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Variable Autoencoders for Biosensor Data Augmentation

Solomon Kim

Abstract — Over the past decade machine learning and
artificial intelligence’s resurgence spawned the desire to
mimic human creative ability. Initially attempts to create
images, music, and text flooded the community, though little
has been learned regarding constrained, one-dimensional
data generation. This paper demonstrates a variational
autoencoder approach to this problem. By modeling
biosensor current and concentration data we aim to
augment the existing dataset. In training a multi-layer
neural network based encoder and decoder we were able to
generate realistic, original samples. These results
demonstrate the ability to realistically augment datasets,
improving training of machine learning models designed to
predict concentration from input signals.

I. INTRODUCTION

Machine learning provides a gateway to applicable
artificial intelligence with one main drawback, the need for big
data. Given that most data is difficult to collect, many projects
require some form of data augmentation. While many examples
of 2-dimensional data augmentation exist, using generative
adversarial neural networks, multi-input, variable dependent
1-dimensional data augmentation is still in its infancy.

More specifically, the biofuel industry encounters a
predictive analysis issue. Phenolic compounds inhibit the
fermentation process in many crops, such as corn, when
- producing ethanol. Unfortunately, there is no effective way to
efficiently monitor the concentration of phenolic compounds.
Currently, the industry uses electrochemiluminescence (ECL)
sensors, however, these sensors are bulky, expensive, and
difficult to deploy in mass.

In order to combat this issue this project aims to create a
smartphone ECL sensor that processes images or current data to
predict the concentration of phenolic compounds. By using
machine learning algorithms as a predictive model, the
smartphone will ensure a more efficient and affordable solution.
However, real data collection takes time so the training set for
the predictive model is sparse, leading to an inflexible model.
In this paper I will describe a variational autoencoder (VAE)
approach for augmenting the training dataset, merging created
samples and real samples, improving the predictive model, and
providing a basis for other variable dependent methods of data
augmentation.

II. RELATED WORK
A. Deep Learning for Data Creation

Many different methods for data creation have been
explored, but the most popular and effective has been deep
learning [1]. Deep learning attempts to generate data using
unsupervised learning. When learning the model observes the
data distribution in the given training set and then predicts
what another sample in that distribution would be. The two
most common types of generative models are VAEs [2] and a
generative adversarial network (GAN) [3]. A variational
autoencoder will generally use an encoder and decoder
network separately. It uses these two networks in order to
determine the probability of generated data being in the
original dataset. At the end of training the decoder model will
be able to generate realistic data. In a GAN there is a
generator and discriminator. The generator will create
samples and the discriminator will determine if those samples
are real or fake by comparing them with real samples. The
discriminator will provide feedback to the generator until the
generator learns to fool the discriminator. At the end of
training the generator is left to create realistic samples. Both
of these methods have gained popularity over the years,
though we will be using VAEs to solve our specific problem.

B. Variational Autoencoders for Data Augmentation

VAESs have been used for both 1-dimensional and
2-dimensional data augmentation for many years now.
Recently there has been a surge in the need for this
technology given the increase in machine learning. More
specifically VAEs with conditional, or variabalized inputs
have become increasingly popular. Lee et. al outlined a base
conditional VAE model for attribute conditioned image
generation [4]. This allowed them to generate faces from a
latent space, using different descriptive variables, such as
“smile” or “girl”, to dictate the created image. While their
base model was a VAE, they also investigated other types of
models. While their work was an example of 2-dimensional
data augmentation with descriptive variables there was only
one paper that dealt with 1-dimensional data creation. Luo et.
al investigated data augmentation for EEG-based emotion
recognition, using a VAE model [5]. This paper compared the
results of a VAE and multiple GAN models when generating



in}}m: {{Noue, 200, 13}

[(None, 200, 1)]

data. This paper uses a consistent evidence lower bound z o B

i carrent_input: InpatLayer
(ELBO) loss function, which was utilized in our research as : l
well.

(None, 200, 1}
(None, 198, 16)

couvid: ConviD

1. METHODOLOGY

ouput:

a imput: | (None, 198, 16)
convid_1: ConviD -
output: | (None, 196, 16}

}

| opue: | (None, 196, 16) |
l ourput: ! (None, 196, 16) J[

A. Data Cleaning

The entire modeling and data cleaning approaches were
done using Python 3.6 in a Google Collaboratory notebook.
The data that we were modeling was ECL sensor data in the
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form of current occurring over time. Each sample run
represented a single curve of 1000 points that we were
attempting to replicate. We trimmed this down to the first 200
points, which were the most unique. For every curve there
was a corresponding concentration that was taken into
account. There were also two sets of data relating to the two
different acids measured, vanillic and p-Coumaric. The data
was split into these two acidic groups and sorted by
concentration. We then normalized the data based on a
control testing on the corresponding electrode. Simply
dividing each sample by the maximum value of the control
group normalized the data and the data was cleaned.

