
Andrews University Andrews University

Digital Commons @ Andrews University Digital Commons @ Andrews University

Honors Theses Undergraduate Research

4-5-2021

Computational Difficulty and Invariants of the Snake Cube Puzzle Computational Difficulty and Invariants of the Snake Cube Puzzle

Adrian Negrea
Andrews University, adriann@andrews.edu

Follow this and additional works at: https://digitalcommons.andrews.edu/honors

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Negrea, Adrian, "Computational Difficulty and Invariants of the Snake Cube Puzzle" (2021). Honors
Theses. 255.
https://dx.doi.org/10.32597/honors/255/
https://digitalcommons.andrews.edu/honors/255

This Honors Thesis is brought to you for free and open access by the Undergraduate Research at Digital Commons
@ Andrews University. It has been accepted for inclusion in Honors Theses by an authorized administrator of
Digital Commons @ Andrews University. For more information, please contact repository@andrews.edu.

https://digitalcommons.andrews.edu/
https://digitalcommons.andrews.edu/honors
https://digitalcommons.andrews.edu/undergrad
https://digitalcommons.andrews.edu/honors?utm_source=digitalcommons.andrews.edu%2Fhonors%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.andrews.edu%2Fhonors%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.32597/honors/255/
https://digitalcommons.andrews.edu/honors/255?utm_source=digitalcommons.andrews.edu%2Fhonors%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@andrews.edu

COMPUTATIONAL DIFFICULTY AND INVARIANTS OF THE SNAKE

CUBE PUZZLE

HONORS THESIS

Adrian Negrea
April 1, 2021

HONS 497

Adviser: Anthony Bosman, PhD

Signature:

Department of Mathematics

HONORS THESIS

ABSTRACT

The snake cube is a popular puzzle that has been analyzed for its computational difficulty and shown
to be NP-complete. Conceiving of the puzzle as a Hamiltonian path in an n⇥ n⇥ n graph, we offer
a novel mathematical analysis by considering invariants of the puzzle. This allows us to determine
necessary conditions for a particular snake cube to be solvable and eliminate a large class of possible
puzzles as unsolvable. In particular, we establish upper and lower bounds on the possible number of
straight components in solvable snake cube puzzles.

2

HONORS THESIS

Figure 1: The snake cube puzzle in its solved and original configurations. [1]

1 Introduction

Snake cube puzzles are physical puzzles comprised of wooden or plastic units attached with an elastic cord. In its
most popular version, the snake consists of 27 cubes; the goal is to fold the cube into a 3 ⇥ 3 ⇥ 3 cube (Figure 1).
Variations exist, including a 64 cube snake that one folds into a 4⇥ 4⇥ 4 cube. Note the configuration of the snake is
carefully chosen so that a solution is possible, but it is easy to construct snake configurations that cannot be folded
into a cube. This puzzle lends itself well to mathematical analysis using tools from modern graph theory. In particular,
a Hamiltonian path is path that winds along the vertices of a graph via their connecting edges so that every vertex
is visited exactly once; for example, see Figure 2. As such, a solved snake cube represents a Hamiltonian path in a
3⇥ 3⇥ 3 cube graph (or, more generally, an n⇥ n⇥ n cube graph).

A natural question arises: Given a snake, how can one determine if it is possible to fold it into a cube? Or, equivalently,
does that snake respect a Hamiltonian graph in a cube. For example, when looking at the two snakes of Figure 2, it is
not immediately apparent whether they are solvable or not. However, it turns out that only the snake on the right has a
solution, while it is impossible to turn the left snake into a cube.

Figure 2: The snake on the left cannot be folded into a cube and thus has no solution. At the same time, the snake on
the right can be folded into a cube, and thus it has a solution.

Abel et. al. [1] demonstrated that it is computationally hard (NP-complete) to decide whether a given snake configuration
puzzle can be folded into an n⇥ n⇥ n cube. This computational difficulty indicates the need for other approaches to
determining the solvability of a snake puzzle. One understudied possibility is to identify snake puzzle invariants which
are properties of the puzzle the remain the same under folding the snake into a cube. For a trivial example of such an
invariant, note that regardless of how the puzzle is transformed, the number of cubes remains invariant, indicating that it
is necessary for the snake puzzle to have n3 cubes in order to fold into an n⇥ n⇥ n cube. The goal of the research
program is to identify more sophisticated invariants to help decide when a snake cube is solvable. The ultimate ambition

3

HONORS THESIS

would be to develop a set of invariants that are both necessary and sufficient for solvability, completely characterizing
the snake cubes that can be solved.

