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Extending natural mates in Euclidean 3-space and
applications to Bertrand pairs

Alexander Navarro and Yun Myung Oh

ABSTRACT. In Euclidean 3-space, a family of curves, the co-successor, is mo-
tivated and then introduced in relation to the natural mate. A complete
characterization of co-successors is proved, followed by an application of the
co-successor towards describing Bertrand curves and their mates.

Introduction

Consider a unit-speed curve o : I — E3. « has Frenet-Serret apparatus
{k,7,T, N, B}, which satisfies the Frenet-Serret equations, expressed in matrix form
as:

T’ 0 Kk 0O |T
N|=|-« 0 7| |[N|,
B’ 0 T 0| |B

where xk > 0.
DEFINITION 0.1. We say a curve is Frenet if its torsion is nowhere zero (1 #0).

DEFINITION 0.2. We define the natural mate of the unit speed curve o, @ : 1 —
E3, to be the unit speed curve whose tangent vector T(s) = N(s). [5]

It has been shown that the Frenet-Serret apparatus {&,7, T, N, B} of the nat-
ural mate is given by

St - o 5* . 5
F=w, F=ow=_~"T T-N N=2, B=2
w w

where w = VK2 + 72, 0 = T/’“”w_—g"“/T, 0 = 7T 4+ kB, and 0* = —kT + 7B. Extensive

studies have been done into the relationships of curves with their natural mates.
However, a direction that has been relatively unexplored concerns the relationships
between curves that have the same natural mate. We motivate and then define the
co-successor of a curve, and after giving several immediate relationships between
co-successors, we look at a simple application to Bertrand pairs.

Throughout this paper, we will assume that « is a unit speed curve with £ > 0
(equivalently, o # 0) unless otherwise stated. We take the convention that if a
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mates.



2 ALEXANDER NAVARRO AND YUN MYUNG OH

curve is distinguished from a second curve by a tilde, overbar, superscript, or other
mark, we distinguish the Frenet-Serret apparatus’ of the curves using the same
mark. We consider two curves to be the same up to rigid translation and rotation.

1. Motivating co-successors

The Frenet-Serret apparatus of the natural mate can be expressed completely
in terms of the Frenet-Serret apparatus of the curve of which it is the natural mate,
thus, every curve has a single unique natural mate. A natural question is then, given
the curvature and torsion of the natural mate, what information can be extracted
about the curvature and torsion of the curve of which it is the natural mate. This
first lemma provides a first attempt at a description of the Frenet-Serret apparatus
in terms of that of its natural mate, and are easily verified.

LEMMA 1.1. Suppose o and @ are unit speed curves. Then @ is the natural
mate of a if and only if their Frenet-Serret apparatus’ satisfy:

~

, R
R = —K—TT,
K
—/
7= =7 + Tk,
R
R R
B=2B+_N,
R R
N=T.

REMARK 1.2. The first two equations of (1.1) provide a pair of coupled first-
order differential equations for the curvature and torsion of « in terms of the cur-
vature and torsion of @. As such, if we try to solve these differential equations
for kK and 7, we expect to obtain more than one solution, dependent on the initial
conditions used for x and 7, under the constraint that x > 0. So, we anticipate
that there are more than one curve that have the same natural mate.

2. Co-successor characterization and properties

DEFINITION 2.1. Let o and @ be unit speed curves. If & is the natural mate of
a, we say that « s a successor of @ [8]. Similarly, if a; and as are both successors
of the same curve @, then we say that ay and s are co-successors of each other.

REMARK 2.2. It can be seen that the relationship of being co-successors is
in fact an equivalence relation. This is because every curve has a unique natural
mate, and so if a; and as are co-successors, and as and agz are co-successors,
then all of o, as, a3 have the same natural mate. As such, this allows us to talk
about the family of co-successors without referring to a particular pair, and to talk
about two co-successors without necessarily refering to the curve of which they are
both successors, since they each only have a single successor, which is their unique
natural mate, which is common between them.

PROPOSITION 2.3. Every co-successor of a generalized heliz is a generalized
helix.
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Proor. This follows from the fact that a curve is a generalized helix if and
only if its natural mate is planar. [5], [6] O

PROPOSITION 2.4. Ewvery co-successor of a slant helix is a slant helix.

ProoF. This follows from the fact that a curve is a slant helix if and only if
its natural mate is a generalized helix. [5], [6] O

While these propositions give trivial relationships between two co-successors,
a more general characterization of co-successors would be more useful. We find
there is a simple characterization of co-successors in terms of a rotation of their
curvatures and torsions.

