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Carboxypeptidase O (CPO) is a membrane-bound peptidase that cleaves acidic and polar 

C-terminal amino acids of peptides; however, its biological function remains unknown. CPO is 

strongly expressed in the small intestine, where it has been proposed to participate in digestion 

events at the brush border by extracellular cleavage of dietary peptides. At the subcellular level, 

CPO is anchored to the inner leaflet of the endoplasmic reticulum (ER) membrane, where it has 

been shown to associate with lipid droplets (LDs). The ER membrane also represents the site of 
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chylomicron formation, a process that shares many similarities with that of LDs biogenesis. We 

sought to investigate a potential role of CPO in LD and chylomicron formation. Using a stably-

expressing human colon carcinoma (Caco-2) cell model, we evaluated CPO association with 

LDs and apoB, a chylomicron biomarker, by immunofluorescence microscopy. The association 

of CPO with LDs was dependent on the time elapsed post-feeding (ANOVA, p < 0.05), and was 

lowest at 6 h (17.9%), reaching a maximum at 12 h (29.8%) and later slightly decreasing at 24 h 

(26.3%). Our results indicate that CPO associated with apoB, further showing a similar 

association pattern as that of LDs at the three time points. However, we express a limited level of 

confidence in these results since the immunocytochemistry images presumably suggest lower 

association levels than those reported in the quantification data. Overall, our findings strengthen 

the hypothesis that CPO plays an intracellular role in the formation of lipid droplets in 

enterocytes. 

To better understand the potential biological role of CPO, we performed an in-depth 

analysis of data from several gene expression databases and platforms. RNA-Seq and microarray 

expression data showed high expression in the ileum epithelium and mucosa. Modulation of 

CPO expression, which was mainly characterized by downregulation in the ileum, was found in 

ulcerative colitis and Crohn’s disease, with the latter showing stronger modulation. RNA-Seq 

data also showed prominent expression in Peyer’s patches and basophils, which suggested a 

promising role of CPO in immunity.  
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     CHAPTER 1 

INTRODUCTION 

 

 
1. Carboxypeptidases  

Carboxypeptidases are enzymes characterized for cleaving the C-terminal amino acid of 

peptides and proteins and are known to have diverse physiological functions such as cell 

signaling and digestion (Fricker, 2011). Carboxypeptidases are grouped in two major categories: 

serine carboxypeptidases, which contain a serine residue at the active site, and 

metallocarboxypeptidases, which contain a zinc atom. The M14 is an important family of 

metallocarboxypeptidases with unique physiological functions in humans (Fig. 1). Substrate 

specificity exists within the members of this family, with some members exhibiting preference 

for basic residues (i.e. CPB2, CPE), acidic residues (i.e. CPO), or non-polar aliphatic/aromatic 

residues (i.e. CPA1) (Fricker, 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Phylogeny of the M14 metallocarboxypeptidase family. In red, CPE, CPB2, and CPO. 

Contrary to CPO, CPE and CPB2 are well-characterized carboxypeptidases with important 

physiological functions such as neuropeptide processing and proteolytic cleavage.  
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A number of studies have successfully described the physiological functions of several 

M14 carboxypeptidases. For example, studies by Ji et al. (2017) and Chen et al. (2001) identified 

the role of carboxypeptidase E (CPE) in the synthesis of neuropeptides and peptide hormones, 

vesicular transport, cellular signaling, and neuroprotection. CPE was originally named 

enkephalin convertase after it was found to proteolytically cleave the C-terminal basic amino 

acid residues of enkephalin precursors within adrenal chromaffin granules of cattle (Fricker and 

Snyder, 1982). In a subsequent study in rats, CPE was found to participate in conjunction with 

endoproteases in mid stages of development in rats, where they processed neuropeptide 

precursors in the brain as well as proproteins in multiple peripheral locations (Zheng et al., 

1994). Due to its supporting role in proinsulin processing (Harding and Ron, 2002), mutations in 

the CPE gene have been directly associated with development of type 2 diabetes in mice and 

humans (Fricker et al., 1996; Harding and Ron, 2002). In addition, CPE has been reported to 

provide neuronal protection against oxidative stress and cell death (Cong et al., 2017). Moreover, 

CPE participates in anterograde transport of synaptic vesicles, which allows for their recycling or 

degradation (Ji et al., 2017).  