No such analysis has been attempted, though it is a natural next step to build on the existing analysis of the puzzle.
Invariants are a well-used tool in graph theory, knot theory, and other areas of topology in settings where it is too
computationally difficult to find solutions by brute force.

Figure 3: A Hamiltonian path: https://simple.wikipedia.org/wiki/Hamiltonian_path

2 Computational Difficulty

2.1 Turing machine

When solving a computational problem, we are often concerned with whether or not the problem can be computed
efficiently with a Turning machine. The Turing machine is an abstract mathematical model typically imagined as a
series of tapes subdivided into cells, with each cell holding one symbol from the machine’s alphabet. Each tape has a
head, a placeholder for the location on the tape that the Turing machine is looking at. One such tape must be the input
tape, from which information can only be read, while information can be read or written to the rest of the tapes. This
includes the output tape, to which the final answer is ultimately written, before the Turing machine halts. The remaining
tapes are used by the machine for computation. Each Turing machine also has a certain finite alphabet, and all of the
symbols on the tape must be within it. Along with a finite set of valid characters, a Turing machine also requires a finite
set of possible states that it can be in. At every moment, a Turing machine must have a certain state, which in turn
determines the next step of the computation. The reason Turing machines have proven to be so useful in breaking down
problems has been their applicability to computers, since any character in any finite alphabet can be rewritten as a series
of 1s and 0s. As a result, Turing machines can help identify those problems which can be computed by computers in a
finite amount of steps.

2.2 P

Problems can be broken down into sets by how long their computation would take. A first such grouping is made up
of those problems which require polynomial time to solve. The set of all such problems are then grouped together in
a set called P. What this means in terms of a Turing machine is that, as the size of the input tape changes, the time
to compute the problem is on the order of nc, where c > 1 is a constant and n is the input tape. This may not seem
particularly efficient, since c could be a large exponent; however, such problems prove to be much more efficient than
their exponential counterparts, which can only be solved in exponential time or worse. A problem can be solved in
exponential time if the time required is represented by cn. Note that for sufficiently large n, cn exceeds nc. For input
tapes of small size, there is often little difference between polynomial time and exponential time, but for large inputs
(i.e. large n), non-polynomial time problems become computationally infeasible.

4

https://simple.wikipedia.org/wiki/Hamiltonian_path

HONORS THESIS

Figure 4: P is a subset of NP, while NP-complete is the intersection of NP and NP-hard.

2.3 NP and NP-hard

In addition to inquiring about the time needed to solve a problem, we let NP denote problems whose solutions may be
verified in polynomial time. Of course, any problem of P is also a problem of NP, for if a solution can be found in
polynomial, then we immediately have that it can be verified in polynomial time. A major open problem in computer
science is to determine if P=NP or not. It certainly seems that there should be many problems that fall outside of P but
that belong to NP, that is, a solution cannot be determined in polynomial time, but given a possible solution is proposed,
it can be verified in polynomial time. This situation is analogous to solving a jigsaw puzzle. Given many pieces, it may
take an incredibly long to determine the correct way to put them together, but given a possible solution, one can almost
immediately tell if the assembled arrangement is correct or not.

There are several well-studied problems that are known to belong to NP. For example, the 3-partition problem states
that a set of 3n positive integers can be partitioned into n triplets that all have the same sum. For example, for the
set {20, 23, 25, 49, 45, 27, 40, 22, 19}, the numbers can be partitioned into 3 triplets which all add up to 90. They are
{20, 25, 45}, {23, 27, 40}, and {49, 22, 19}. While it is trivial to verify the solution (just add up the numbers in each
triplet), determining if such a partition is possible for any set of 3n positive integers is quite hard. Another famous NP
problem is the traveling salesman problem that asks, given a set of points, what is the shortest path to visit every point
and return at the starting point. A solution to this problem would allow for the most efficient paths to be found in a
number of applications, such as finding the optimal delivery route.

Given a problem, such as a the traveling salesman problem, we can analyze its difficulty by reducing it to another
well-studied problem, such as the 3-partition problem. That is, if we can show that any solution to the traveling salesman
problem in fact gives a way of solving the 3-partition problem, then we can conclude that the traveling salesman
problem must be at least as computationally difficult as the 3-partition problem.

If a problem in NP can be reduced to another, the second problem is then NP-hard and at least as hard as any other
problem in NP. Hence, yet another set can be formed from the problems which are at least as hard as any other problem
in NP. We call this set NP-hard. We define NP-complete to be the set of problems that are both NP and NP-hard. Both
the 3-partition problem and the traveling salesman problem are known to be NP-complete.

