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Exploring the efficiency of Neural Architecture Search (NAS) modules

Joshua Dulcich

Abstract—Machine learning is obscure and expensive to de-
velop. Neural architecture search (NAS) algorithms automate this
process by learning to create premier ML networks, minimizing
the bias and necessity of human experts. From this recently
emerging field, most research has focused on optimizing a
promisingly unique combination of NAS’s three segments. Despite
regularly acquiring state of the art results, this practice sacrifices
computing time and resources for slight increases in accuracy;
this also obstructs performance comparison across papers. To
resolve this issue, we use NASLib’s modular library to test the
efficiency per module in a unique subset of combinations. Each
NAS algorithm produces an ML image recognition model—tested
on the CIFAR-10 dataset—and compared for efficiency, a ratio
between compute time and accuracy.

I. INTRODUCTION

The substantial price tag for practically implementing ma-
chine learning not only indicates its value, but the complexity
of the process. Currently, the standard method comprises
of experts with years of education repetitively guessing and
checking their intuition one model at a time. To improve
this paradigm, neural architecture search (NAS) automates
the development of machine learning (ML) algorithms via
primary ML algorithms. Intelligently searching hundreds of
thousands of models, this automation of the process has been
continuously setting new state of the art (SOTA) results across
countless applications. As tech companies have caught wind
of these breakthroughs, significant resources have been poured
into its development; however, this source of motivation drives
most research in two directions. Firstly, to get an initial return
on such investments, research is focused on delivering a highly
optimized specific implementation for their single use case.
This practice discards generalizability that would otherwise
allow comparisons between research and growth for those
areas that were comparably more promising. Secondly, they
focus on discovering the most accurate models they can, rarely
prioritizing the computational power or time necessary. As
much of the population can’t access super-computing power,
the ability to use NAS algorithms is extremely limited, despite
these huge increases of resources often netting only a slight
increase in accuracy. Therefore, there is an explicit lack of
research regarding the efficiency of NAS algorithms. This
work aims to build on a foundation of efficiency focused NAS
research, by testing unique NAS algorithms and exploring the
effects of the individual modules.

II. BACKGROUND

Due to the complexity of tasks from speech translation to
image generation, ML algorithms are easier to understand
when depicted as graphs. This can be visualized as a map
of cities and roads, generalized as nodes and edges respec-
tively. More specifically, they are directed acyclical graphs
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Fig. 1. The structure & flow of neural architecture search

(DAG), where all the roads are one-way, and there are no
paths that lead back to anywhere you’ve been. Each node or
edge itself can be characterized by a different mathematical
function, altogether creating a unique shape that significantly
translates to the accuracy of the model. These architectures
are reminiscent of neural pathways, from which the algorithm
derives its name. Hence, neural architecture search aims to
discover the configuration that leads to the highest accuracy.
NAS automates this via three steps, each of which has an ever-
growing number of implementations from which to choose.
See (Fig. 1). The following section provides a brief overview
of the classical methods.

A. Search Space

First, we define the extent of architectures to search. Search-
ing the infinite possible shapes is infeasible. Implementing
previous successful spaces is a trade-off that may optimize
search but may introduce the limitations of human engineering.

As visually represented in (Fig. 2), defining a search space
can be approached from various directions. The different
colored nodes in the diagram each represent a different type
of neural network layer, e.g., a convolutional or pooling layer.
The edges that connect these layers represent the output of
one layer being passed as input to the next one. In the most
simple search space, depicted on the left of the diagram, a
chain-structured space is a set of layers in a single line.
The parameters that make up this space—the ones which
are searched for the optimal configuration—are mainly then
number of layers and type of each layer. Hyperparameters,
more finely tuned parameters, are usually preset options or left
out of the search for architecture. The second diagram from the
left in (Fig. 2) depicts a multi-branch network. Recent NAS
research has demonstrated the usefulness of more complex
connections; skip connections that pass a layer’s output further
down the network, or branched connections that allow the



output to be used in multiple places, have revolutionized the
accuracy of models. To search these architectures, the variables
for the endpoints of each connection have to be considered
as well. The third model shown in (Fig. 2) is known as a
cell or block. Essentially, it is a multi-branch network that is
repeatedly used in place of a single layer in a hierarchical
or macro architecture, as seen on the right half of (Fig. 2).
Stacking these cells allows for more complex architectures
while reducing the time to build a whole one. Also, finding
useful cells can translate across various problems, regardless of
how they’re arranged in any particular architecture. Parameters
for searching these macro architectures built from cells is
straightforward. Cells are constructed as multi-branch net-
works. Macro architectures are then constructed as networks
where layer type is replaced by cell type. Given these search
spaces, NAS can create a breadth of useful architecture shapes
while minimizing costly computations.
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Fig. 2. Various ways to represent a search space—chain, multi-branch, cells
& macro architecture

B. Optimization Strategy

Next, given a graph, NAS determines what modification
would improve the current shape—and therefore the model
accuracy. It is a balance of exploration vs. exploitation; a
familiar puzzle of trying to find a global max reasonably
quick without converging early. Strategies fall into two main
categories: discrete and one-shot.

Discrete strategies were historically the initial attempt at
NAS, where searching would take the form of testing one
architecture after the other. Many methods have been de-
veloped, a subset of which have been listed in (Fig. 1).
Random search is often used as a baseline; the premise
of randomness implies there exists no correlation between
subsequently tested architectures. Local search is quite the
opposite, focusing on architectures that are slight changes
away from the previously tested one. These edits could be as
simple as removing one layer, changing a node type, or altering
a connection. Reinforcement learning is a family of methods
that provide the accuracy of each model as a reward, the
possible actions as the search space, and where the generation
of the model as the action itself. The policy, or rules, by which
each method employs to improve the model accuracy varies
across implementations. Neuro-evolutionary approaches have
moved towards genetic algorithms that focus on shape only,
as weights are much more efficiently searched via gradient

descent. Evolutionary models also have a wide spread of
implementation options, like removing the worst performing
or the oldest, different types of mutations, and inheritance
of parameters. A slightly more complex approach, bayesian
optimization methods attempt to optimize the accuracy of the
model by only using the initial shape and final accuracy as
input. Learning from how previous guesses affected the accu-
racy, the model learns which parameters to tune to maximize
accuracy. Tree-based methods are used to effectively search
the high-dimensional spaces.

One-shot, also known as gradient based methods, have
recently taken the spotlight of much NAS research. Using
an approach similar to rolling a ball down a hill, gradient
descent methods find the local min (or max) of a function,
in this case, the models with the highest accuracy scores.
(Fig. 3) helps to visualize this process. Starting from the left,
a given model has connections without specific operations.
To initialize, each connection is given the option of every
available type, here represented by color. As the model is
trained, certain connections take precedence, similar to the
way exercising for a sport will develop the muscles specific
to that activity. Then at the end of training, a discrete model
is chosen by removing all but the strongest connections. This
idea of searching the discrete space using continuous methods
has its own volume of implementations, as well as research
that has seen it applied to the different steps of NAS.
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Fig. 3. An example of one-shot emergence

C. Performance Predictor

To avoid the computational overload of fully training every
graph found, we implement a predictor that estimates its model
accuracy. This score is returned and guides further exploration
of the space. Speed ups are typically implemented by using
lower fidelity estimates, learning curve extrapolation, network
morphisms, and weight sharing.

