Characterization of CgX Tautomerase and Mutants with Acetylenecarboxylic Acid

Daniel Chi, Amaya Sirinimal, Hadi Nayebi, James Geiger and Karen Draths
Department of Chemistry, Michigan State University, 578 S. Shaw Ln, East Lansing MI 48824

Background
- CgX, a tautomerase native to Corynebacterium glutamicum, catalyzes the hydration and subsequent decarboxylation of acetylenecarboxylic acid (ACA).
- ACA can be formed from CH₄ and CO₂

Objectives
- The main objective is to characterize CgX mutants to determine enzyme activities and product ratios.
- CgX catalyzes the following reaction.

\[\text{CO}_2 + \text{H}_2 \xrightarrow{\text{CgX}} \text{HCO}_2 \text{H} \rightarrow \text{MCA} + \text{AcH} \]

Methods
- CgX mutations performed using Q5 site-directed mutagenesis.
- BL21(DE3) with a T7 promoter system for protein expression.
- Protein purification using AKTA Start FPLC.
- Coupled enzyme assay carried out on SpectraMax iD3 plate reader.

Results
- CgX activity on ACA revealed malonic semialdehyde, acetaldehyde (and hydrates).

Figure 1: ^1H NMR of WT, Y103F, and R70A

Figure 2: Coupled Enzyme Assay Reaction

Table 1: Specific Activities

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>+ MSAD (μmol/min·mg)</th>
<th>− MSAD (μmol/min·mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CgX</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td>Y103A</td>
<td>0.72</td>
<td>0.41</td>
</tr>
<tr>
<td>Y103F</td>
<td>2.2</td>
<td>1.4</td>
</tr>
<tr>
<td>H28A</td>
<td>0.23</td>
<td>0.091</td>
</tr>
<tr>
<td>E114A</td>
<td>0.064</td>
<td>0.035</td>
</tr>
</tbody>
</table>

*R70K, R73K, R70A, and R73A were determined to be inactive.

Analysis
- Enzyme activities as determined by NMR and UV assays:
 - Active: WT, Y103A, Y103F, H28A*, E114A
 - Inactive: R70K, R73K, R70A, R73A
 - H28A NMR is not available, but it is predicted to be similar to the other active enzymes due to the coupled enzyme assay.
- Table 2 shows the product ratio of MSA to AcH from the enzyme assay.

Table 2: Product Ratios

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Product Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CgX</td>
<td>MSA: AcH 17%:83%</td>
</tr>
<tr>
<td>Y103A</td>
<td>43%:57%</td>
</tr>
<tr>
<td>Y103F</td>
<td>36%:64%</td>
</tr>
<tr>
<td>H28A</td>
<td>60%:40%</td>
</tr>
<tr>
<td>E114A</td>
<td>45%:55%</td>
</tr>
</tbody>
</table>

*Calculated from Table 1.

Conclusion
- WT remains the most active.
- Mutations on active site residues result in decreased activity.
- H28A has a higher product ratio of MSA: AcH compared to other mutants.
- All R70 and R73 mutants are inactive, confirming that these residues are critical for activity.

Acknowledgments
This material is based upon work supported by the National Science Foundation under Grant No. (CHE-1861176). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Many thanks to Professor Karen Draths and Amaya Sirinimal for their critical role and support and to Michigan State University Department of Chemistry for this opportunity.