tensor
(blue), vector (red), and scalar-polarized (green) gravitational waves.

[58–60]. Theories violating Lorentz invariance, meanwhile,
may yield a departure from isotropy [61, 62]. The violation
of one or more of our assumptions would likely reduce our
sensitivity to the stochastic background.

Conventionally, gravitational-wave backgrounds are pa-
rameterized by their energy-density spectra [56, 63]

Ω(f) =
1

ρc

dρGW

d ln f
, (2)

where dρGW is the energy density in gravitational waves per
logarithmic frequency interval d ln f . We normalize Eq. (2)
by ρc = 3H2

0 c
2/8πG, the closure energy density of the

Universe. Here, c is the speed of light, G is Newton’s
constant, and H0 is the Hubble constant; we take H0 =
68 km s−1 Mpc−1 [64]. The precise relationship between
Ω(f) and H(f) is theory-dependent. Under any theory obey-
ing Isaacson’s formula for the stress-energy of gravitational
waves [65], the energy-density spectrum is related to H(f)
by [42, 56, 66]

Ω(f) =
20π2

3H2
0

f3H(f). (3)

Eq. (3) does not hold in general, however [66]. For ease of
comparison with previous studies, we will instead take Eq.
(3) as the definition of the canonical energy-density spectra
ΩA(f). The canonical energy-density spectra can be directly
identified with true energy densities under any theory obeying
Isaacson’s formula. For other theories, ΩA(f) can instead be
understood simply as a function of the detector-frame observ-
able HA(f).

Within each 192s time segment (indexed by i), we form an
estimator of the visible cross-power between LIGO-Hanford
and LIGO-Livingston:

Ĉi(f) =
1

∆T

20π2

3H2
0

f3s̃∗1,i(f)s̃2,i(f), (4)

normalized such that the estimator’s mean and variance are
[42]

〈Ĉi(f)〉 =
∑
A

γA(f)ΩA(f) (5)

and

σ2
i (f) =

1

2∆Tdf

(
10π2

3H2
0

)2

f6P1,i(f)P2,i(f), (6)

respectively. Within Eqs. (4) and (6), ∆T is the segment dura-
tion, df the frequency bin-width, and PI,i(f) is the one-sided
auto-power spectral density of detector I in time-segment i,
defined by

〈s̃∗I,i(f)s̃I,i(f
′)〉 =

1

2
δ(f − f ′)PI,i(f). (7)

The normalization of Ĉ(f) is chosen such that the contribu-
tion from each polarization appears symmetrically in Eq. (5);
this choice differs by a factor of γT (f) from the point esti-
mate Ŷ (f) typically used in stochastic analyses [42, 46, 48].
Finally, the cross-power estimators from each segment are op-
timally combined via a weighted sum to form a single cross-
power spectrum for the O1 observing run,

Ĉ(f) =

∑
i Ĉi(f)σ−2

i (f)∑
i σ
−2
i (f)

, (8)

with the corresponding variance

σ−2(f) =
∑
i

σ−2
i (f). (9)

Note that, unlike transient gravitational-wave searches,
searches for the stochastic background are well-described by
Gaussian statistics due to the large number of time-segments
contributing to the final cross-power spectrum [67].

Given the measured cross-power spectrum Ĉ(f), we com-
pute Bayesian evidences for various hypotheses describ-
ing the presence and polarization of a possible stochas-
tic signal within our data. Evidences are computed using
PyMultiNest [68], a Python interface to the nested sam-
pling code MultiNest [69–73]. We consider several differ-
ent hypotheses:

• Gaussian noise (N): No stochastic signal is present in
our data, and the measured cross-power is due entirely
to Gaussian noise.

• Signal (SIG): A stochastic background of any polariza-
tion(s) is present.

• Tensor-polarized (GR): The data contains a purely
tensor-polarized stochastic signal, consistent with gen-
eral relativity.

• Non-standard polarizations (NGR): The data contains
a stochastic signal with vector and/or scalar contribu-
tions.
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These evidences are combined to form two Bayesian odds
[42]:

• Odds OSIG
N for the presence of a stochastic signal rela-

tive to pure noise.