B. VAE Model Architecture

For our model we started from a generic VAE structure
with an encoder feeding into the decoder. In Figure 1 we see
the general visualization of the model architecture.
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Figure 1: llustration of The General Model Architecture

The encoder takes in the array of current samples, 200 p:)ints
on the curve, as well as a single value for the corresponding
concentration. The encoder consists of two branches, the
current and concentration branch. A more detailed
visualization of the encoder is shown in Figure 2.
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Figure 2: Detailed Encoder Architecture

outut:

The current branch begins with two Conv1D layers with 16
filters, relu activation, and a kernel size of 3. There is then a
dropout layer, followed by a MaxPooling1D layer, and finally
a flattening layer. The concentration branch on the other hand
had only two relu activated dense layers. These branches
were concatenated and combined with an output
corresponding to the latent dimension we had chosen. For
this project we decided to have a latent dimension of 4. This
latent dimension would later be split into a mean and
variance using tf.split. The decoder consists of two branches
as well, the latent and concentration branch. A more detailed
visualization is shown in Figure 3.
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The latent branch has three Conv1DTranspose transpose
layers that lead to a flattening layer. The concentration
branch has two dense layers. Both of these branches are -
concatenated and then fed into a dense output layer with
dimensionality of 200. This output dimension matches the
number of samples in the original curve.

C. Training Strategy

We had to create two separate, identical models; one for
vanillic acid and one for p-Coumaric acid. Each of these
models were trained in the same way. The loss function that
we decided to use was a variation of evidence lower bound
(ELBO). Our goal is to maximize the ELBO on the marginal
log-likelihood. Considering that our VAE will encode our
inputs x into a latent representation z, our goal is to find the
probability of values in z being present in x. Originally our
ELBO function is represented by Equation 1.

. pa,2)
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Equation 1 - ELBO

However, given the complexity of this equation we
decompose it into Equation 2.

log p(z|z) + log p(z) — log g(z|z)

Equation 2 - Monte Carlo Estimate

This decomposition is more formally known as the Monte
Carlo estimate, a much quicker and easier value to calculate.
We could also use the Kullback-Leibler divergence, which
has been well documented, however, for simplicity’s sake we
decided to stay with the Monte Carlo estimate. In order to
calculate the three parts of Equation 2 we used two different
strategies. To calculate the second and third terms we use a
log normal probability density function. One note is that we
use a reparameterization trick in order to backpropagate
gradients in the encoder [6]. If we were to just create a
sample z from the decoder using the latent distribution
defined by the mean and variance given by the encoder we
would create a bottleneck given we would be learning on a
random node. To avoid this problem we must reparameterize
the sample z using the encoder results as well as a defined
constant. Since we have a defined function to generate z we
can now backpropagate through these nodes. We sample our
reparameterized z from the distribution to obtain the second
term and sample the mean and variance as well as the
reparameterized z in order to find the third term. The first

term, however, takes a bit more work. Figure 4 visualizes
sigmoid cross entropy.
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Figure 4 - Illustration of Sigmoid Cross Entropy

The logits are represented by our generated sample and the
labels are our original sample. Sigmoid cross entropy will
measure the probability error between the two samples.
Essentially it will compare the two and check the probability

-that a value from the logits, or generated sample will be in a

real sample. This allows us to have all three parts of Equation
2, giving us a measurable loss.

In order to train we had to iterate over each concentration,
making sure that we are changing our descriptive variable. To
do this we ran an exterior for loop that iterates over each
concentration present in the dataset. If there are samples for
that concentration we choose the first curve of 200 points and
run it through our VAE with the concentration. We return our
loss and backpropagate using an Adam optimizer with a
learning rate of 1e™*. We had to use tensorflow’s gradient tape
in order to accomplish this given we have multiple branches
in our functional model. After back propagation we move on
to the next sample for our concentration and do the same.
Once we have gone through each sample for a specified
concentration we then iterate through for a specified number
of epochs. For the purposes of our project we had 25 epochs
for this inner loop. Then we move to the next concentration
and repeat. Since the model at the time the first
concentrations are seen doesn’t have much exposure to the
data we then run this outer for loop 4 times, an outer epoch.
In all we train the model on each concentration and sample
within that concentration 100 times.

D. Testing Strategy

In order to test the results of our generation technique we
had to look towards our predictive model. We trained the
predictive model with differing amounts of real and



generated data. The training and test data for the predictive
model were split using a stratified shuffle split. We ran tests
with no generated data, 10% generated data, and then
increasing in 10% increments until it was training on an_
entirely generated dataset. We then measured the MAE and
RMSE of the predictive model at each of these increments in
order to determine the success of our VAE generative model.
We repeated this process of splitting our training data,
training the model for 10 epochs, recording the average
MAE and RMSE, and then increasing the amount of
generated data added by 10% until we had used 100% of the
generated data. This was done 10 separate times, the learning
curves for MAE and RMSE were then averaged and standard
deviation was found for each percentage of generated data
added. Another factor that was considered was the visual
similarity between the generated and real curves. Note that
there were two predictive models tested, one for each of the
acids, with the corresponding generative models producing
data.

