
Andrews University Andrews University 

Digital Commons @ Andrews University Digital Commons @ Andrews University 

Honors Theses Undergraduate Research 

4-4-2018 

Crawling Tor's Hidden Services and Depicting their Crawling Tor's Hidden Services and Depicting their 

Interconnectivity Interconnectivity 

John-Luke N. Navarro 
Andrews University, johnluke@andrews.edu 

Follow this and additional works at: https://digitalcommons.andrews.edu/honors 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Navarro, John-Luke N., "Crawling Tor's Hidden Services and Depicting their Interconnectivity" (2018). 
Honors Theses. 189. 
https://dx.doi.org/10.32597/honors/189/ 
https://digitalcommons.andrews.edu/honors/189 

This Honors Thesis is brought to you for free and open access by the Undergraduate Research at Digital Commons 
@ Andrews University. It has been accepted for inclusion in Honors Theses by an authorized administrator of 
Digital Commons @ Andrews University. For more information, please contact repository@andrews.edu. 

https://digitalcommons.andrews.edu/
https://digitalcommons.andrews.edu/honors
https://digitalcommons.andrews.edu/undergrad
https://digitalcommons.andrews.edu/honors?utm_source=digitalcommons.andrews.edu%2Fhonors%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.andrews.edu%2Fhonors%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.32597/honors/189/
https://digitalcommons.andrews.edu/honors/189?utm_source=digitalcommons.andrews.edu%2Fhonors%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@andrews.edu




Crawling Tor’s Hidden Services and Depicting their Interconnectivity

John-Luke N. Navarro

Abstract— The Tor network is a popular online privacy
platform that enables anonymous browsing, but is also no-
torious for the vast number of illicit marketplaces, goods
and services available to users. Tor’s protocols also secure
hosted websites, known as hidden services, against unwanted
tracking and location. Tor has attracted the attention of law
enforcement agencies, whom are interested in hidden service
data analysis. However, little large-scale analysis is currently
performed. To help address this issue, I constructed two tools.
A specialized web crawler downloads bulk page-content from
Tor’s hidden services. This program crawls the Tor Network
broadly, securely, and with more ease of use than other similar
solutions. A graphing program depicts connections between
crawled hidden services as directed graphs. Both of these tools
allow investigative agencies and researchers to more effectively
gather and analyze Tor network content.

I. INTRODUCTION

On October 2013, the notorious digital black-marketplace
Silk Road was shut down by law enforcement. For two years,
Silk Road allowed users to buy and sell illicit products on
the internet with less concern for getting caught, as access
was exclusive to users connecting through the Tor Network.
Tor is free software that guarantees privacy for it’s users by
obfuscating network routing, encrypting their data, and other
anonymization techniques. Thousands of websites known as
hidden services are hosted similarly to Silk Road on Tor.
Tor’s protocols also protect hidden service hosts and servers
from being located [1].

The vast number of illicit hidden services similar to Silk
Road have caught the attention of law enforcement agencies.
However, due to the obfuscated and discontinuous nature
of Tor, discovering and investigating vast numbers manually
can be extremely inefficient. In this paper, I describe the
development of two pieces of software1 that automatically
perform hidden service content-collection and depict site
connections visually. The first program is a web crawler de-
veloped to crawl the Tor network securely and automatically.
This crawler downloads web-pages from hidden services and
notes links between them. The second program processes
these links into connected graphs that can be rendered by
external applications.

The web crawler is relatively easy to configure and run;
it requires only the necessary software libraries installed, a
starting list of hidden service URLs to begin crawling from,
and a configured local SOCKS-compatible proxy server.
From the graphing program’s connected graphs, information
such as popular hidden services or browsing patterns of Tor
users can be extrapolated.

1https://github.com/Argonne-National-Laboratory/torantula

II. RELATED WORK

A. Cryptopolitik and the Darknet

Moore and Rid discuss political and technological ram-
ifications of increased cryptography, then explore in detail
Tor network history and functionality. The authors also
developed a specialized web crawler to explore Tor Network
content. Features they developed such as depth and page-
count limits were inspirational towards similar implementa-
tions in my software. The authors state their starting list of
hidden services was crawled in two months, but don’t state
if they reiterated over that list. This might indicate potential
for improving speed.

B. The Tor Dark Net

Owen and Savage performed two projects; the first in-
volved operating a series of Tor relays and mining data about
hidden service descriptors and the number of requests each
received. The authors noticed that a very small number of
hidden services persisted over the course of their eighteen
month project. The second project involved operating a
web crawler to download hidden service content and extract
“key data points”. The authors make the claim that broad,
long-term crawls risk over-representing short-lived hidden
services. [2]

C. Towards a Comprehensive Insight into the Thematic
Organization of the Tor Hidden Services

Spitters, et. al describe briefly Tor network operations and
types of illegal content that are common on the platform,
before affirming that access to Tor content analysis by
organizations could be useful towards assisting investigations
or preparing for possible attack vectors. The authors also
operated their own Tor network crawler and note several
important design features, such as breadth-first crawling and
per-site download limitations. They operated their crawler for
about a year, and note that within the span of five months,
their crawler “discovered almost two thousand new hidden
service addresses” [3].