The naive way to evaluate each architecture is to fully train
it. While a true accuracy score is found, this practice can
turn computational hours into years. Several methods have
been implemented to optimize the most accurate estimations
in the shortest amount of time. Lower fidelity estimates is the
first category, where a full training regiment is run, except
that some parameters have been drastically minimized. This
includes, but is not limited to, training for fewer epochs, on a
small subset of the data, or downscaled models or data. The



next method is learning curve extrapolation; poorly perform-
ing models are terminated based on how well the models are
doing at given intervals, allowing the focus of resources to
the more promising models. Network morphisms rely on the
optimization of past models, as initialization parameters are
passed down from parents, a method commonly associated
with evolutionary optimization. One-shot models, or weight
sharing, were briefly introduced in the previous section. In-
stead of training each architecture found individually, one
massive model is fully trained. Then sub-models are pulled out
of this massive model, as fully trained; all that is left is to test
each for accuracy. One-shot methods in particular have seen
some of the largest improvements in terms of performance
prediction to date.

III. RELATED WORK
A. NASLib

Neural architecture search is currently a focus of deep learn-
ing research, but the complex implementation is an obstacle
for wider study. NASLib offers a solution by offering “high-
level abstractions” for a growing number of algorithms used
in each of the three steps of NAS. It also includes benchmarks
and evaluation methods which allow an easier implementation
of any configuration. This also provides the opportunity to
develop your own modules to mix and match with current
methods. The inaugural paper demonstrated the robust nature
of the library by reproducing several of the current SOTA
methods, showing comparable results, as well as implementing
a novel approach. [1] [2]

B. NAS: A Survey

Deep learning has been revolutionizing industry, specifi-
cally through the introduction of novel architectures. Manual
creation of such machine learning models inefficient, on
accounts of all resources. This need has fueled the research
of automated neural architecture search methods. This paper
reviews the influential works to date, as well as breaking down
the components of NAS: the search space, search strategy, and
performance estimation strategy. [3]

C. NAS-Bench-Suite

NAS benchmarks have significantly “lowered the computa-
tional overhead” for research by allowing accuracy lookup of
certain neural net configurations. While benchmark resources
increase with the age of the field, it has recently been shown
that they do not always generalize well to specific applications.
This work delves into several popular algorithms and tests 25
different search space/dataset combinations. In response, the
authors introduce NAS-Bench-Suite to allow more compre-
hensive, reproducible, and generalizable testing. [4]

D. Performance Predictors

To avoid the time and compute required to fully train
architectures, current NAS methods rely on predicting the
performance of models found while searching. While nu-
merous methods have been proposed, there did not exist

a comprehensive study and comparison of these methods,
prior to this paper. Analyzing 31 different techniques, the
authors provide recommendations for how to best use different
predictors. A final experiment shows how combining different
predictors can achieve better results. [5]

E. Surrogate Benchmarks

As the issue of large computational overhead is a recurring
theme in the field of NAS, tabular benchmarks have provided a
way to lookup pre-computed results. However, these tables are
restricted to their discrete entries, which are few in comparison
to a truly infinite search space. Surrogate benchmarks provide
an answer by achieving more function-like performance pre-
diction. Introducing a benchmark of 10'® architectures, this
work is able to expand the search space while simultaneously
reducing the cost. [6]

F. Best NAS Research Practices

The value of NAS algorithms has driven a flurry of recent
research. Although this rush of research has produced golden
methods, the quality of such research hasn’t been standardized
in order to promote further research. The authors list several
common issues of NAS research, as well as ways to avoid
them. This led to their publication of a NAS Research Best
Practices Checklist. [7] [8]

G. Few-Shot NAS

Evaluation of networks is currently a major bottleneck of
NAS research. While full vanilla training requires immense
overhead, one-shot methods have proven to be considerably
more efficient, even bringing original 3000+ day runtimes
to just a few hours. One drawback to this method is their
temperamental nature due to initialization. As an alternative
to training a single super net, few-shot proposes breaking this
macro architecture down into sub nets that can be individually
one-shot trained, and then combining these results to provide
accurate model evaluation. Setting SOTA results across the
field, this paper shows a promising new direction in NAS as
well as motivates the studies of my own research. [9]

IV. METHODOLOGY

Fig. 4. (Left) Sample of CIFAR-10. (Right) Visualization of a basic image
recognition net

To discover efficient modules, we graph the accuracy per
compute time tradeoff between tests. NASLib is a library
that is actively modularizing several of the popular algorithms
used in the different steps of NAS, (Fig. 1) lists a subset of



them. It has also compiled every possible major benchmark
for NAS, to pioneer cross experiment comparison. Due to the
modular nature, it is possible to test over 3,000 unique module
combinations. For a feasible scope, a subset of these was
derived from leading research: see the italicized algorithms
in (Fig. 1), each producing an ML model that is tested on
CIFAR-10, a standard image recognition dataset. Note the
modules to be examined for efficiency in this experiment
comprise a unique combination of a search space and an
optimization strategy. Each of the 9 unique combinations
first conducts 17,500 searches of the space, producing 175
candidate architectures. The best architecture is then evaluated
for 600 epochs (520 evaluations per epoch), saving a trained
model every 30 epochs.

The output of each NAS combination produces a final
ML model. For standardization, the images in CIFAR-10 are
grouped into 10 labeled categories, examples of 5 are shown
on the left of (Fig. 4). The right side of (Fig. 4) demonstrates
the workings of one of these models, known as a convolutional
neural net. The name convolution is derived from the first layer
demonstrated, essentially as it learns to recognize individual
features of each picture. Alternating with pooling layers, the
model downsizes the features in order to generalize its ability
to recognize them. To guess, the model assigns a probability
to each category, choosing the highest as its answer. Accuracy
is recorded as Top-1 and Top-5; grading the model based on
whether its top 1 or top 5 guess(es), respectively, contained
the correct answer.

Experiments were conducted utilizing Google’s Colab Pro+
resources. A typical run uses a Tesla P100-PCIE-16GB GPU,
and RAM allocation of 16 GB. For particularly strenuous
loads, single runs can be upgraded to Google’s TPUs and 52
GB of RAM. Runtime per execution is capped at 24 hours.

V. RESULTS

Simple Cell & DrNAS
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Total Runtime: 8:15:32, Accuracy: 97.88%

Fig. 5. Select results. See all in Appendix A

Reference (Fig. 5) for visualization of results. Note that
(Fig. 5) is is exclusively the Simple Cell Search Space and Dr-
NAS Optimizer run; the complete aftermath can be referenced

in Appendix A. Each table graphs model accuracy (%) over
runtime (hrs). Due to the varying nature of runtimes, observe
that the x-axis isn’t relatively equivalent across graphs. The
titles denote which algorithms were combined, search space
and optimizer respectively. There is a gray divider on the
graph that represents the time it took to search the space;
its appearance on a graph denotes the completion of finding
100 unique models. To the right of this split, the top-1 and
top-5 accuracy of the best model is recorded every 30 epochs.
The final model’s structure is listed in Appendix B. Finally,
the testing score is recorded at the single point for each top-
1 and top-5 results. The final runtime and top-5 accuracy
are emphasized under each graph. For reference, 10% is the
baseline as it represents a random guess from the ten image
categories.