• Odds ONGR
GR for the presence of non-standard polariza-

tions versus ordinary tensor modes.

OSIG
N quantifies evidence for the detection of a generically-

polarized stochastic background, and generally depends only
on a background’s total power, not its polarization content.
ONGR

GR indicates if the background’s polarization is inconsistent
with general relativity. In particular, the sensitivity ofONGR

GR to
non-standard polarizations is not significantly affected by the
strength of any tensor polarization which may also be present
[42]. See the Supplemental Materials for further details about
our hypotheses and odds ratio construction, including the pri-
ors placed on these hypotheses and their parameters.

Results – Using the cross-power measured between LIGO-
Hanford and LIGO-Livingston during Advanced LIGO’s O1
observing run, we obtain odds lnOSIG

N = −0.53 between Sig-
nal and Gaussian noise hypotheses, indicating a non-detection
of the stochastic gravitational-wave background. Addition-
ally, we find lnONGR

GR = −0.25, consistent with values ex-
pected in the presence of Gaussian noise [42]. (We will use
ln and log to denote base-e and base-10 logarithms, respec-
tively.)

Given our non-detection, we place upper limits on the pres-
ence of tensor, vector, and scalar contributions to the stochas-
tic background. To simultaneously constrain the properties
of each polarization, we will restrict our analysis to a model
assuming the presence of tensor, vector, and scalar-polarized
signals (this is the TVS hypothesis in the notation of the Sup-
plemental Materials). Under this hypothesis, we model the
total canonical energy-density of the stochastic background
as a sum of power laws:

Ω(f) = ΩT0

(
f

f0

)αT

+ ΩV0

(
f

f0

)αV

+ ΩS0

(
f

f0

)αS

. (10)

Here, ΩA0 is the amplitude of polarizationA at a reference fre-
quency f0, and αA is the corresponding spectral index. We
take f0 = 25 Hz [46]. Standard tensor-polarized stochas-
tic backgrounds are predicted to be well-described by power
laws in the Advanced LIGO band. The expected astrophysi-
cal background from compact binary mergers, for instance, is
well-modeled by a power law with αT = 2/3 [18–20, 74].

We will consider two different prior distributions for
the background amplitudes: a log-uniform prior between
10−13 ≤ ΩA0 ≤ 10−5 and a uniform prior between 0 ≤
ΩA0 ≤ 10−5. The former (log-uniform) corresponds to the
prior adopted in Ref. [42]. The latter (uniform) implicitly re-
produces the maximum likelihood analysis used in previous
studies, and is included to allow direct comparison to previ-
ous stochastic results [46, 48]. The upper amplitude bound
(10−5) is consistent with limits placed by Initial LIGO and

TABLE I. 95% credible upper limits on the log-amplitudes of ten-
sor, vector, and scalar modes in the stochastic background at refer-
ence frequency f0 = 25 Hz. We assume an energy-density spec-
trum in which all three modes are present, and present limits follow-
ing marginalization over the spectral index of each component [see
Eq. (10)]. We show results for two different amplitude priors: a
log-uniform prior (dp/d log Ω0 ∝ 1; top row) and a uniform prior
(dp/dΩ0 ∝ 1; bottom row). Additional parameter estimation results
are shown in the Supplemental Materials.

Prior log ΩT
0 log ΩV

0 log ΩS
0 ΩT

0 ΩV
0 ΩS

0

Log-Uniform −7.25 −7.20 −6.96 5.6× 10−8 6.4× 10−8 1.1× 10−7

Uniform −6.70 −6.59 −6.07 2.0× 10−7 2.5× 10−7 8.4× 10−7

Virgo [48]. In order to be normalizable, the log-uniform prior
requires a non-zero lower bound; although parameter esti-
mation results will depend on the specific choice of lower
bound, in general this dependence is weak [44]. Our lower
bound (10−13) is chosen to encompass small energy densities
well below the reach of LIGO and Virgo at design sensitivity
[23, 46].