Another M14 member with a significant biological role is thrombin-activatable 

procarboxypeptidase B (proCPB2) also known as thrombin-activatable fibrinolysis inhibitor 

(TAFI). Following activation by proteolytic cleavage, CPB2 mediates several physiological 

functions, namely fibrinolysis, coagulation, and inflammation (Novakovic et al., 2012). Its 

inhibitory role in the fibrinolysis cascade is executed through cleavage of the C-terminal lysine 

residues from partially degraded fibrin, hence preventing further fibrin degradation by other 

enzymes (Leung et al., 2008; Novakovic et al., 2012). In addition, CPB2 is said to work in 

conjunction with protein C during injury response at the vascular epithelium: protein C reduces 
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the clotting while CPB2 protects the fibrin clot from premature lysis (Leung et al., 2008). A 

potential role of CPB2 in inflammation has been proposed after observation of proteolysis of 

proinflammatory mediators such as bradykinin, complement C3a and C5a, and thrombin‐cleaved 

osteopontin (Novakovic et al., 2012).  

Overall, a large number of physiological functions of carboxypeptidases (i.e. CPB2 and 

CPE) have been described to date. While some studies continue to further investigate well-

characterized members of the M14 family, a new interest has emerged to investigate less-known 

members. Thus, Lyons and Fricker (2011) recently identified carboxypeptidase O (CPO), a 

previously uncharacterized member of the M14 family and closely related to CPB2 (Fig. 1). CPO 

was described as a fully functional peptidase that cleaves acidic and polar C-terminal amino 

acids of peptides (Burke et al., 2018; Lyons and Fricker, 2011). In addition, CPO was shown to 

be expressed on the small intestine, more specifically on the apical surface of enterocytes, and 

anchored to the membrane through a glycosylphosphatidylinositol (GPI) modification (Lyons 

and Fricker, 2011). Taken together, these findings allude to CPO working extracellularly, likely 

cleaving dietary peptides in the intestine (Garcia-Guerrero et al., 2018). Overall, there is a high 

possibility of CPO working extracellularly given that 1) GPI anchored proteins are almost 

exclusively present on the outer leaflet of the plasma membrane and 2) its location on the apical 

surface coincides with that of most GPI-anchored proteins in polarized epithelial cells (Zurzolo 

and Simons, 2016).  

In addition to the proposed extracellular function cleaving dietary peptides, CPO might 

also play an intracellular role. This possibility was suggested after observation of intracellular 

expression of CPO in canine-derived epithelial cells where CPO was GPI-anchored to the inner 

leaflet of the ER membrane and associated with LDs within this compartment (Burke et al., 
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2018). Overexpression of CPO led to an increase in the number of LDs, as determined by 

immunofluorescence microscopy. This finding suggested a physiological function of CPO in the 

biogenesis of lipid droplets.  

Burke et al. (2018) further hypothesized that CPO could play a role in the formation of  

chylomicrons. This suggestion was based on the many similarities between their formation 

processes. The most accepted model states that their formation begin due to an accumulation of 

neutral lipids (NL) on the ER membrane, grow to form a spherical structure, and ultimately bud 

off  (Saka and Valdivia, 2012). Conceptually, the most significant difference between these 

processes is in the direction of budding. If the nascent droplet buds off outwards to the cytosol, it 

will become a cytosolic LD, whereas if it buds off into the ER lumen, the droplet will become a 

chylomicron. Given the similarity in the budding processes and the resulting similar composition 

– a triglyceride core surrounded by a phospholipid monolayer –  it is legitimate to hypothesize 

that similar membrane proteins could influence their formation. Thus, CPO might have a role in 

formation of both chylomicrons and lipid droplets, namely through cleavage of the C-terminal 

residue of a membrane protein that is known to be associated with their formation.  
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Figure 2. Model for the formation of lipid droplets from the ER membrane. The accumulation of 

neutral lipid (yellow spheres) between the leaflets of the membrane will form a spherical 

structure that buds off. If the lipid droplet buds into the lumen, it will later fuse with an apo-B48-

phospholipid (PL) rich particle and form a chylomicron (CM). CPO (pink) is attached to the 

inner leaflet through a GPI anchor (yellow).  