Due to the limitations of resources at hand, every combi-
nation was not able to be run fully through. However, this
does not detract from the results, as the study aims to find
the most efficient modules—those that were too expensive are
therefore undesirable implementations. However, the relative
results gathered do provide context for the efficiency of each
module individually. Note that some graph titles are followed
by a * or **. Each star represents the necessity of that run to
upgrade to the TPU and High-RAM. A single star indicates it
was only necessary for the evaluation phase, while a double
star means the entire run was high compute. Some of the
results had projected runtimes out of the scope of the project,
so after a reasonable runtime at consistent pace the final
runtimes were extrapolated.

The data itself presented interesting trends, especially when
arranging the graphs by module. The first overall theme that
was realized, was since the problem of image classification
on CIFAR 10 is relatively simple, the extra complexity of
the networks discovered left their added usefulness for more
complex problems; this also contributed to the fairly quick
learn times for each model. The second large find was that
GDAS and DARTS optimization both found the same network
over the Simple Cell search space. This makes sense, as the
same area was searched for both models, alternatively DrNAS
optimization found a fairly competitive model as well so it
wasn’t too far removed either; accuracy difference was less
than 1%.

However, it is of importance to note that it took DARTS
approximately 35 minutes longer to find the same architecture.
This emphasizes that GDAS is quicker than DARTS, and in
this case, was more efficient as well. Dr-NAS was even more
efficient, as its accuracy to runtime ratio was higher than either
of the other optimizers. Overall, GDAS is definitely the least
resource intense optimizer, as it was the only module capable
of running on all three search spaces in these conditions. This
is followed by DrNAS and DARTS, respective to their order
as well as which one is newer.

In terms of search spaces, the fastest module was perhaps
foreshadowed by its name, Simple Cell search. This was
also the only search space that ran efficiently across all
three optimizers. DARTS and Hierarchical spaces were in



close proximity; even though 2/3 optimizers were able to
search the DARTS space, the 1 optimizer on Hierarchical was
able to proceed to evaluation. Runtime was the most clear
differential factor between the search spaces—Simple Cell,
DARTS, and Hierarchical in order from the fastest, magnitudes
apart. Therefore, while Simple Cell and DrNAS was clearly
the most efficient combination, it was Simple Cell and GDAS
that were capable of running on limited compute regardless of
which module they were combined with.

VI. DISCUSSION

NAS research continues to considerably improve ML, ac-
tively setting new SOTA across all applications, in addition
to creating accessibility for public use. Specifically, efficient
NAS methods have been under-explored as the average human
lacks supercomputer access. NASLib allows for benchmarks
and simpler compute requirements, as well as making it easier
for non-experts to use due to its high level implementation.
This novel concept of efficiency focused research across a
standardized baseline is accompanied by a rating of this
library’s user-friendliness.

The ability of this experiment to be extended to the full scale
of the library is the most valuable outcome of this research.
Unfortunately, due to the scope of the project at hand and the
time available, its greatest weakness was the lack of robustness
from not being able to come close to the library’s full potential.

With the modularity of NASLib, this experiment has the
potential to be extended across every combination of module
as well as iterated for several more runs per combination. In
addition, theorized improvements and novel algorithms can
be implemented and run through the same model of testing
to compare their efficiency to the methods that already exist.
This future possibility would provide a robust understanding
of efficient modules, and allow future NAS research to be
focused on the most promising areas.

One-shot research has been especially promising lately [9],
but further limitations involve sub graphs being restricted
to the overarching model, as well as having to store the
entire model in memory during processing. This is typically
remedied with cell based searches. In general, the field is ripe
for more study to improve and prove the robustness of such
methods.

NASLIib markets itself as an easy to use and modular library
to promote the research of NAS. Having received a chance to
use it for this work, I now take the time to review the success
of these claims. Here I note my in-expertise, especially as this
has been my first introduction to the field of NAS. Overall,
NASLIib certainly put NAS research into my reach; in this it
has succeeded. However, there were several aspects which I
noted might make it even easier. The biggest flaw was the
lack of documentation. Although I did appreciate the use of a
file structure to sort the code, I still had to read through the
code itself to figure out how things worked, which admittedly
took up a majority of my time. Similarly, there was no concise
list of usable functions or algorithms, so determining which
modules were available to experiment with was a treasure hunt.

The examples for running the code were brief but helpful;
although the slightly difficult to understand annotations were
understandable due to the creators predominantly not speaking
English as a first language. The biggest strength of the library
itself was the large and active user base, as it was continuously
updated fairly frequently.

For future directions, curiosity lends to running the same
experiment with greater compute resources. Although the data
presented was sufficient to establish trends, these could be
confirmed by finding a computer capable of filling in all the
graphs. Similarly, the question of module efficiency can be
extended to test these modules in combinations with the others
in the library as well.
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APPENDIX B
GENERATED MODELS

A. Simple Cell Search Space & DrNAS Optimizer

[04/06 16:06:06 nl.defaults.trainer]: Final architecture:
Graph normal_cell:
Graph (
(normal_cell —edge (1.,3)): MaxPoollx1(
(maxpool): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=
False)
)
(normal_cell —edge (1,4)): DilConv(
(op): Sequential (
(0): ReLU()
(1): Conv2d(16, 16, kernel_size=(3, 3),
dilation=(2, 2),
groups=16, bias=False)
(2): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)

stride=(1, 1), padding=(2, 2),

)
)
(normal_cell —edge (2,3)): SepConv(
(op): Sequential (
(0): ReLU()
(1): Conv2d(16, 16, kernel_size=(3, 3),
=16, bias=False)
(2): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
(4): ReLU()
(5): Conv2d(16, 16, kernel_size=(3, 3), stride=(l, 1),
=16, bias=False)
(6): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)

stride=(1, 1), padding=(1, 1), groups

padding=(1, 1), groups

) )
(normal_cell —edge (2.4)): DilConv(
(op): Sequential(
(0): ReLU()
(1): Conv2d(16, 16, kernel_size=(3, 3),
dilation=(2, 2),
groups=16, bias=False)
(2): Conv2d(16, 16, kernel_size=(1, 1), stride=(l, 1), bias=False)
(3): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)

stride=(1, 1), padding=(2, 2),

)
)
(normal_cell —edge (3.4)): FactorizedReduce ()
(normal_cell —edge (3.5)): Identity ()
(normal_cell —edge (4.,5)): Identity ()
(normal_cell —comb_op_at(5)): Concatlxl(
(conv): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True, track_running_stats
=True)