Following Ref. [42], we take our spectral index priors to
be p(αA) ∝ 1 − |αA|/αMAX for |αA| ≤ αMAX and p(αA) =
0 elsewhere. We take αMAX = 8. This prior preferentially
weights flat energy-density spectra, penalizing spectra which
are steeply positively or negatively sloped in the Advanced
LIGO band.

We perform parameter estimation using posterior samples
obtained by PyMultiNest. Figure 2 shows posteriors on
the tensor, vector, and scalar background amplitudes, under
each choice of amplitude prior. The dashed and dot-dashed
curves are proportional to the log-uniform and uniform am-
plitude priors, respectively; each prior curve has been renor-
malized by a constant factor to illustrate consistency between
our priors and posteriors at small ΩA0 . We can now place up-
per limits on the amplitude of each component at f0 = 25 Hz.
The 95% credible upper limits on the amplitude of each polar-
ization are listed in Table I for each choice of prior (for conve-
nience, we list limits in terms of both log ΩA0 and ΩA0 ). As no
signal was detected, our posteriors on the spectral indices αA
are dominated by our prior. Full parameter estimation results,
including posteriors on αA, are given in the Supplemental Ma-
terials.

Care should be taken when comparing these upper limits to
those obtained in previous analyses (e.g. Table I of Ref. [46]).
Three important distinctions should be kept in mind. First, the
amplitude posteriors in Fig. 2 (and hence the limits in Table
I) are obtained after marginalization over spectral index. Pre-
vious analysis, on the other hand, typically assume specific
fixed slopes or present exclusion curves in the ΩT0 −αT plane
[46]. Second, Bayesian upper limits may be strongly influ-
enced by one’s adopted prior. Uniform amplitude priors, for
instance, preferentially weight larger signals and hence yield
larger upper limits, while log-uniform priors support smaller
signal amplitudes, giving tighter limits. Finally, our results are
obtained under a specific signal hypothesis allowing simulta-
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FIG. 2. Posteriors on the tensor (left), vector (center), and scalar (right) stochastic background amplitudes at reference frequency f0 = 25
Hz. Within each subplot, dark posteriors show results obtained assuming log-uniform priors (dashed curves) on ΩA

0 , while light posteriors
show results corresponding to uniform amplitude priors (dot-dashed curves). The prior curves shown here have been renormalized by constant
factors to illustrate consistency with the posteriors below our measured upper limits. These posteriors correspond to the 95% credible upper
limits listed in Table I. Relative to the log-uniform priors, the uniform amplitude priors preferentially weight loud stochastic signals and
therefore yield more conservative upper limits.

neously for tensor, vector, and scalar polarizations. These lim-
its are not generically identical to those that would be obtained
if we allowed for tensor modes alone. In the Supplemental
Materials, we have tabulated upper limits under a variety of
signal hypotheses allowing for each unique combination of
gravitational-wave polarizations (our results, though, do not
vary considerably between hypotheses). We have addition-
ally verified that, under the GR (tensor-only) hypothesis with
delta-function priors on the background’s spectral index, we
recover upper limits identical to results previously published
in Ref. [46].

Discussion – The direct measurement of gravitational-wave
polarizations may open the door to powerful new tests of grav-
ity. Such measurements largely depend only on the geome-
try of a gravitational wave’s strain and its direction of prop-
agation, not on the details of any specific theory of gravity.
Recently, the Advanced LIGO-Virgo observation of the bi-
nary black hole merger GW170814 has enabled the first direct
study of gravitational-wave polarizations [4, 15]. While LIGO
and Virgo are limited in their ability to discern the polariza-
tion of gravitational-wave transients, the future construction
of additional detectors, like KAGRA [75] and LIGO-India
[76], will help to break existing degeneracies and allow for
increasingly precise polarization measurements.