 

2. Digestion  

The digestive processes involved in food breakdown and absorption involve a large 

number of structures, ranging from organs to accessory glands and include a wide array of 

enzymes. Digestion first begins in the mouth and moves through the stomach, aided by 

pancreatic secretions, until finally arriving to the small intestine, where chemical digestive 

processes continue to further break down dietary disaccharides, polypeptides, and emulsified fats 

(Tortora, 2009).  

 

a. Digestion in the brush border 

An important part of digestion in the small intestine occurs on the apical surface of 

enterocytes, more specifically at the brush border. Although the apical surface has been 

considered the hub for final digestion events, recent evidence points to an additional digestion 
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mechanism that occurs in the periapical space. Hooton et al. (2015) describe this mechanism, 

which lies on the vesicularization of the apical membrane and subsequent movement of the 

vesicles into the periapical space. This allows the brush border enzymes, now found on the 

membrane of the vesicles, to perform catalysis in the periapical space.  

As a key structure in the end stages of digestion, the small intestinal brush border is 

characterized by abundant and diverse enzymatic activity. The digestive enzymes present in the 

brush border finalize digestion of carbohydrates, proteins and lipids, and can be categorized into 

three major groups: disaccharidases /oligosaccharidases, peptidases, and lipases (Hooton et al., 

2015). Carbohydrate digestion is finalized in the brush border by action of disaccharidases such 

as sucrase, lactase, and maltase, which break down disaccharides into monosaccharides. In 

addition, α-dextrinase acts on small fragments of starch producing glucose (Tortora, 2009). 

Likewise, protein digestion is completed by aminopeptidase A, and dipeptidases, resulting in 

mostly free amino acids along with few dipeptides and tripeptides (Tobey et al., 1986). In 

contrast, lipid digestion can be considered finalized as lipids, which are assembled in spherical 

structures called micelles, arrive to the brush border (Tortora, 2009).  

 

b. Absorption in the brush border 

When nutrients are broken down into the most simple units (i.e. monosaccharides, fatty 

acids, and amino acids), they are able to pass through the enterocytes and eventually reach the 

blood or lymph. This process is known as absorption and it entails different forms of transport. 

For example, monosaccharides can be transported from the lumen through the apical membrane 

in two different ways. Glucose and galactose pass the apical membrane and enter the enterocytes 

via secondary active transport with Na+ through Sodium-Dependent glucose transporter 1 
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(SGLT1) while fructose is able to enter via facilitated diffusion through Glucose Transporter 5 

(Tortora, 2009). These monosaccharides leave through the basolateral membrane via facilitated 

diffusion using GLUT2 and are subsequently absorbed into the bloodstream through capillaries. 

In the case of amino acids, they may be actively transported into the enterocyte, or they will 

enter alongside Na+ via a symporter. As transporters discriminate amongst different classes of 

amino acids, a large cohort of transporters have been identified for neutral amino acids (BoAT1), 

lysine, arginine, ornithine, and cystine (rBAT, and Bo,+AT), proline and hydroxyproline 

(IMINO), aspartic acid and glutamic acid (EAAT3) (Broer, 2008). In contrast, dipeptides and 

tripeptides are transported via H+ symporter such as PEPT1 (Hooton et al., 2015). Amino acids, 

dipeptides and peptides collectively diffuse out of the enterocyte and enter the blood capillaries.  