Graph reduction_cell:
Graph (
(reduction_cell —edge(1,3)): Zerolxl (stride=2)
(reduction_cell —edge(1.,4)): DilConv(
(op): Sequential (
(0): ReLU()
(1): Conv2d(16, 16, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2),
dilation=(2, 2),
groups=16, bias=False)
(2): Conv2d(16, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (32, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
) )
(reduction_cell —edge(2,3)): Zerolxl (stride=2)
(reduction_cell —edge(2,4)): SepConv(
(op): Sequential(
(0): ReLU()
(1): Conv2d(16, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups
=16, bias=False)
(2): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
(4): ReLU()
(5): Conv2d(16, 16, kernel_size=(3, 3),
=16, bias=False)
(6): Conv2d(16, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d (32, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)

stride=(1, 1), padding=(1, 1), groups

) )
(reduction_cell —edge(3,4)): DilConv(
(op): Sequential(
(0): ReLU()
(1): Conv2d(32, 32, kernel_size=(3, 3),
dilation=(2, 2),
groups=32, bias=False)
(2): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (32, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)

stride=(1, 1), padding=(2, 2),

)
)
(reduction_cell —edge(3,5)): Identity ()
(reduction_cell —edge (4,5)): Identity ()
(reduction_cell —comb_op_at(5)): Concatlxl(
(conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=le—-05, momentum=0.1, affine=True, track_running_stats
=True)

Graph makrograph:
SimpleCellSearchSpace (
(makrograph—edge (1,2)): Stem(
(seq): Sequential (
(0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(l, 1), bias=
False)
(1): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
) )
(makrograph—-edge(2.,3)): Identity ()
(makrograph—-edge (2.,4)): Identity ()
(makrograph—-subgraph_at(3)): Graph normal_cell -0.1788023, scope stage_1 .
(makrograph—edge (3.,4)): Identity ()
(makrograph—subgraph_at(4)): Graph reduction_cell —-0.2484313, scope stage_2, 5
nodes
(makrograph—edge (4,5)): Identity ()
(makrograph—subgraph_at(5)): Graph normal_cell —0.7598774, scope stage_2, 5 nodes
(makrograph—edge (5,6)): Sequential(
(op): Sequential(
(0): AdaptiveAvgPool2d (output_size=1)
(1): Flatten(start_dim=1, end_dim=-1)
(2): Linear(in_features=32, out_features=10, bias=True)

5 nodes

B. Simple Cell Search Space with GDAS & DARTS Optimizers

[04/06 16:06:09 nl.defaults.trainer]: Final architecture:
Graph normal_cell:
Graph (
(normal_cell —edge (1,3)): MaxPoollxl(
(maxpool): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=
False)
)
(normal_cell —edge (1,4)): DilConv(
(op): Sequential(
(0): ReLU()
(1): Conv2d(16, 16, kernel_size=(3, 3),
dilation=(2, 2),
groups=16, bias=False)
(2): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)

stride=(1, 1), padding=(2, 2),

)
)
(normal_cell —edge (2,3)): SepConv(
(op): Sequential(
(0): ReLU()

(1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups
=16, bias=False)
(2): Conv2d(16, 16, kernel_size=(l, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
(4): ReLU()
(5): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups
=16, bias=False)
(6): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
) )
(normal_cell —edge (2.,4)): DilConv(
(op): Sequential(
(0): ReLU()
(1): Conv2d(16, 16, kernel_size=(3, 3), stride=(l, 1), padding=(2, 2),
dilation=(2, 2),
groups=16, bias=False)
(2): Conv2d(16, 16, kernel_size=(1, 1), stride=(l, 1), bias=False)
(3): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
)
)
(normal_cell —edge (3 .,4)): FactorizedReduce ()
(normal_cell —edge (3.,5)): Identity ()
(normal_cell —edge (4,5)): Identity ()
(normal_cell —comb_op_at(5)): Concatlxl(
(conv): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True, track_running_stats
=True)
)
)
Graph reduction_cell:
Graph (
(reduction_cell —edge (1,3)): Zerolxl (stride=2)
(reduction_cell —edge(1,4)): DilConv(
(op): Sequential (
(0): ReLU()
(1): Conv2d(16, 16, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2),
dilation=(2, 2),
groups=16, bias=False)
(2): Conv2d(16, 32, kernel_size=(l, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (32, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
) )
(reduction_cell —edge(2,3)): Zerolxl (stride=2)
(reduction_cell —edge(2,4)): SepConv(
(op): Sequential (
(0): ReLU()
(1): Conv2d(16 kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups
=16, bias=False)
(2): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
(4): ReLU()
(5): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups

=16, bias=False)

(6): Conv2d(16, 32, kernel_size=(1, 1), stride=(l, 1), bias=False)




(7): BatchNorm2d (32, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
) )
(reduction_cell —edge (3 ,4)): DilConv(
(op): Sequential (
(0): ReLU()
(1): Conv2d(32, 32, kernel_size=(3, 3),
dilation=(2, 2),
groups=32, bias=False)
(2): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (32, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)

stride=(1, 1), padding=(2, 2),

)
)
(reduction_cell —edge (3,5)): Identity ()
(reduction_cell —edge(4,5)): Identity ()
(reduction_cell —comb_op_at(5)): Concatlxl(
(conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d (32, eps=le-05, momentum=0.1, affine=True, track_running_stats
=True)

Graph makrograph:
SimpleCellSearchSpace (
(makrograph-edge (1,2)): Stem(
(seq): Sequential(

(0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(l, 1), bias=
False)
(1): BatchNorm2d (16, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
) )
(makrograph-edge(2,3)): Identity ()
(makrograph—-edge(2.,4)): Identity ()
(makrograph—-subgraph_at(3)): Graph normal_cell -0.1788023, scope stage_1, 5 nodes

(makrograph-edge (3 ,4)): Identity ()
(makrograph-subgraph_at(4)): Graph reduction_cell —0.2484313, scope stage_2, 5
nodes
(makrograph-edge (4,5)): Identity ()
(makrograph-subgraph_at(5)): Graph normal_cell —-0.7598774, scope stage_2, 5 nodes
(makrograph-edge (5,6)): Sequential(
(op): Sequential(
(0): AdaptiveAvgPool2d(output_size=1)
(1): Flatten (start_dim=1, end_dim=-1)
(2): Linear(in_features=32, out_features=10, bias=True)

C. Hierarchial Search Space & GDAS Optimizer

[04/06 06:22:47 nl.defaults.trainer ]: Final architecture: Graph cell:

Graph (

(cell —edge(1,2)): Graph motif2 -0.9435488, scope stage_1, 4 nodes (cell-edge(1,3)):
Graph motif0 -0.0272178, scope stage_l1, 4 nodes (cell-edge(1,4)): Graph motif4
-0.2315998, scope stage_l, 4 nodes (cell-edge(1,5)): Graph motif0 —0.6082666,
scope stage_l, 4 nodes (cell-edge(2,3)): Graph motif4 —0.8348234, scope
stage_1, 4 nodes (cell-edge(2,4)): Graph motif4 -0.3795893, scope stage_l, 4
nodes (cell-edge(2,5)): Graph motif5-0.3588370, scope stage_l, 4 nodes (cell -
edge(3,4)): Graph motif3 -0.3179757, scope stage_l, 4 nodes (cell-edge(3,5)):
Graph motif0 -0.3752663, scope stage_1, 4 nodes (cell —edge(4.,5)): Graph motif3
—0.5383149, scope stage_l ., 4 nodes