Long-duration signals offer further opportunities to study
gravitational-wave polarizations. Detections of continuous
sources like rotating neutron stars [44, 45] and the stochas-
tic background [42] will offer the ability to directly mea-
sure and/or constrain gravitational-wave polarizations, even
in the absence of additional detectors. In this Letter, we
have conducted a search for a generically-polarized stochastic
background of gravitational waves using data from Advanced
LIGO’s O1 observing run. Although we find no evidence for
the presence of a background (of any polarization), we have
succeeded in placing the first direct upper limits (listed in Ta-
ble I) on the contributions of vector and scalar modes to the

stochastic background.
Acknowledgements– The authors gratefully acknowledge

the support of the United States National Science Founda-
tion (NSF) for the construction and operation of the LIGO
Laboratory and Advanced LIGO as well as the Science and
Technology Facilities Council (STFC) of the United King-
dom, the Max-Planck-Society (MPS), and the State of Nieder-
sachsen/Germany for support of the construction of Advanced
LIGO and construction and operation of the GEO600 detec-
tor. Additional support for Advanced LIGO was provided
by the Australian Research Council. The authors gratefully
acknowledge the Italian Istituto Nazionale di Fisica Nucle-
are (INFN), the French Centre National de la Recherche Sci-
entifique (CNRS) and the Foundation for Fundamental Re-
search on Matter supported by the Netherlands Organisa-
tion for Scientific Research, for the construction and oper-
ation of the Virgo detector and the creation and support of
the EGO consortium. The authors also gratefully acknowl-
edge research support from these agencies as well as by
the Council of Scientific and Industrial Research of India,
the Department of Science and Technology, India, the Sci-
ence & Engineering Research Board (SERB), India, the Min-
istry of Human Resource Development, India, the Spanish
Agencia Estatal de Investigación, the Vicepresidència i Con-
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de la Generalitat Valenciana, the National Science Centre of
Poland, the Swiss National Science Foundation (SNSF), the
Russian Foundation for Basic Research, the Russian Science
Foundation, the European Commission, the European Re-
gional Development Funds (ERDF), the Royal Society, the
Scottish Funding Council, the Scottish Universities Physics
Alliance, the Hungarian Scientific Research Fund (OTKA),
the Lyon Institute of Origins (LIO), the Paris Île-de-France
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Supplement To: A Search for Tensor, Vector, and Scalar Polarizations in the Stochastic
Gravitational-Wave Background

Abbott, B. P. et al.
(The LIGO Scientific Collaboration and Virgo Collaboration)

Sensitive Frequency Bands

Although this search utilizes the full 20-1726 Hz frequency
band, different frequency sub-bands contribute variously to
our overall search sensitivity. To illustrate this, we can in-
vestigate the contribution from each frequency bin to a back-
ground’s optimal signal-to-noise ratio (SNR), given by [56]

SNR2 =
3H2

0

10π2
2T

∫ ∞
0

[∑
A γA(f)ΩA(f)

]2
f6P1(f)P2(f)

df. (A1)

Up to additive constants, SNR and OSIG
N are related by

lnOSIG
N ∼ SNR2/2.

Using the measured O1 search sensitivity, Fig. 3 illustrates
the cumulative fraction of the squared-SNR of several repre-
sentative hypothetical backgrounds, obtained by integrating
Eq. (A1) from 20 Hz up to a cutoff frequency f . Results
are shown for purely tensor- (blue), vector- (red), and scalar-
polarized (green) backgrounds, with spectral indices α = −8,
0, and 8.

As seen in Fig. 3, the most sensitive frequency band for a
given background is highly dependent on the background’s
spectral index. For steeply negatively-sloped backgrounds
(α = −8), the majority of the measured SNR is obtained at
very low frequencies between ∼ 20− 30 Hz. Meanwhile, the
∼ 20−100 Hz band is most sensitive to flat backgrounds, and
high frequencies above∼ 700 Hz are most sensitive to steeply
positively-sloped backgrounds. Although trends are generally
independent of polarization, Fig. 3 does show somewhat dif-
ferent behaviors for tensor, vector, and scalar modes. These
differences are due to the different overlap reduction functions
for each polarization sector.

Model Construction

Here, we briefly summarize the construction of our Sig-
nal, Gaussian noise, Non-standard polarization, and Tensor-
polarization hypotheses; see Ref. [42] for further details.