THEOREM 2.5. Suppose a1 and a are unit speed curves, then oy and ag are co-
successors if and only if then there exists constant v € R such that the Frenet-Serret
apparatus of as is given in terms of the Frenet-Serret apparatus of aq by:

TS [ cosv 0 sinv T

No| = 0 1 0 Ny,

By —sinv 0 cosv| | B;
(2.1) -

Ko| [cosvy —sinv]| [k

|:7'2:| ~ |sinv cosu] |:7'1:| '

We call the number v the phase separation between oy and as.

PROOF. Suppose a1 and as are co-successors. Then they both have the same
natural mate @, with Frenet-Serret apparatus {%,7,T, N, B}. Let x; = rycosfy,
71 = r1sinfy, kKo = rocosfy, 79 = r9sinfy, where ri,79,01,05 are functions of
the arc length parameter, and 1,72 > 0. This is possible since the curvatures are
strictly positive. Noting that \/k7 + 7 = K = /K3 + 73, and so r¥ = k] + 7¥ =
k3 + 72 = r3, and so r; = ra, which we from here on call r. We additionally have
that T{L%—# =7 = ﬂg@? which, after substitution, simplifies to 0] = 65.
Thus, there exists some constant v such that 6 = 8, + v. After applying sine and
cosine identities, we obtain

K9 = K1 COSV — Ty Sinv,

To = K1 8inv + 71 cos v.

Noting that N; = T = N, the other two vector relations follow from the curvature
and torsion relation above and the expressions for the normal and binormal vectors
of the natural mate. From this, we have both matrix relations.

The converse follows from the fact that Ny = N>, and so their natural mates
have equal tangent vectors, and so are congruent. U

REMARK 2.6. The above theorem has the potential to be generalized beyond
the context with k1 > 0 and k2 > 0, where we assume for all unit speed curves «
that o # 0. In particular, just looking at the forms of (2.1), we first note that if 77,
N1, and By form a right-handed orthonormal frame, then for arbitrary choice of v,
then T5, Ns, and Bs will also be right-handed and orthonormal. Additionally, it can
be shown by direct computation that if oy satisfies the Frenet-Serret equations, and
the Frenet-Serret apparatus of aw is related to that of ; by equations (2.1), then
it follows that the Frenet-Serret apparatus of as will also satisfy the Frenet-Serret
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equations for any constant v. However, for many choices of v, this would lead to
k2 no longer being a strictly positive function, sometimes being zero or negative,

and as such, the frame obtained would no longer be a Frenet frame as it is usually
defined.

DEFINITION 2.7. Let o : I — E? be a Frenet curve. We say that the unit speed

curve & is the conjugate mate of o if the tangent vector of & is equal to the binormal
vector of a.

COROLLARY 2.8. The conjugate mate & of a Frenet curve a is a co-successor
of o with phase separation +7.

COROLLARY 2.9. Every co-successor of a curve a can be expressed as a linear
combination of a and @, the integral curve of its binormal vector B (If « is Frenet,
then & is its conjugate mate). In particular, the co-successor oy, of a with phase
separation v can be expressed as o, = cosva + sinva.

)

J. >
7 > y \;)L}A‘\~ »
N U
)

(Figure 1) A unit speed Frenet curve (black), its conjugate mate (red) and its
family of co-successors (green). The left plot is restricted to positive curvature,
while the right plot is not holding this restriction. The curvature and torsion of

the black Frenet curve are given by x = 7152—3_21 and 7 = 2.3 4 0.6sin(3.3s).

3. Equivalent and mirror curves

Before we can apply the notion of co-successors to Bertrand curves, we need to
define several other types of associated curves.

DEFINITION 3.1. Let oy : I — E3 and oo : J — E3 be two reqular curves. If
there is a diffeomorphism h : I — J such that Ty, N1, and By are parallel to T o h,
Ny o h, and By o h respectively, and Ty o h™', Ny o h™!, and By o h™' are parallel
to Ty, N3, and By respectively, then we say an and as are equivalent. [3)]

This is an equivalence relation, and additionally, if two curves are equivalent,
then their natural mates are equivalent.

COROLLARY 3.2. FEvery natural mate is equivalent to a spherical curve.
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PROOF. Let « be a unit speed curve. We define a(s) = T'(s(5)), which is
clearly a spherical curve, where s(5) = [ 1d5. We see that &(3) is unit speed, since

da(3) _ da(3) ds

ds ~— ds ds
AT 1
o ds kK

= N(s(5)).
Thus T(3) = N(s(3)) = (T o 5)(3). Differentiating this expression with respect to

3, we get that KN = % = Z—;dd—jj = g—;—/{T—FTB = w%%, and so N = (N o 5)(3).
This gives by taking the cross product B = (B o s)(5). Thus @ is equivalent to &,
which is spherical. 7

DEFINITION 3.3. Given a unit speed curve «, the mirror of o across a unit
vector M is the curve given by ay = o — 2M (M, o).