III. METHODOLOGY

Both the crawler and the graphing program were de-
veloped in Python 3.6 on Ubuntu 16.04. The crawler was
developed with Scrapy[4], a framework for developing web
data extraction tools, including web crawlers. The graphing
program was developed with NetworkX[5], used to create,
manipulate, and analyze network graphs. Privoxy[6] was the
local proxy server software used to connect the crawler to
Tor, although other proxy servers could be substituted.



The crawler begins performing hidden service HTTP re-
quests from a user-provided list of hidden service URLs,
and iterates through each over the course of a “session.”
Responses from hidden services consisting of HTML are
downloaded directly into a session-specific directory created
by the crawler’s data pipeline at runtime. A local MySQL
database that stores metadata for top-level domains, URLs,
and the date and time can be enabled or disabled.

A log file stored locally contains real-time data on web-
pages requested, domains ignored, exceptions raised, crawl
statistics, and other information during the course of a
crawling session.

A. Connecting the crawler to Tor

By default, web crawlers developed with Scrapy are unable
to interface with Tor, as Scrapy doesn’t support the SOCKS
protocol which Tor depends on. However, Scrapy is compati-
ble with HTTP proxies, which can interface with Tor through
SOCKS. A local Privoxy server was configured to connect
to the Tor service through the SOCKS protocol. The crawler
then interfaces with this server as a HTTP proxy, which then
relays requests to Tor through SOCKS.

B. Crawler exploration and downloading strategies

Specifying a positive depth priority and indicating to the
request scheduler to operate in FIFO order allows the crawler
to operate in a breadth-first-search manner. One benefit is a
representative sample of the domain names expected in the
final dataset manifests earlier in the dataset directory during a
crawling session. This occurs because the crawler attempts to
download the homepage of each queued hidden service URL
(which may succeed or fail) before downloading additional
pages at greater depths.

Limiting the depth of pages crawled on hidden services has
several benefits. For instance, this protects the crawler from
recursively exploring links that loop within domains (as each
link is treated as one depth deeper). This also help prevent
over-representing data from a hidden service’s deeper pages,
which may be too specific to describe the site’s general
purpose. Most hidden services will display the content that
best reflects the nature of their site within the first few pages.

Limiting the number of web-pages downloaded from each
hidden service keeps hidden service-specific datasets from
becoming too large. Once the crawler notes that it has
downloaded the maximum number of pages from a domain,
that domain is excluded from further requests and downloads
during the crawling session. This also prevents the crawler
from following links back to hidden services that have
already been crawled.

These two strategies of limiting page-depths and page-
numbers guarantee that only a limited number of relatively
“shallow” web pages represent each hidden service.

C. Crawler data pipeline strategies

The crawler pipelines are responsible for sorting, storing,
and logging downloaded page content and metadata. A
session-specific directory, labeled with the current time and

date, is created by the crawler at the beginning of every
crawling session. For each hidden service crawled during
a session, a domain-specific directory is inserted into this
session directory. It is into these domain-specific directories
that the contents of each crawled hidden service are inserted.
Each web-page’s HTML is saved as a text file, named for
the URL that it was downloaded from.

All the links found on a hidden service are appended
into a found links.txt file generated for each crawled
domain. This is placed into each domain-specific directory.

D. Crawler user protections
By connecting to the Tor network, the crawler automat-

ically has the same anonymity protections as other normal
Tor users, including encryption of data and IP addresses.
As a preventative measure against crawler banning, for
each outbound request the crawler randomly selects a Tor-
browser user-agent from a predefined list. These user-agents
reflect a variety of different operating systems connecting
to Tor through the Tor browser. Although the crawler may
still appear automated in terms of speed and algorithmic
exploration, user-agent spoofing may still protect against
some site policies that disallow non-human interaction.

The crawler checks the text of downloaded pages for
blacklisted user-defined keywords, and if any are found,
the matching content is discarded and all further requests
or responses from the source-domain are ignored for the
remainder of the crawling session. This prevents the crawler
from downloading illicit or unwanted information, as long
as the blacklisted keywords are defined by the user.

E. Graphing Program functionality
The graphing program accepts as input one of the crawl-

session directories generated by the crawler. A directed
graph is initialized using the NetworkX library. Each domain
subdirectory within the crawl-session directory indicates a
hidden service, so the title (which reflects the domain name)
of each subdirectory is appended to the directed graph as
a node. The program then iterates through each of these
domain subdirectories, searching for found links.txt

files that indicate the crawler encountered links to other
hidden services. Each one of these files is parsed for links,
which are inserted as edges into the directed graph with the
current subdirectory node as the source and the discovered
link as the destination. These graphs are then dumped as
.json and .gexf formats, which can be rendered or
analyzed by a variety of applications.