Gaussian noise: We assume that no signal is present and the
observed cross-power Ĉ(f) is Gaussian distributed about zero
with variance given by Eqs. (6) and (9). Although Advanced
LIGO instrumental noise is neither stationary nor Gaussian,
searches for the stochastic background are nonetheless well-
described by Gaussian statistics due to the large number of
time-segments combined to form the final cross-power spec-
trum Ĉ(f) [67].

Signal: The Signal hypothesis is the union of seven sub-
hypotheses, which together allow for each unique combina-
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FIG. 3. Cumulative squared signal-to-noise ratios as a function of
frequency for hypothetical backgrounds of tensor (blue), vector (red),
scalar (green) polarizations with spectral indices α = −8, 0, and 8
(solid, dashed, and dot-dashed, respectively). The three α = −8
curves lie nearly on top of one another, as do the three α = 8 curves.
The Advanced LIGO network is most sensitive to negatively-sloped
backgrounds at low frequencies, while high frequencies contribute
the most sensitively to positively-sloped backgrounds.

tion of tensor, vector, and scalar polarizations. The “TVS”
sub-hypothesis, for example, assumes the simultaneous pres-
ence of all polarization modes, with a canonical energy-
density spectrum of the form:

ΩTVS(f) = ΩT0

(
f

f0

)αT

+ ΩV0

(
f

f0

)αV

+ ΩS0

(
f

f0

)αS

.

(A2)
The “TS” sub-hypothesis, meanwhile, assumes only the exis-
tence of tensor and scalar modes:

ΩTS(f) = ΩT0

(
f

f0

)αT

+ ΩS0

(
f

f0

)αS

. (A3)

In this fashion, we can construct seven unique sub-
hypotheses: {T,V,S,TV,TS,VS,TVS}. The union of these
seven possibilities is the Signal hypothesis.

Non-standard polarization (NGR) – Analogous to the Sig-
nal hypothesis above, this is the union of the six sub-
hypotheses {V,S,TV,TS,VS,TVS} containing non-standard
polarizations.

Tensor-polarization (GR) – We assume the stochastic back-
ground is present and purely-tensor polarized, with the
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energy-density spectrum

ΩGR = ΩT0

(
f

f0

)αT

; (A4)

this hypothesis is identical the “T” signal sub-hypothesis
above.

Odds Ratios

Here, we review the procedure for constructing odds OSIG
N

between Signal and Gaussian noise hypotheses, and odds
ONGR

GR between the NGR and GR hypotheses. As above, see
Ref. [42] for further details.

The odds between two hypothesesM and N is the ratio of
posterior probabilities for each hypothesis, given data d:

OMN =
p(M|d)

p(N|d)

= BMN
π(M)

π(N )
,

(A5)

where BMN is the Bayes factor between the two hypotheses
and π(M) and π(N ) are the prior probabilities on M and
N , respectively. The ratio π(M)/π(N ) is known as the prior
odds.

To obtain OSIG
N , we first compute the Bayes factor BAN be-

tween each Signal sub-hypothesis A ∈ {T,V,S, ...} and the
Noise hypothesis. Because each sub-hypothesis is indepen-
dent, OSIG

N is then just the sum

OSIG
N =

∑
A∈ SIG

OAN

=
∑
A∈ SIG

BAN
π(A|SIG)π(SIG)

π(N)
,

(A6)

where we have expanded π(A) = π(A|SIG)π(SIG). We
choose equal prior probabilities on the Signal and Noise hy-
potheses, such that π(SIG)/π(N) = 1. Within the Signal hy-
pothesis, we assign equal probabilities to each sub-hypothesis,
giving π(A|SIG) = 1/7.

The odds ONGR
GR is analogously given by

ONGR
GR =

∑
A∈ NGR

BAGR

π(A|NGR)π(NGR)

π(GR)
. (A7)

We set π(NGR)/π(GR) = 1 and again choose equal prior
probabilities for each sub-hypotheses within NGR, such that
π(A|NGR) = 1/6.

Our chosen prior odds between hypotheses are necessarily
somewhat arbitrary, and different choices will yield different
values of OSIG

N and ONGR
GR . For completeness, Table II pro-

vides the Bayes factors between each signal sub-hypothesis
and Gaussian noise. These Bayes factors allow readers to re-
compute odds OSIG

N and ONGR
GR using different choices of prior

odds.

