Using the Raspberry Pi for ECL Reaction Excitation, Detection, and Analysis

Jonathan Swerdlow

Introduction

During electrochemiluminescent (ECL) reactions, light is emitted from chemical reactants when excited by an electric current.

A system able to capture and analyze these reactions would have useful applications for educational and medical environments.

The Raspberry Pi

The Raspberry Pi (figure 1) is a small, cost-efficient, easy-to-use, and readily available device. These qualities make it ideal for use in the taking and analysis of ECL images.

The following further make the Raspberry Pi ideal for use in a wide variety of physical environments:

- Detachable Touchscreen
- Energy Efficient
- Debian Environment Allows for Customizability
- Python Programs Allow for Automation of Tasks

ECL Reaction Analysis

Certain ECL reactant concentration can be determined by analyzing the emitted light intensity over time (figure 3).

Analysis Algorithm:

- Add pixel intensities
- Check if pixel is ambient light
- Subtract ambient light intensity from total light intensity
- Determine per-pixel color intensity averages

Applications of the Raspberry Pi ECL Device

Medical Applications:

- Potential to replace clunky and expensive mass spectrometry machines (figure 5)
- Diagnosis of disease and illness based on presence of biomarkers

Educational Applications:

- Provide students with a cost-efficient tool for use in laboratories
- Learn about ECL reactions and their applications
- Learn about image analysis techniques and applications

Future Developments

All-Inclusive Case

A case for the Raspberry Pi which contains an attached touchscreen, camera, and electrode housing is currently being developed (figure 6). This case, also capable of powering ECL reactions, will further increase the ease of use, convenience, and accessibility of the Raspberry Pi as an ECL analysis device.

Machine Learning

Training a machine learning algorithm to determine ECL reactant concentrations based on color intensity information will allow for the concentration analysis of detectable substances without the need to perform numerous experiments for every such substance.

Acknowledgments

Office of Research & Creative Scholarship

Facility Advisor

Dr. Hyun Kwon