At the brush border, monoglycerides and free fatty acids (e.g. 2,3-diacylglycerol and 2-

monoacylglycerol) diffuse out of the micelles into the enterocyte through the apical membrane, 

whereas glycerol will freely diffuse in and out of the enterocyte to enter the blood capillary 

(Meisenberg and Simmons, 2016). Unlike the aforementioned nutrients, which are simply 

transported in and out the enterocytes, free fatty acids undergo a series of chemical modifications 

while passing through the enterocytes (Bayly, 2014). Through multiple reactions, free fatty acids 

are converted into triglycerides. Triglycerides collectively assemble with phospholipids and 

apolipoproteins, thus giving rise to chylomicrons (Tortora, 2009). Due to their considerably large 

size (ranging from 200-1,000 mm in diameter) chylomicrons must exit the enterocytes via 

exocytosis and are further unable to enter the capillaries (Randolph and Miller, 2014). Instead, 

chylomicrons penetrate the adjacent lacteals through large pores located on their tips and are 

transported through the lymphatic system to peripheral tissues such as cardiac, adipose, and 

muscle (Randolph and Miller, 2014).  
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3. Chylomicrons   

Over the past couple decades, there has been an increasing interest to study the formation 

and metabolism of chylomicrons. This has been mostly due to the recent detection of 

chylomicron upregulation in widespread diseases, namely type 2 diabetes and atherosclerosis 

(Dash et al., 2015). Clinical conditions involving dyslipidemia such as insulin resistance and type 

2 diabetes have been characterized by increased secretion of chylomicrons and apolipoprotein B, 

amongst other lipoproteins (Hussain, 2014). This finding has important implications, since 

dyslipidemia is one of the greatest risk factors for cardiovascular disease (Dash et al., 2015; 

Mooradian, 2009; Xiao et al., 2011), currently labeled as the number one leading cause of death 

in the U.S according to the most recent report by the CDC (Kochanek et al., 2019). Additionally, 

chylomicron dysregulation further extends to less common diseases, such as genetically 

transmitted familial hyperchylomicronemia syndrome (Brahm and Hegele, 2015) and familial 

dysbetalipoproteinemia (Koopal et al., 2017).  

Chylomicrons are the largest and least dense lipoproteins particles and are composed of a 

core of neutral lipids, namely triacylglycerols (85% of the total weight), enclosed by a 

phospholipid monolayer (8%) with about 1% of associated apolipoproteins (Demignot et al., 

2014). A form of apolipoprotein B, namely apoB48, is characteristic of chylomicrons and its 

presence serves as a marker to differentiate them from other closely-related lipoproteins 

(Nakajima et al., 2014). For example, while apoB48 is the main protein in chylomicrons, a 

longer form of the protein, apoB100, is the main protein in very-low density lipoproteins 

(VLDL) and low-density lipoproteins (Randolph and Miller, 2014). ApoB48 plays a key 

structural role in chylomicrons (Xiao, Stahel, & Lewis, 2018) while other apolipoproteins such 
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as ApoA-IV assemble on the surface of chylomicrons and play a role in their formation by 

determining their size and regulating their secretion (Dash et al., 2015; Xiao et al., 2018).  

 

 

 

 

 

 

 

Figure 3. Schematic illustration of a chylomicron. A phospholipid monolayer surrounds a core 

of neutral lipids which is mainly composed of triacylglycerols and sterol esters. Apolipoproteins 

apoB48 and apo-AIV located on the surface of the chylomicron play important structural and 

regulatory roles, respectively.  

  

While much is known about the physiology and composition of chylomicrons, their 

biogenesis is not entirely understood. The most recent model for chylomicron formation suggests 

a two-step assembly process. A lipid droplet buds off the inner leaflet of the ER membrane into 

the lumen, where it will fuse with a lipidated apoB48-rich particle in a reaction catalyzed by 

microsomal triglyceride transfer protein (MTP), eventually giving rise to a pre-chylomicron (Fig. 

4; Demignot et al., 2014). After this, the pre-chylomicrons are assembled into pre-chylomicron 

transport vesicles (PCTV) and trafficked to the Golgi apparatus (Cartwright and Higgins, 2001; 

Demignot et al., 2014).  