Graph motif0:
Graph (
(motif0—-edge(1,2)): Identity ()
(motif0—edge (1,3)): SepConv(
(op): Sequential(
(0): ReLU()
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
bias=False)
(2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True) (4): ReLU()
(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(l, 1), groups=64,
bias=False)
(6): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True)

padding=(1, 1), groups=64,

) )
(motif0—edge (1,4)): ConvBNReLU(
(op): Sequential(
(0): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True) (2): ReLU()
) )
(motif0—edge (2,3)): ConvBNReLU(
(op): Sequential (
(0): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True) (2): ReLU()
) )
(motif0—edge(2.4)): AvgPoollxl1(
(avgpool): AvgPool2d(kernel_size=3, stride=1, padding=1)
)
(motif0—edge(3,4)): Zerolxl (stride=1)
(motif0 —comb_op_at(4)): Concatlxl(
(conv): Conv2d(192, 64, kernel_size=(l, 1), stride=(l, 1), bias=False)
(bn): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=True, track_running_stats
=True)

)

Graph motif2:
Graph (
(motif2 —edge (1,2)):
(motif2 —edge (1,3)):
(op): Sequential (

Identity ()
SepConv (

(0): ReLU()
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1l, 1), padding=(l, 1), groups
=64,
bias=False)
(2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True) (4): ReLU()
(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups

=64,

bias=False)

(6): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(7): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=

True) )
)
(motif2 —edge (1,4)): AvgPoollxl(
(avgpool): AvgPool2d(kernel_size=3, stride=1, padding=1)
)

(motif2 -edge(2,3)): DepthwiseConv( (op): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
=64,

groups

bias=False)

(1): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False ,
True)

(2): ReLU() )

track_running_stats=

)
(motif2 —edge(2,4)): Zerolxl (stride=1) (motif2-edge(3.,4)): DepthwiseConv(
(op): Sequential (
(0): Conv2d(64, 64, kernel_size=(3, 3),
=64,

stride=(1, 1), padding=(l, 1), groups

bias=False)

(1): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False ,
True) (2): ReLU()

track_running_stats=

) )
(motif2 —comb_op_at(4)): Concatlxl(
(conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=True, track_running_stats
=True)

Graph motif3:
Graph (
(motif3 —edge(1,2)): AvgPoollxI(

(avgpool): AvgPool2d(kernel_size=3, stride=1, padding=1)
)
(motif3—edge(1,3)): Zerolxl (stride=1)
(motif3 —edge(1,4)): SepConv(

(op): Sequential (

(0): ReLU()
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups
=64,
bias=False)

(2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(3): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False ., track_running_stats=
True) (4): ReLU()

(5): Conv2d(64, 64, kernel_size=(3, 3),

bias=False)

(6): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(7): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True)

stride=(1, 1), padding=(1, 1), groups=64,

) )
(motif3—edge (2,3)): ConvBNReLU(
(op): Sequential(
(0): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False ., track_running_stats=
True) (2): ReLU()
) )
(motif3—edge(2,4)): Zerolxl (stride=1)
(motif3 —edge(3,4)): ConvBNReLU (
(op): Sequential (
(0): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True) (2): ReLU()
) )
(motif3 —comb_op_at(4)): Concatlxl(
(conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d (64, eps=le—-05, momentum=0.1, affine=True, track_running_stats
=True)

Graph motif4 :

Graph (

(motif4 —edge(1,2)): ConvBNReLU (

(op): Sequential (

(0): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(1): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=

True) (2): ReLU()

) )

(motif4 —edge(1,3)): SepConv(
(op): Sequential (

(0): ReLU()
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups
=64,
bias=False)

(2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(3): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True) (4): ReLU()

(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),

bias=False)

(6): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(7): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True)

padding=(1, 1), groups=64,

) )
(motif4 —edge (1.,4)): DepthwiseConv( (op): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
=64,

groups

bias=False)

(1): BatchNorm2d (64, eps=le—-05, momentum=0.1, affine=False ,
True)

(2): ReLU() )

track_running_stats=




)
(motif4 —edge (2,3)): MaxPoollx1(
(maxpool): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=

False)
)
(motif4 —edge (2,4)): MaxPoollxI(
(maxpool): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=
False)

)
(motif4 —edge (3.4)): SepConv(
(op): Sequential(

(0): ReLU()
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups
=64,

bias=False)
(2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True) (4): ReLU()
(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64,
bias=False)
(6): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True)
) )
(motif4 —comb_op_at(4)): Concatlxl(
(conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=True, track_running_stats
=True)
) )

Graph motif5:
Graph (
(motif5S-edge(1,2)): AvgPoollx1(
(avgpool): AvgPool2d(kernel_size=3, stride=1, padding=1)
)
(motif5-edge (1,3)): MaxPoollxI(
(maxpool): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=
False)

)
(motif5—edge(1.,4)): Zerolxl (stride=1) (motif5-edge(2,3)): DepthwiseConv (
(op): Sequential (

(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups
=64,
bias=False)
(1): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True)
(2): ReLU() )

)
(motif5—edge (2,4)): Zerolxl (stride=1)
(motif5—edge (3.,4)): Zerolxl (stride=1)
(motif5 —comb_op_at(4)): Concatlxl(
(conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(l, 1), bias=False)
(bn): BatchNorm2d (64, eps=le—-05, momentum=0.1, affine=True, track_running_stats
=True)

)

Graph makrograph :
HierarchicalSearchSpace (
(makrograph—edge (1,2)): Stem(

(seq): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)

) )

(makrograph—edge(2,3)): Graph cell -0.4523939, scope stage_l, 5 nodes (makrograph—
edge(3.,4)): SepConv(

(op): Sequential (

(0): ReLU()
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups
=64,
bias=False)

(2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(3): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
) (4): ReLU()

(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64,

bias=False)

(6): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(7): BatchNorm2d (64, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
)

) )

(makrograph-edge (4,5)): Graph cell —0.7797973, scope stage_l, 5 nodes (makrograph—
edge(5.,6)): SepConv(

(op): Sequential(

(0): ReLU()
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups
=64,

bias=False)
(2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(3): BatchNorm2d (64, eps=le—-05, momentum=0.1, affine=True, track_running_stats=True
) (4): ReLU()

(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64,

bias=False)

(6): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)

(7): BatchNorm2d (128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=
True)

) )

(makrograph—edge (6,7)): Graph cell -0.9726591, scope stage_2, 5 nodes (makrograph—
edge(7.,8)): SepConv(

(op): Sequential(

(0): ReLU()

(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups
=128,

bias=False)

(2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)

(3): BatchNorm2d (128, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True) (4): ReLU()

(5): Conv2d(128, 128, kernel_size=(3, 3), stride=(l, 1), padding=(1, 1), groups
=128,

bias=False)

(6): Conv2d(1

28, 128, kernel_
(7): BatchNorm2d (128,

eps=le—|

size=(1, 1), stride=(1, 1), bias=False)
05, momentum=0.1, affine=True, track_running_stats=

dge(8,9)): Graph cell —-0.9303213, scope stage_2, 5 nodes (makrograph—

True)
) )
(makrograph-e
edge(9,10)): SepConv(
(op): Sequential (
(0): ReLU()