Geometrically, this represents reflecting o across the perpendicular plane to
M to obtain the new curve ajps. Since every mirror of a can be obtained from
any other mirror by a rotation and translation, we consider them congruent, and
will simply refer to as as the mirror of o, without referencing any particular unit
vector M.

(Figure 2) Left: A curve (Black), its natural mate (Red) and a spherical curve
equivalent to its natural mate (Blue). Right: A pair of mirror curves.

LEMMA 3.4. A curve ayy is the mirror of a unit speed curve a if and only if
its curvature and torsion are given by Ky = K, Tyg = —T.
Additionally, the Frenet frame of ays is given by

Tar =T — 2M (M, T),
(3.1) Ny = N — 2M (M, N),
By = —B+2M{M, B).

PROOF. Suppose ay; is the mirror of «, then apy = a — 2M (M, o). Differen-
tiating with respect to the arclength parameter of « yields ap/’ =T — 2M (M, T),
which is unit, and so o™ has the same arclength parameter as a (This is geomet-
rically obvious). Thus, ay’ = Ty = T — 2M (M, T). Differentiating again gives
kmNy = kN — 26M(M,N) = k(N — 2M(M,N)). One can easily show that
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N —2M (M, N) is unit, so we conclude that Nyy = N —2M (M, N) and kp = k.
We then have
By =Ty X Ny

= (T —2M(M,T)) x (N —2M (M, N))

= B —2M x ((M,T)N — (M, N)T)

=B —2M x (M x (N x T))

=B+2M x (M x B) = B+ 2M (M, B) —2B(M, M))

= —B+2M(M, B).

Differentiating, we obtain

—TMNM:BM/:TN—2TM<M,N>:TNM,

and so conclude that 7y = —7.
Suppose the converse holds, then since the mirror of « has the same curvature
and torsion of s, then ajp; must be the mirror of . O

LEMMA 3.5. The natural mate of the mirror of a curve is congruent to the
marror of the natural mate.

PROOF. Let a be a unit speed curve with natural mate &, mirror oy, let the
mirror of the natural mate be @7, and the natural mate of the mirror be @;.
The result follows by direct calculation

Far = Ve +7u? = VK2 472 = F =R,

_tvkEv — kT T'R—K'T
— —> = — —5 = —T=TM-
KM KR

gl

The following two lemmas similarly follow quickly from the definitions.
LEMMA 3.6. If two curves are equivalent, then their mirrors are equivalent.

LEMMA 3.7. Suppose o1 and (1 are equivalent, each having co-successor oo
and (s, respectively, with phase separation v. Then as and B2 are equivalent.

4. Bertrand curves

DEFINITION 4.1. A curve « is Bertrand if there exists another curve & such
that &(s) = a(s)+A(s)N(s), where the normal vectors of the two curves are parallel
(N = +N). We call these two curves together a Bertrand pair and say that é is
the Bertrand mate of a. [2], [3]

It is easy to show that X is a constant. It is also a well-known result that a
curve « is Bertrand if and only if there exists constants a, b such that ax + b = 1.

When discussing a Bertrand pair o and &, we will choose our parametrization
such that « is unit speed, while & is not necessarily unit speed.

COROLLARY 4.2. Let oy be a Bertrand curve with co-successor s, then as is
also Bertrand.
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ProoFr. This follows from
1=akry +bmy

a(kg cosv — T sinv) + b(ke sinv + 79 cosv)

(acosv + bsinv)ka + (beosv — asinv) .

(|

Because of the two distinct possibilities in the definition of a Bertrand pair
allowing the normal vectors of the curves to either be parallel or anti-parallel, it is
useful to distinguish between these two cases.

DEFINITION 4.3. Let o and & be a Bertrand pair, then we say that o and &
are positively (negatively) Bertrand if N =N (N = —N).

We now apply the notion of a co-successor to obtain an alternative description
of the Bertrand mate of a curve, and obtain a simple relationship between the
natural mates of a Bertrand pair.

THEOREM 4.4. Suppose o and & are a positively Bertrand pair. Then & is a
co-successor of o up to equivalence.