The snake cube problem is NP; although it appears difficult to determine if a snake folds into a cube, given a possible
solution, one can immediately verify if the folded puzzle is, in fact, in the shape of a cube. Abel et. al [1] demonstrated
that the snake cube puzzle can be reduced to the 3-partition problem, thus showing the snake cube puzzle to be NP-hard.
It therefore follows that the snake cube puzzle is NP-complete.

5

HONORS THESIS

3 Invariants

3.1 Piece Types

Given a snake cube puzzle, we can classify each piece as being of one of three types:

• one of the two end pieces,

• a straight piece, that is, a piece where the elastic cord exists the face opposite to the face where it entered,

• a curved piece, that is, a piece where the elastic cord exits at a face adjacent to the face where it entered.

There are limits on how many of each type of piece can occur and how many can occur in a row. For instance, one
cannot have a cube with no curved pieces, as such a cube cannot be folded. Moreover, in a 3⇥ 3⇥ 3 cube, one cannot
have more than 1 straight piece in a row, else one will have a row too long to fit inside the cube.

Already, this eliminates several possible puzzle configurations as having a possible solution. We are interested in
determining stronger conditions on the possible total number and arrangement of straight pieces in a solvable snake
cube puzzle.

3.2 Upper Bound

Proposition 3.1 On a face of an n ⇥ n ⇥ n cube, either each row has 2 non-straight pieces or each column has 2
non-straight pieces. Hence, there are at least 2n non-straight pieces on each face.

Suppose some row does not have 2 non-straight pieces. We will argue then that every column has 2 non-straight pieces.

First consider the case that the row has no non-straight pieces. Then, in order for all of the pieces to be straight, they
must all be vertical straights, since any string of horizontal straights must terminate in a non-straight by the time it
reaches both the left and right edges of the cube. But since similarly each string of vertical straights must terminate in a
non-straight before reaching the top or bottom edge, or before transitioning into a non-vertical straight (either horizontal
or interior straights), we have that there must be 2 non-straights in every column of the face.

Now consider the case that the row has exactly one non-straight piece. Denote its position pi,j where 1 i, j n

denote the row and column of the piece in the face, respectively. Note if j = 1 or j = n, then the non-straight piece is
on an edge and since corners p1,j and pn,j cannot be straight, there are at least two non-straight pieces in column j.
Moreover, since pi,j is the only non-straight in row i we have that all other pieces of row i must be vertical straights and
thus, as in the case above, also have two non-straights in each columns.

Corollary 3.2 Let smax(n) denote the maximum number of straight pieces in the n⇥ n⇥ n snake cube. Then

smax(n) n3 � 8n+ 8.

From Proposition 3.1 there at least 2n non-straight pieces per face on the six faces of a cube, giving 12n faces. However,
the 8 corner pieces are non-straights that each are contained on three faces and hence were triple counted. Moreover, up
to n� 2 non-corner edges pieces were double counted on up to two opposite edges per face. Since there is a maximum
of 4 non-adjacent edges on a cube, this gives up to 4(n� 2) pieces that were double counted. Therefore, the number of
non-straights on the face of an n⇥ n⇥ n snake cube is bounded below by

6(2n)| {z }
total

� 8(2)|{z}
corners

� 4(n� 2)| {z }
edges

= 8n� 8.

6

HONORS THESIS

Figure 5: A solved snake puzzle with lots of straight pieces.

3.3 Lower Bound

We achieve a lower bound by exhibiting a solvable snake puzzle that has a large number of straights. For example,
consider the puzzle of Figure 5. There are 3 horizontal straights on the top level, 2 horizontal and 3 vertical straights in
the middle layer, and 3 horizontal straights on the bottom layer. Thus, this snake puzzle exhibits a total of 11 straight
pieces and therefore smax(3) � 11. However, we have already shown smax(3) 11 and hence we can conclude:

Proposition 3.3 smax(3) = 11

Note Proposition 3.3 agrees with the brute force analysis of [3] which found that there are 11,487 solvable snake
configurations when n = 3, two of which have 11 straight pieces and none of which have more than 11 straights.

We can generalize the pattern of Figure 5 to any n � 1. In particular, begin the Hamiltonian path at the top, left, front
corner and draw a path along the front of the top face, down the right face, and along the bottom, then move over a row
and reverse the pattern, and repeat. This will fill the top, right, and bottom faces. Then, move up (or down) a layer and
fill the remainder of that middle layer with a zig-zag path. Continue doing this for all middle layers, filling the cube.