(1): Conv2d(1
=128,
(2): Conv2d(1

True)
(5): Conv2d(1

=128,
bias=False)
(6): Conv2d(l

28, 128, kernel_

bias=False)

28, 128, kernel_
(3): BatchNorm2d (128,

(4): ReLU()

28, 128, kernel_

28, 256, kernel_

eps=le—|

size=(3, 3), stride=(2, 2), padding=(1, 1), groups

size=(1, 1), stride=(1 1). bias=False)
05, momentum=0.1, affine=True, track_running_stats=

size=(3, 3), stride=(l, 1), padding=(1, 1), groups

size=(1, 1), stride=(1, 1), bias=False)

(7): BatchNorm2d (256, eps=le-05, momentum=0.1, affine=True, track_running_stats=

True)
) )
(makrograph-e

edge (1
(op): Sequen
(0): ReLU()
(1): Conv2d(2

=256,
bias=False)

(2): Conv2d(2

dge(10,11)): Graph cell -0.0776364, scope stage_3, 5 nodes (makrograph-—

1,12)): SepConv(
tial (

56, 256, kernel_

56, 256, kernel_

size=(3, 3), stride=(1, 1), padding=(1, 1), groups

size=(1, 1), stride=(1, 1), bias=False)

(3): BatchNorm2d (256, eps=le-05, momentum=0.1, affine=True, track_running_stats=

True)
(5): Conv2d(2

=256,
bias=False)
(6): Conv2d(2

(4): ReLU()

56, 256, kernel_

56, 256, kernel_

size=(3, 3), stride=(1, 1), padding=(1, 1), groups

size=(1, 1), stride=(1, 1), bias=False)

(7): BatchNorm2d (256, eps=le-05, momentum=0.1, affine=True, track_running_stats=

True)
) )
(makrograph
(makrograph

(op):

(0):
(1):

bias=False)

(2):
(3):

(4):
(5):

bias=False)

(6):
(7):

—edge(12,13)): Graph cell —=0.6049727, scope stage_3, 5 nodes

—edge(13,14)): Sequential(

(op): Sequential (
(0): SepConv (

Sequential (
ReLU()

groups =256,

ReLU()

groups =256,

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

Conv2d (256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
BatchNorm2d (256, S
track_running_stat

, momentum=0.1, affine=True,

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
BatchNorm2d (256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(1): AdaptiveAvgPool2d (output_size=1)
(2): Flatten (start_dim

(3): Linear(in_features

. end_dim=-1)
256, out_features=10, bias=True)

D. DARTS Search Space & GDAS Optimizer

[04/06 05:58:57 nl.defaults.trainer]: Final architecture: Graph normal_cell:

Graph
(normal_cel

(0): AvgPool2d(kernel_size=3,
(1): BatchNorm2d (36,

True)
) )

1-edge (1,3)): AvgPool(
(avgpool): Sequential(

stride=1, padding=1)

eps=le-05, momentum=0.1, affine=False, track_running_stats=

(normal_cell —edge (1,5)): MaxPool(

(maxpool): Sequential (
(0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=
False)
(1): BatchNorm2d(36, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True) )

)

(normal_cell —edge (2.3)): AvgPool(
(avgpool): Sequential (

(0): AvgPool2d(kernel_size=3,

stride=1, padding=1)

(1): BatchNorm2d (36, eps=le—-05, momentum=0.1, affine=False, track_running_stats=
True)
) )
(normal_cell —edge (2,4)): AvgPool(
(avgpool): Sequential(
(0): AvgPool2d(kernel_size=3, stride=1, padding=1)
(1): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True) )
)
(normal_cell —edge (2,6)): DilConv(
(op): Sequential (
(0): ReLU()
(1): Conv2d(36, 36, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2,
2),
groups=36, bias=False)
(2): Conv2d(36, 36, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
)
) )

(normal_cell —edge (3,4)):
(normal_cell —edge (3.,7)):
(normal_cell —edge (4.5)):

(avgpool): Sequential(

(0): AvgPool2d(kernel_size=3,

Identity ()
Identity ()
AvgPool (

stride=1, padding=1)




(1): BatchNorm2d (36,
True)

eps=le—-05, momentum=0.1, affine=False, track_running_stats=

) )

(normal_cell —edge (4,6)): DilConv(

(op): Sequential (
(0): ReLU()
(1): Conv2d(36, 36, kernel_size=(3, 3), stride=(l, 1), padding=(2, 2), dilation=(2,

2), groups=36, bia
(2): Conv2d(36, 36, kernel_size= 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
)
)
(normal_cell —edge (4,7)):
(normal_cell —edge (5.,7)):
(normal_cell —edge (6,7)):

Identity ()
Identity ()
Identity ()

Graph reduction_cell:
Graph (

(reduction_cell —edge (1,3)): AvgPool(

(avgpool): Sequential (

(0): AvgPool2d(kernel_size=3, stride=2, padding=1)

(1): BatchNorm2d(72, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True)

) )

(reduction_cell —edge(1,4)): FactorizedReduce (

(relu): ReLU()

(conv_1): Conv2d(72, 36, kernmel_size=(1, 1), stride=(2, 2),
(conv_2): Conv2d(72, 36, kernel_s 1, 1), stride=(2, 2),
(bn): BatchNorm2d (72, eps=1e-05, momentum=0.1, affine=True, track_running_stats=
True)
)

(reduction_cell —edge(1,6)): DilConv(

(op): Sequential (

(0): ReLU()

(1): Conv2d(72, 72, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), dilation=(2,
2),

groups=72, bias=False)

(2): Conv2d(72, 72, kernel_size=(1, 1), stride=(1, 1), bias=False)

(3): BatchNorm2d(72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
)

) )

(reduction_cell —edge(2,3)): SepConv(

(op): Sequential (
(0): ReLU()
(1): Conv2d(72, 72, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2), groups
=72,
bias=False)

(2): Conv2d(72, 72, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d(72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
) (4): ReLU()

(5): Conv2d(72., 72, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), groups=72,

bias=False)

(6): Conv2d(72, 72, kernel_size=(1, 1), stride=(1, 1), bias=False)

(7): BatchNorm2d(72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
)

) )

(reduction_cell —edge(2,4)): SepConv(

(op): Sequential (
(0): ReLU()
(1): Conv2d(72., 72, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2), groups=72,
bias=False)
(2): Conv2d(72, 72, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
) (4): ReLU()
(5): Conv2d(72, 72, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), groups=72,
bias=False)
(6): Conv2d(72, 72, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
)
) )
(reduction_cell —edge(2,5)): FactorizedReduce (
(relu): ReLU()
(conv_1): Conv2d(72, 36, kernel_size=(1, 1), stride=(2, 2), bias=False)
(conv_2): Conv2d(72, 36, kernel_size=(1, 1), stride=(2, 2), bias=False)
(bn): BatchNorm2d(72, eps=1e—-05, momentum=0.1, affine=True, track_running_stats=
True)
)
(reduction_cell —edge(3,7)): Identity ()
(reduction_cell —edge(4,5)): DilConv(

(op): Sequential(
(0): ReLU()
(1): Conv2d(72, 72, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2,
2).
groups=72, bias=False)
(2): Conv2d(72, 72, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d(72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
)
) )
(reduction_cell —edge(4,7)): Identity ()
(reduction_cell —edge(5,6)): AvgPool(