TABLE II. Bayes factors between each signal sub-hypothesis and
the Gaussian noise hypothesis, as computed by MultiNest. These
Bayes factors are combined following Eqs. (A6) and (A7) to obtain
odds OSIG

N between Signal and Gaussian noise hypotheses, and odds
ONGR

GR between NGR and GR hypotheses.

Hypothesis lnBAN
T −0.33

V −0.33

S −0.31

TV −0.66

TS −0.65

VS −0.65

TVS −0.99

Calibration Uncertainty

The strain measured by LIGO-Hanford and LIGO-
Livingston is not known perfectly, but is subject to non-
zero calibration uncertainty. For imperfectly calibrated data,
the cross-power measurements Ĉ(f) are not estimators of∑
A γA(f)ΩA(f), but rather of λ

∑
A γA(f)ΩA(f), where λ

is some multiplicative factor [55]. Perfect calibration would
yield λ = 1, but in general λ is unknown. We include the cal-
ibration factor λ as an additional parameter in MultiNest,
so that the likelihood function becomes

L(Ĉ(f)|ΩA0 , αA, λ)

∝
∏
f

exp

−
(
Ĉ(f)− λ∑A γA(f)ΩA0 (f/f0)αA

)2

2σ2(f)

 ,
(A8)

with Ĉ(f) and σ2(f) given by Eqs. (8) and (9), respectively.
We place a Gaussian prior on λ, centered at λ = 1:

π(λ) ∝ exp

(
− (λ− 1)

2

2ε2

)
. (A9)

The standard deviation ε encapsulates the amplitude calibra-
tion uncertainty. Within the 20-1726 Hz frequency band,
LIGO-Hanford and LIGO-Livingston have maximum esti-
mated amplitude uncertainties of 4.8% and 5.4%, respec-
tively [54]. These uncertainty estimates have been improved
relative to the the uncertainties previously adopted in Refs.
[46, 47, 50]. For our analysis, we take ε = 0.072, the quadra-
ture sum of the Hanford and Livingston uncertainties [46]. All
results are given after marginalization over λ.

In the above prescription we have made two simplifying
assumptions. First, we have neglected phase calibration un-
certainty, which is expected to be a sub-dominant source of
uncertainty in the stochastic analysis [54, 55]. Secondly, al-
though calibration uncertainties are frequency-dependent, for
simplicity we adopt uniform amplitude uncertainties across all
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frequencies. Our quoted amplitude uncertainties are conserva-
tive, encompassing the largest calibration uncertainties in the
stochastic sensitivity band [46, 54].

Detailed Parameter Estimation Results

In our Letter, we presented marginalized posteriors for the
tensor, vector, and scalar background amplitudes under the
“TVS” hypothesis. In Fig. 4 we show the full six-dimensional
parameter estimation results obtained when choosing log-
uniform amplitude priors. Diagonal subplots show marginal-
ized posteriors on the amplitudes and slopes of each polar-
ization, while the interior subplots show joint posteriors be-
tween each pair of parameters. The spectral index posteriors
(not shown in the main Letter) are largely consistent with our
choice of prior, but indicate a slight bias against large positive
spectral indices. This reflects the fact that Advanced LIGO is
most sensitive to backgrounds of large, positive slopes [42].
The non-detection of a stochastic background therefore con-
strains larger amplitudes to have small and/or negative spec-

tral indices; see, for instance, the joint log ΩT0 – αT posterior
in Fig. 4.

Figure 5, meanwhile, shows full parameter estimation re-
sults when alternatively assuming uniform amplitude priors.
Here, the posterior preference towards small or negative spec-
tral indices is far more pronounced. The joint 2D posteriors
(e.g. ΩT0 – αT ) again illustrate that large, positive slopes are
preferentially ruled out in case of large background ampli-
tudes.