Let us count the number of straights in this generalized pattern. Observe that on the top layer, there are n rows that each
have n� 2 straight pieces (as neither end of the row is straight). The same is true for the bottom layer. There are n� 2

middle layers and for each middle layer the rightmost column is comprises n vertical straight pieces; moreover, from
the zig-zag pattern we also have n� 2 horizontal straight pieces in each of the remaining n� 1 columns. That is, the
total number of straight pieces is given by:

n(n� 2)| {z }
top layer

+(n� 2)[(n� 1)(n� 2) + n]| {z }
middle (n � 2) layers

+n(n� 2)| {z }
bottom layer

= n3 � 2n2 + 2n� 4

As in the n = 3 case above, this gives a lower bound to smax(n) for any n � 1.

4 Results

Putting together our lower and upper bounds, we have:

7

HONORS THESIS

Theorem 4.1 Given a snake puzzle that can be folded into an n⇥ n⇥ n cube, the maximal number of straight pieces
smax(n) is bounded above and below by:

n3 � 2n2 + 2n� 4 smax(n) n3 � 8n+ 8.

Calculating these bounds for several values of n gives the following table:

n3 � 2n2 + 2n� 4 smax n3 � 8n+ 8 n3

n = 3 11 smax 11 27
n = 4 36 smax 40 64
n = 5 81 smax 93 125
n = 6 152 smax 176 216

As we noted in Proposition 3.3, the lower and upper bounds agree for n = 3 letting us precisely determine smax. In the
other cases, we have a range of possible values for smax. The size of the range is the size of the gap between the lower
and upper bound which is the quadratic 2n2 � 10n+ 12. Although this quadratic grows with n, it remains significantly
smaller than n3 for large n.

4.1 Computational Improvement

Let us consider the computational improvement achieved by our upper bound. In the case n = 3, the snake puzzle has
27 pieces, two of which are fixed as ends, but the other 25 can be either twisted or straight, so there are 225 possible
snake cube configurations. However, a sequence and its reverse produce the same snake, therefore we need to divide the
number in half, giving 224 = 16, 777, 216 possible configurations.

However, we know that all snakes puzzles with 12 or more straight pieces are unsolvable. We can count the number of
such puzzles by

1

2

✓
25

12

◆
+

✓
25

13

◆
+ · · ·+

✓
25

25

◆�
= 10, 988, 758.

Hence, we can immediately identify these 65.5% of puzzles as having no solution. While this fraction decreases rapidly
for larger values of n, we still have that our upper bound rules out a large class of puzzles as unsolvable.

Figure 6: An alternative snake puzzle with maximum number of straights (n = 3).

8

HONORS THESIS

4.2 Better Bounds?

How might our bounds be further improved? Recall the lower bound (n3 � 2n2 + 2n� 4) was established by giving an
example of puzzle that has that has the maximal number of straights for a 3⇥ 3⇥ 3 cube, then generalizing its pattern
to arbitrary n. Our generalization was natural, but one might attempt an alternative generalization to obtain a different
lower bound. Alternatively, one could begin with the other 3 ⇥ 3 ⇥ 3 snake cube puzzle with 11 straight pieces in
Figure 6 and attempt to generalize it.

Establishing the upper bound was more challenging. We achieved it by carefully partitioning the cube into a number of
regions and then analyzing the necessary behavior of the the snake in and between each region. One could attempt
alternative partitions of the cube, but none we attempted gave a tighter bound.

4.3 Future Work

It is also natural to consider bounds on smin(n), defined to be the minimal number of straight components in a solvable
puzzle of length n3. For instance, we might wonder if smin(n) = 0, that is, if there is a snake cube puzzle with no
straight components that folds into a cube. This is exactly the problem considered for odd n in [2]; one might generalize
their work to achieve bounds on smin(n) more generally.

9

HONORS THESIS

References

[1] Z. Abel, et. al. Finding a Hamiltonian Path in a Cube with Specified Turns is Hard In Journal of Information
Processing, pages 368–377, July 2013

[2] A. Itai, C. H. Papadimitriou, and J. l. Szwarcfiter Hamilton Paths in Grid Graphs In Siam J. Comput. Vol. 11, No.
4, November 1982

[3] J. Scherpuis, Snake Cubes, In Jaap’s Puzzle Page. https://www.jaapsch.net/puzzles/snakecube.htm
Date Accessed: August 2020

[4] C. Zamfirescu and T. Zamfiresc Hamiltonian Properties of Grid Graphs In SIAM Journal on Discrete Mathematics
Vol. 5, pages 564–570, 1992

10

https://www.jaapsch.net/puzzles/snakecube.htm

	Computational Difficulty and Invariants of the Snake Cube Puzzle
	Recommended Citation

	Introduction
	Computational Difficulty
	Turing machine
	P
	NP and NP-hard

	Invariants
	Piece Types
	Upper Bound
	Lower Bound

	Results
	Computational Improvement
	Better Bounds?
	Future Work