IV. RESULTS
A. Crawler Results

The crawler’s initial list of hidden services was populated
with ten-thousand known hidden service URLs collected
by Ahmia’s Tor Search Engine [7]. This list includes The
Hidden Wiki, one of the most popular start-pages for Tor
users [2]. This list was chosen with the expectation that
starting with an extensive, representative list is more likely
to yield new hidden service discoveries.



Over a four-hour crawling session, the web crawler it-
erated over all the URLs on the list, crawling each that
was operational, while following links to other hidden ser-
vices. The actual number of hidden services finally crawled
(roughly one-thousand two-hundred) is much less than the
initial list of provided URLs, but this was to be expected due
to the short-lived nature of roughly 85% of hidden services
[2]. There were no indications that the crawler was impeded
or blocked by any hidden service. The 1.5 GB of HTML
downloaded from these hidden services does not contain
duplicate or other undesirable content. The downloaded
content, sorted by domains in nested directories, was parse-
able by the graphing program and other analysis tools.

B. Graphing Program Results
The graphing program successfully parses through the data

downloaded by the web crawler and generates connected
graphs depicting links between the crawled hidden services.
These graphs are then dumped in .json and .gexf for-
mats. When rendered by external applications, these graphs
initially appear chaotic, but can be made more legible if a
force-directed graph-drawing algorithm is applied.

Fig. 1. An example graph starting at quotes.toscrape.com

V. DISCUSSION

Due to some security concerns that the crawler down-
loaded personally-identifiable or classified textual data, ex-
tensive quantitative analysis of the dataset was not possible.
As the scope of this project was to develop software that
downloaded HTML from hidden services, it was not difficult
to verify that the software performed this function, and
that downloaded HTML matched the corresponding crawled
hidden service. Any hidden services that stored the bulk of
their page content several pages deep might not have enough
representative data within the dataset, due to the depth limit
imposed on the crawler.

The crawler is inherently limited in its crawling scope
by the initial hidden service list. The crawler may discover
new hidden services, but they will have been linked to on
known hidden services. If a hidden service exists and is not
on the initial list, isn’t linked to on any of the listed hidden
services, or its URL is only shared privately, the crawler
will not discover it. Generating hidden service URLs and
attempting to crawl them is an intentionally difficult task

computationally. In any case, hidden services that attempt
to attract customers will not hide their URLs. The most
trafficked hidden services are almost guaranteed to be on
the initial list.

At any time, only one copy of the crawler was running,
iterating through the entire starting list of hidden services.
Multiple copies of the crawler could be run simultaneously,
each processing a portion of the starting hidden service list.
This would result in faster data collection and redundancy in
the event of a failure.

Although the MySQL database was only used to store
crawl-session metadata, it could also be used to store full
page-texts. This would allow easier interfacing with the
entire dataset by other applications not specifically designed
to work with the crawler.

This version of the web crawler and graphing program was
designed mainly with functionality in mind and was tested
only on a single platform (Ubuntu). For wider release and
use by organizations, it would need to be tested on a variety
of platforms, and made easier to install and use.

Future versions of this project could store more informa-
tion between sessions, so the crawler could avoid redun-
dant work. For example, the crawler might note which of
the URLs in the initial hidden service list have not been
operational, and either only periodically attempt requests,
or discard them completely. Furthermore, the crawler could
automatically update the initial list with any new hidden
service discoveries, to be directly accessed on future crawls.

Eventually, the content collected by the crawler and the
graphs generated by the graphing program should be syn-
thesized to perform analysis on Tor network content, and
enable the generation of real-time content reports on Tor
Network content. This capability will be valuable for both
law-enforcement professionals and researchers who seek to
understand the Tor network.

ACKNOWLEDGMENTS
I would like to thank Joshua Lyle at Argonne National

Laboratory for mentoring and guiding this project, and
encouraging this learning opportunity. I would also like
to thank Rodney L. Summerscales, Ph.D., at the Andrews
University department of Engineering and Computer Science
for instruction and guidance on preparing this paper and other
deliverables for this project.

REFERENCES

[1] Daniel Moore, Thomas Rid. Cryptopolitik and the
Darknet. Survival, vol. 58, no. 1, Feb. 2016, pp. 7-38.,
doi:10.1080/00396338.2016.1142085

[2] Gareth Owen, Nick Savage. The Tor Dark Net Global Commission
on Internet Governance, ser. 20, 30 Sept. 2015. CIGI publications,
www.cigionline.org/publications/tor-dark-net

[3] Martijin Spitters, Stefan Verbruggen, Mark van Staalduinen Towards
a Comprehensive Insight into the Thematic Organization of the Tor
Hidden Services 2014 IEEE Joint Intelligence and Security Informatics
Converence, 2014, doi:10.1109/jisic.2014.40.

[4] Scrapy. Scrapy, 2017. https://scrapy.org/
[5] NetworkX. NetworkX, 2017. https://networkx.github.io/
[6] Privoxy. Privoxy, 2017. https://www.privoxy.org/
[7] Ahmia. Ahmia, 2017. https://ahmia.fi/


	Crawling Tor's Hidden Services and Depicting their Interconnectivity
	Recommended Citation

	Navarro_HonorsThesis[4].pdf