(avgpool): Sequential(

(0): AvgPool2d(kernel_si 3, stride=1, padding=1)

(1): BatchNorm2d(72, eps=le-05, momentum=0.1, affine=False, track_running_stats=
True)

) )

(reduction_cell —edge(5.,7)):
(reduction_cell —edge (6,7)):

Identity ()
Identity ()
)

Graph makrograph :
DartsSearchSpace (

(makrograph-edge (1,2)): Stem(

(seq): Sequential(
(0): Conv2d(3, 108, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=
False)
(1): BatchNorm2d (108, eps=1e—05, momentum=0.1, affine=True, track_running_stats=
True) )

)

(makrograph—-edge (2,3)): ReLUConvBN(

(op): Sequential (
(0): ReLU()
(1): Conv2d(108, 36, kernel_size=(1, 1), stride=(1, 1),

(2): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True,
)

) )
(makrograph-edge (2,4)): ReLUConvBN(

(op): Sequential(
(0): ReLU()
(1): Conv2d(108, 36, kernel_size=(l, 1), stride=(1, 1),
(2): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True,
)
) )

(makrograph-edge (2,5)): ReLUConvBN(
(op): Sequential (

(0): ReLU()

(1): Conv2d(108, 36, kernel_size=(1, 1), stride=(1, 1),
(2): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True,

)

) )

(makrograph-edge (3,4)):
(makrograph—subgraph_at(4)):

Identity ()
Graph normal_cell -0.2000754,

(makrograph—edge (4,5)): ReLUConvBN(
(op): Sequential (
(0): ReLU()
(1): Conv2d(144, 36, kernel_size=(1, 1), stride=(1, 1),
(2): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True,
)
) )

(makrograph-edge (4,6)): ReLUConvBN(
(op): Sequential(
(0): ReLU()
(1): Conv2d(144, 36,
(2): BatchNorm2d (36,
)

kernel_size=(1, 1), stride=(1, 1),
eps=le-05, momentum=0.1, affine=True,

) )

(makrograph—subgraph_at(5)): Graph normal_cell -0.1788023,
(makrograph—-edge (5,6)): ReLUConvBN(

(op): Sequential(

(0): ReLU()

(1): Conv2d(144, 36,

(2): BatchNorm2d (36,
)

kernel_size=(1, 1), stride=(1, 1),
eps=le-05, momentum=0.1, affine=True,

) )
(makrograph—edge (5,7)): ReLUConvBN(

(op): Sequential (
(0): ReLU()
(1): Conv2d(144, 36, kernel_size=(1, 1), stride=(1, 1),
(2): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True,
)
) )

(makrograph—-subgraph_at(6)): Graph normal_cell -0.7744736,
(makrograph—-edge (6,7)): ReLUConvBN (

(op): Sequential (
(0): ReLU()
(1): Conv2d(144, 36, kernel_size=(1, 1), stride=(1, 1),

(2): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True,
)

) )
(makrograph-edge (6,8)): ReLUConvBN(

(op): Sequential(

(0): ReLU()

(1): Conv2d(144, 36, kernel_size=(l, 1), stride=(1, 1),

(2): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True,
)

) )

(makrograph-subgraph_at(7)): Graph normal_cell -0.4690390,
(makrograph—-edge (7,8)): ReLUConvBN(

(op): Sequential(

(0): ReLU()

(1): Conv2d(144, 36, kernel_size=(1, 1), stride=(1, 1),

(2): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True,
)

) )

(makrograph—edge (7.,9)): ReLUConvBN (

(op): Sequential (
(0): ReLU()
(1): Conv2d(144, 36, kernel_size=(1, 1), stride=(1, 1),
(2): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True,
)
) )

(makrograph—-subgraph_at(8)): Graph normal_cell -0.4026227,
(makrograph-edge (8,9)): ReLUConvBN(

(op): Sequential (

(0): ReLU()

(1): Conv2d(144, 36, kernel_size=(1, 1), stride=(1, 1),

(2): BatchNorm2d (36, eps=le-05, momentum=0.1, affine=True,
)

) )

(makrograph—edge (8,10)): ReLUConvBN(

(op): Sequential(
(0): ReLU()
(1): Conv2d(144, 72, kernel_size=(1, 1), stride=(1, 1),

(2): BatchNorm2d (72, eps=le-05, momentum=0.1,
)

affine=True ,

) )
(makrograph—subgraph_at(9)): Graph normal_cell -0.2693992,
(makrograph-edge (9,10)): ReLUConvBN(

(op): Sequential (
(0): ReLU()
(1): Conv2d(144, 72, kernel_size=(1, 1), stride=(1, 1),
(2): BatchNorm2d (72, eps=le-05, momentum=0.1, affine=True,
)
) )
(makrograph—edge(9.,11)): FactorizedReduce (
(relu): ReLU()
(conv_1): Conv2d(144, 36, kernel_size=(1, 1), stride=(2,
(conv_2): Conv2d(144, 36, kernel_size=(1, 1), stride=(2,

bias=False)

track_running_stats=True

bias=False)

track_running_stats=True

bias=False)

track_running_stats=True

scope n_stage_1 ,

7 nodes

bias=False)

track_running_stats=True

bias=False)

track_running_stats=True

scope n_stage_l, 7 nodes

bias=False)

track_running_stats=True

bias=False)

track_running_stats=True

scope n_stage_1, 7 nodes

bias=False)

track_running_stats=True

bias=False)

track_running_stats=True

scope n_stage_1 ,

7 nodes

bias=False)

track_running_stats=True

bias=False)

track_running_stats=True

scope n_stage_1, 7 nodes

bias=False)

track_running_stats=True

bias=False)

track_running_stats=True

scope n_stage_1 ,

7 nodes

bias=False)

track_running_stats=True

2).
2).

bias=False)
bias=False)




(bn): BatchNorm2d (72, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True)
)
(makrograph—-subgraph_at(10)): Graph reduction_cell -0.2000754, scope r_stage_1, 7
nodes (makrograph—edge(10,11)): ReLUConvBN(
(op): Sequential (

(0): ReLU()

(1): Conv2d(288, 72, kernel_size=(l, 1), stride=(1, 1), bias=False)

(2): BatchNorm2d(72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
) )

(makrograph—edge (10,12)): ReLUConvBN(
(op): Sequential (

(0): ReLU()

(1): Conv2d(288, 72, kernel_size=(l, 1), stride=(1, 1), bias=False)

(2): BatchNorm2d (72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
)

) )

(makrograph—subgraph_at (11)): Graph normal_cell =0.2484313, scope n_stage_2, 7 nodes
(makrograph-edge (11,12)): ReLUConvBN (
(op): Sequential (
(0): ReLU()
(1): Conv2d(288, 72, kernel_size=(l, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d(72, eps=le—-05, momentum=0.1, affine=True, track_running_stats=True
)
) )
(makrograph-edge (11,13)): ReLUConvBN (
(op): Sequential (

(0): ReLU()
(1): Conv2d(288, 72, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d (72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True

) )