As stated in the Letter, upper limits obtained under one hy-
pothesis are not, in general, equal to those obtained under
some different hypothesis. While we presented upper lim-
its only for the TVS hypothesis, results from other hypothe-
ses may be desired as well (the TS results, for instance, are
best suited for comparison to predictions from scalar-tensor
theories). In Tables III and IV we have therefore listed the
95% credible upper limits corresponding to each signal sub-
hypothesis, for both log-uniform and uniform amplitude pri-
ors. We have also listed 95% credible bounds on spectral in-
dices for each choice of amplitude prior.
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FIG. 4. Posterior probability distributions for the power-law amplitudes and slopes of tensor, vector, and scalar contributions to the stochastic
background, assuming the TVS hypothesis and log-uniform amplitude priors. The subplots along the diagonal show marginalized posteriors
for each parameter; dashed curves show the corresponding prior. The marginalized amplitude posteriors yield the 95% credible upper limits
given in Table I. The remaining subplots, meanwhile, show the two-dimensional posteriors between each pair of parameters, as well as contours
containing the central 68% and 95% posterior probability.

TABLE III. Parameter estimation results for each signal sub-hypothesis, obtained with log-uniform priors on the amplitude of each polarization
component. Columns 2-4 give 95% credible upper limits on log ΩA

0 , and columns 5-7 show the corresponding limits on ΩA
0 for convenience.

Columns 8-10, meanwhile, show the central 95% credible bounds on spectral indices αA. The parameter estimation results for the TVS
sub-hypothesis (final row) correspond to those given in Table I of the main text.

Hypothesis log ΩT,95%
0 log ΩV,95%

0 log ΩS,95%
0 ΩT,95%

0 ΩV,95%
0 ΩS,95%

0 αT αV αS

T −7.21 - - 6.2× 10−8 - - −0.4+5.5
−5.9 - -

V - −7.16 - - 7.0× 10−8 - - −0.4+4.9
−5.8 -

S - - −6.86 - - 1.4× 10−7 - - −0.5+5.4
−5.8

TV −7.25 −7.16 - 5.6× 10−8 7.0× 10−8 - −0.4+5.6
−5.9 −0.4+4.8

−5.9 -

TS −7.25 - −6.93 5.7× 10−8 - 1.2× 10−7 −0.4+5.5
−5.9 - −0.5+5.4

−5.8

VS - −7.17 −6.90 - 6.7× 10−8 1.3× 10−7 - −0.4+5.0
−5.9 −0.5+5.4

−5.8

TVS −7.25 −7.20 −6.96 5.6× 10−8 6.4× 10−8 1.1× 10−7 −0.4+5.5
−5.9 −0.4+4.8

−5.9 −0.6+5.4
−5.8
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FIG. 5. As in Fig. 5, but assuming a uniform prior on background amplitudes. The marginalized amplitude posteriors yield the 95% credible
upper limits given in Table I.

TABLE IV. Parameter estimation results for each signal sub-hypothesis, obtained with uniform priors on the background amplitudes. Columns
are defined as in Table III above. The parameter estimation results for the TVS sub-hypothesis (final row) correspond to those given in Table I
of the main text.

Hypothesis log ΩT,95%
0 log ΩV,95%

0 log ΩS,95%
0 ΩT,95%

0 ΩV,95%
0 ΩS,95%

0 αT αV αS

T −6.60 - - 2.5× 10−7 - - −0.4+3.8
−4.7 - -

V - −6.48 - - 3.3× 10−7 - - −1.5+3.3
−4.9 -

S - - −5.97 - - 1.1× 10−6 - - −2.6+4.1
−4.0

TV −6.66 −6.55 - 2.2× 10−7 2.9× 10−7 - −1.8+3.9
−4.7 −1.7+3.6

−4.9 -

TS −6.65 - −6.03 2.2× 10−7 - 9.3× 10−7 −1.7+3.8
−4.7 - −2.6+4.0

−4.1

VS - −6.53 −6.04 - 3.0× 10−7 9.2× 10−7 - −1.7+3.6
−4.7 −2.8+4.1

−4.0

TVS −6.70 −6.59 −6.07 2.0× 10−7 2.5× 10−7 8.4× 10−7 −1.7+3.8
−4.8 −1.7+3.7

−4.7 −2.6+4.0
−4.1
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