PROOF. Suppose a and & are a positively Bertrand pair. Then N = N, and
in particular, we can write T = cosHT + sin6B. Differentiating, where § is the
arc-length parameter of &, we get that §AN = §&N = —6' sin07T + kcosON +
0" cosB — 7sin N, and so —0' sinf = 0’ cos § = 0, implying that 6 is a constant.
Since N = N and we have that 7' = cos T + sindB and B = —sin 0T + cos 0B,
which we note are parallel to the Frenet frame of the co-successor of a with phase
separation 6 after a change in parametrization. Thus, & is equivalent to the selected
co-successor of a. O

COROLLARY 4.5. Let a and & be a positively Bertrand pair. Then the natural
mates of a and & are equivalent.

PROOF. This follows since the natural mate of a and its co-successor are equal,
and the fact that natural mates of equivalent curves are themselves equivalent. [J

THEOREM 4.6. Suppose « and & are a negatively Bertrand pair. Then the
marror of & is a co-successor of a up to equivalence.

PRroOOF. This is proved similarly to Theorem 4.4, except we take T = —cos0T—
sin #B, and then consider the mirror of &’s relationship with a. O

COROLLARY 4.7. Let o and & be a negatively Bertrand pair. Then the natural
mate of a and the natural mate of the mirror of & are equivalent.

PRrOOF. This follows since v and its co-successors have the same natural mate,
the mirror of & is equivalent to a co-successor of a, and the fact that the natural
mates of equivalent curves are equivalent. O

5. Other results

In addition to the above results concerning co-successors, we find several other
results concerning the natural mate. The first characterizes when the natural mate
of a curve is rectifying.
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THEOREM 5.1. Let v be a unit speed curve. Then the following are equivalent:

(1) The natural mate of a is rectifying.
(2) There exists constants p, b such that

UT
——= = [ k(s+b)ds
= [
(3) There exists constants u, b such that
UK
——=— [ T(s+ b)ds.
N (s+9)
PROOF.
= 2, uppose « 1s the successor of the rectifying curve &. We write the position
1 2,3) S is th f th ifyi W ite th iti
vector of @ in terms of functions g, h,l, g, h,!:
@ =9l +hN +1B = gT + hN +1B.

Since @ is rectifying, h =0, g = s+b, and [ = p [4]. Since T = N, and

B= %, we then obtain that

ur HE
T+
VK2 + 72 VK2 + 72
From [1], we get that g = [k(s + b)ds and | = — [ 7(s + b)ds. What we
desire follows by matching coefficients to T, N, B.
(2 & 3) This follows from the equivalences:

=(s+b)B+

I
k(s +D) ds@,u(ﬁ) = k(s + D)

1 7! T(kK' +777)

A\VETr @
w K2+ 127 — 1Rk — T

- (/{2 +r )3/2

kT — TR
A\ sz 1 r2)32
o =kt — K2R+ 12K+ T2
(k2 + 72)3/2

Rl

S s+b=

K

1 K K(TT" + KK')
ViZ+ 2 (K24 72)3/2

@N<L)/__T(s+b)

K2+ 72

/i2+7'2 / (s +b)d

(2 = 1) Intermediate to the above calculation is that

B P i B
S+b—,u (K2+T2)3/2 - Ev

which implies 7/% is a linear function, and so @ is rectifying [4].

| =l
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The following result gives a pair of differential equations which the distance
function for the natural mate satisfies.

THEOREM 5.2. Let & = fT + gN + hB with distance function d be the natural
mate of . Then f' = kg, ¢ =1 —«&f +7h, W = —7g, and g = dd'. Also, g
satisfies the differential equations:

(k2 +1)g+71g" +17 — 79"\
rGg =
g T'k — K'T ’

B fi(fiz-l—TZ)g—f—K,g”—l—lil—filgl !
= 'k — KT '

PROOF. The first part was proven in [1]. We have that
_ g +Rf-1 1—f€f—g’)’

T T

h :>Tg=—h':(

Expanding this, substituting f’ = kg, and solving for f, we obtain
T(Ii2 + 7_2)9 + 7_g// + T 7_/g/

f = T — Kk!T ?
which we differentiate and substitute f’ = kg again to get the first differential
equation. The second differential equation is obtained similarly. O

REMARK 5.3. Since g depends on the first derivative of d, and the above differ-
ential equations are 3rd order in g, then the above equations are 4th order non-linear
differential equations in d.

We also get the following simple condition on when a curve is the same as its
natural mate (up to isometry).

THEOREM 5.4. Let a be a unit speed curve. Then the following are equivalent

e « is planar.
e There exists some n € N such that o = «,.
o a=q, for alln € N.
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