(makrograph—subgraph_at(12)): Graph normal_cell —-0.7598774, scope n_stage_2, 7 nodes
(makrograph-edge (12,13)): ReLUConvBN (

(op): Sequential(

(0): ReLU()

(1): Conv2d(288, 72, kernel_size=(1, 1), stride=(1, 1), bias=False)

(2): BatchNorm2d (72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
)

) )

(makrograph—edge (12,14)): ReLUConvBN(
(op): Sequential (
(0): ReLU()
(1): Conv2d(288, 72, kernel_size=(l, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d(72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
)
) )
(makrograph-subgraph_at(13)): Graph normal_cell =0.0076198, scope n_stage_2, 7 nodes
(makrograph—edge (13,14)): ReLUConvBN(
(op): Sequential (
(0): ReLU()
(1): Conv2d(288, 72, kernel_size=(l, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d (72, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True)
) )
(makrograph-edge (13,15)): ReLUConvBN (
(op): Sequential (

(0): ReLU()

(1): Conv2d(288, 72, kernel_size=(1, 1), stride=(1, 1), bias=False)

(2): BatchNorm2d (72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
) )

(makrograph—subgraph_at(14)): Graph normal_cell —-0.2037644, scope n_stage_2, 7 nodes
(makrograph—edge (14,15)): ReLUConvBN(
(op): Sequential (

(0): ReLU()

(1): Conv2d(288, 72, kernel_size=(l, 1), stride=(1, 1), bias=False)

(2): BatchNorm2d(72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
)

) )

(makrograph-edge (14,16)): ReLUConvBN (
(op): Sequential (
(0): ReLU()
(1): Conv2d(288, 72, kernel_size=(l, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d(72, eps=le-05, momentum=0.1, affine=True, track_running_stats=True
)
) )
(makrograph—subgraph_at(15)): Graph normal_cell -0.9895700, scope n_stage_2, 7 nodes
(makrograph—-edge (15,16)): ReLUConvBN(
(op): Sequential(
(0): ReLU()
(1): Conv2d(288, 72, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d (72, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True)
) )
(makrograph—edge (15,17)): ReLUConvBN(
(op): Sequential (
(0): ReLU()
(1): Conv2d (288, 144, kernel_size=(1, 1), stride=(l, 1), bias=False)
(2): BatchNorm2d (144, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True)
) )
(makrograph-subgraph_at(16)): Graph normal_cell -0.5343100, scope n_stage_2, 7 nodes
(makrograph-edge (16.17)): ReLUConvBN (
(op): Sequential (
(0): ReLU()
(1): Conv2d(288, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d (144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=
True)

) )

(makrograph—edge (16,18)): FactorizedReduce (

(relu): ReLU()

(conv_1): Conv2d(288, 72, kernel_size=(1, 1), stride=(2, 2), bias=False)

(conv_2): Conv2d (288, 72, kernel_size=(1, 1), stride=(2, 2), bias=False)

(bn): BatchNorm2d (144, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True)

)

(makrograph—subgraph_at(17)): Graph reduction_cell -0.2511510, scope r_stage_2, 7
nodes (makrograph—edge(17,18)): ReLUConvBN(
(op): Sequential (

(0): ReLU()

(1): Conv2d(576, 144, kernel_size=(1, 1), stride=(l, 1), bias=False)

(2): BatchNorm2d (144, eps=le—05, momentum=0.1, affine=True, track_running_stats=
True)

) )

(makrograph-edge (17.,19)): ReLUConvBN (
(op): Sequential(
(0): ReLU()
(1): Conv2d(576, 144, kernel_size=(1, 1), stride=(1 1). bias=False)
(2): BatchNorm2d (144, eps=le—-05, momentum=0.1, affine=True, track_running_stats=
True)

) )

(makrograph—subgraph_at(18)): Graph normal_cell -0.3830676, scope n_stage_3, 7 nodes

(makrograph—edge (18,19)): ReLUConvBN (

(op): Sequential(

(0): ReLU()

(1): Conv2d(576, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)

(2): BatchNorm2d (144, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True)

) )

(makrograph—edge (18,20)): ReLUConvBN(

(op): Sequential (

(0): ReLU()

(1): Conv2d(576, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)

(2): BatchNorm2d (144, eps=le¢-05, momentum=0.1, affine=True, track_running_stats=
True)

) )

(makrograph—-subgraph_at(19)): Graph normal_cell -0.6843086, scope n_stage_3, 7 nodes

(makrograph—-edge (19,20)): ReLUConvBN(

(op): Sequential (

(0): ReLU()

(1): Conv2d(576, 144, kernel_size=(1, 1), stride=(l, 1), bias=False)

(2): BatchNorm2d (144, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True)

) )
(makrograph—-edge (19,21)): ReLUConvBN(
(op): Sequential(
(0): ReLU()
(1): Conv2d(576, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d (144, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True)
) )
(makrograph—-subgraph_at(20)): Graph normal_cell —-0.4620867, scope n_stage_3, 7 nodes
(makrograph-edge (20,21)): ReLUConvBN (
(op): Sequential (
(0): ReLU()
(1): Conv2d(576, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d (144, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True)
) )
(makrograph—-edge (20,22)): ReLUConvBN(
(op): Sequential(
(0): ReLU()
(1): Conv2d(576, 144, kernel_size=(1, 1), stride=(l, 1), bias=False)
(2): BatchNorm2d (144, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True)
) )
(makrograph-subgraph_at(21)): Graph normal_cell =0.9002423, scope n_stage_3, 7 nodes
(makrograph—edge (21,22)): ReLUConvBN(
(op): Sequential(

(0): ReLU()
(1): Conv2d(576, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d (144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=
True)
) )
(makrograph—edge (21,23)): ReLUConvBN (
(op): Sequential (
(0): ReLU()
(1): Conv2d(576, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d (144, eps=le-05, momentum=0.1, affine=True, track_running_stats=

True)
) )
(makrograph—-subgraph_at(22)): Graph normal_cell -0.6055091, scope n_stage_3, 7
nodes

(makrograph—edge (22,23)): ReLUConvBN (
(op): Sequential (
(0): ReLU()
(1): Conv2d(576, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d (144, eps=le-05, momentum=0.1, affine=True, track_running_stat

True)
) )
(makrograph—subgraph_at(23)): Graph normal_cell -0.9767119, scope n_stage_3, 7
nodes

(makrograph-edge (23,24)): Sequential(
(op): Sequential (
(0): ReLU(inplace=True)
(1): AvgPool2d(kernel_size=5, stride=3, padding=0)
(2): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d (128, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True) (4): ReLU(inplace=True)
(5): Conv2d (128, 768, kernel_size=(2, 2), stride=(1, 1), bias=False)
(6): BatchNorm2d (768, eps=le-05, momentum=0.1, affine=True, track_running_stats=
True) (7): ReLU(inplace=True)
(8): Flatten(start_dim=1, end_dim=-1)
(9): Linear(in_features=768, out_features=10, bias=True)
) )
(makrograph-edge (23,25)): Sequential (
(op): Sequential (
(0): AdaptiveAvgPool2d (output_size=1)
(1): Flatten (start_dim=1, end_dim=-1)
(2): Linear(in_features=576, out_features=10, bias=True)

) )
) ==
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