IV.RESULTS

The two different predictive models for the two acids yielded
different results when using the generated data. Figure 5
shows the average MAE learning curve for p-Coumaric acid.
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Figure 5 - MAE Learning Curve Amalgamation (pCA)

While there is a large amount of standard deviation in the
first initial error, as we add generated samples not only does
the standard deviation decrease, but the average MAE
decreases as well. This indicates that adding more generated
data improves the model’s accuracy using this metric. For
these tests we used 250 samples as the 100% mark, anything
above that proved to plateau. Similar to the MAE results, the
RMSE results showed consistent improvement. Figure 6
shows the average RMSE for 10 learning curves for
p-Coumaric acid. The RMSE was a little bit higher than the

MAE for this acid, which is understandable. Given that
RMSE is a quadratic function the value is expected to be
larger than- MAE, and more sensitive to large deviations from
the norm.
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Figure 6 - RMSE Learning Curve Amalgamation (pCA)

Again, we see a large standard deviation in the first sample,

~ but a progressive downward trend leading to more than a full

point of improvement. In general the VAE model improved
the performance of our predictive model.

The vanillic acid on the other hand was not as easy to
interpret. Figure 7 shows the average MAE learning curve for
vanillic acid.
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Figure 7 - MAE Learning Curve Amalgamation (Vanillic)

In comparison to Figure 5, the predictive model for vanillic
acid did not benefit from a significant increase in accuracy
like the p-Coumaric acid did. While there is still ultimately a
small increase, the trend is weaker. Similarly, Figure 8 shows
the RMSE for vanillic acid.
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The curve moves quite sporadically and there is no clear
trend. This signals that there must be a high amount of
standard deviation among the samples, learning to an
inconsistent model. While these results are not ideal we can
see that adding 30% of the augmented dataset allowed for
some improvement to the vanillic predictive model.

In terms of visual results, Figure 9 shows a single
generated curve from our vanillic generative model and
Figure 10 shows a generated curve from our p-Coumaric
generative model. :
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Figure 10 - 50 mM Generated p-Coumaric Acid Sample Compared to Real
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The yellow line represents the generated sample and the blue
line represents the real sample. Visually speaking our VAE
for both the vanillic and p-Coumaric acid models generated
realistic looking curves. In combination of these results, the
VAE generative model improved both the p-Coumaric and
vanillic acid predictive models and generated realistic
looking samples for generation.

V. DISCUSSION

While these results were promising there is much room for
future work as well as some limiting factors to this research.
Given the nature of this problem there was not much training
data to begin with for either the VAE or the predictive model.
Since we had less than 100 samples for the vanillic and
p-Coumaric acid training the VAE was difficult. Usually 1D
CNNs would require quite a bit more data to be reliable.
Since this data is experimental there could be more data
collected in the future. Another future improvement will be
increasing the complexity of the VAE model and fine tuning
the different layers. There is also room for improvement in
the type of optimization function used. While we used the
Adam optimizer, according to the general literature, there are
many other options.

The generative model is inherently limited by the types of
concentration that are in the training set, so there was no
ability to create samples of other concentrations. This was
not a problem since the predictive model did not have a
varied set of concentrations. Another expansion of this
research project would be to use other models for data
generation. Originally we were going to use a GAN in order
to generate the data, however, there was not enough data
initially and the time limitation of an undergraduate research
project limited the complexity of the model used. If this
project is continued it would be beneficial to investigate other
generative models.

Visually speaking the curves generated were fairly similar
at the most important parts of the curve. The beginning of the
curve, the first 25 samples, were considered the most
important and unique. Figures 9 and 10 both show this area
as being similar between the generated and real samples.
There were examples of curves that did not detect the height
of the peaks as well, but in general each concentration curve
looked different and matched the corresponding peaks.

The predictive model posed many complications for this
project, specifically in evaluating the success of our
generative model. One major issue was the lack of data for
our predictive model. There were only 60 total samples for



p-Coumaric acid and over 120 samples for vanillic acid. This
caused differing performance between the two predictive
models. This most likely caused the more significant
improvement when adding generated data to the p-Coumaric
model. Since it originally did not have many samples, any
addition would allow for increased accuracy. While the .
vanillic acid had improvement, it was not as significant
because it had more samples to work with. It is also worth
noting that the vanillic dataset had more varied
concentrations and therefore a larger range to predict,
possibly leading to a lower MAE and less effective
augmented dataset. Another issue with the predictive model
was the lack of tuning. This was out of scope of the project
and therefore the predictive model was not optimized. This
means that there is future work to be done in this area,
possibly improving the results of the generative VAE.
Regardless, the visual comparisons were successful and there
was still numerical improvement with the addition of
generated data. This allows for future work to be done and
plenty of potential for meaningful improvement.'
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