 

4. Lipid droplets 

Lipid droplets (LDs) and chylomicrons are formed by similar mechanisms. When a lipid 

droplet buds off to the ER lumen, it will give rise to a chylomicron; however, if it buds off to the 

cytosol, it will become a cytosolic lipid droplet. LDs constitute the major type of cellular 

organelle that stores excess neutral lipids namely triacylglycerols and sterol esters (Vevea et al., 
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2015). This storage mechanism is considered protective, since it avoids disruption of membrane 

integrity by over-accumulation of neutral lipids (Welte, 2015). In eukaryotes, de novo formation 

of LDs occurs due to an accumulation of neutral lipids, on defined regions between the leaflets 

of the ER (Roux and Loewith, 2017). The most accepted model proposes that the nascent LD 

forms a lens, which grows in size until the LD is fully formed and released (Saka and Valdivia, 

2012). LDs that bud off to the cytosol and accumulate on the apical side of the enterocyte, where 

they will serve as transient lipid reservoirs (Hussain, 2014).  

Nonetheless, LDs are versatile as they have been recently found to have functions beyond 

lipid storage. Several studies have identified many LD functions such as storage of vitamins and 

molecules involved in cellular signaling, as well as assembly of viruses (Saka and Valdivia, 

2012; Welte and Gould, 2017). For example, Welte and Gould (2017) discuss the involvement of 

LDs in lipid signaling by means of storage of eicosanoid precursors. Although these precursors, 

namely arachidonic acid rich triglycerides, may be obtained through the breakdown of 

phospholipids, LDs represent an important additional source. Moreover, LDs constitute major 

sites of vitamin A storage (in the form of retinyl esters) with about 80 % of the total reservoir 

found in hepatic cells (Welte & Gould, 2017). Cholesteryl esters also stored in the LD core serve 

as sources of cholesterol for synthesis of steroid hormones (Kraemer et al., 2013). A well-studied 

case of LDs acting as assembly platforms during viral infections is that of hepatitis C. Studies 

have shown that localization of the virus core protein on the surface of LDs is necessary for 

assembly of new immature viruses (virions) on the host cell (Saka and Valdivia, 2012). Due to 

their many physiological roles, LD formation is tightly regulated. Accumulation of lipid droplets 

has been associated with major diseases (e.g. type II diabetes, obesity, atherosclerosis, and fatty 
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liver disease) which has led to an increasing interest in studying their physiology (Meyers et al., 

2017; Welte and Gould, 2017). 

Despite continuing efforts to elucidate the molecular processes behind LD biogenesis, 

many questions remain unanswered today (Hussain, 2014; Roux and Loewith, 2017; Wilfling et 

al., 2014). Yeast represents a well-studied eukaryote model for lipid metabolism, and its use in 

the study of this metabolism is suitable given its high conservation in both humans and yeast 

(Karathia et al., 2011). To date, the yeast model has identified many key proteins that participate 

in LD formation. For example, Lor1p, a putative homolog of the human lecithin cholesterol 

acyltransferase (LCAT), mediates the conversion of diacylglycerol to triacylglycerol (Oelkers et 

al., 2000; Roux and Loewith, 2017). The model of lipid formation in yeast is the most detailed 

model described to date; however, a number of studies consider this model to be incomplete 

since it has failed to describe crucial events in droplet formation, such as the excision of the 

nascent LD, thus pointing to a need for further research in this area (Meyers et al., 2017; Roux & 

Loewith, 2017; Wilfling et al, 2014).   

 

 

 

 

 

 

 

 

 
 

Figure 4. Schematic illustration of a generic LD. A phospholipid monolayer surrounds a core of 

neutral lipids (NL) which is mainly composed of triacylglycerols and sterol esters. While 

perilipins (PLIN) and Rab18 proteins are abundant on the LD surface, other LD-associated 

proteins (here depicted in green) such as SNARES can be inserted in the phospholipid 

monolayer.  
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In this study, I investigate a hypothesis initially made by Burke et al. (2018), which 

suggested that CPO is involved in the formation of chylomicrons. In addition, I build on previous 

work from Burke et al. (2018) by evaluating the association of CPO and LDs in undifferentiated 

human colon carcinoma (Caco-2) cells. Here, I show that CPO stably-expressing Caco-2 cells 

exhibit CPO association with both LD and apoB, with association in LDs being significantly 

dependent upon time elapsed after feeding. A comprehensive analysis of CPO expression data 

showed prominent expression in the ileum and modulation of expression in ulcerative colitis and 

Crohn’s disease as well as expression in basophils and Peyer’s patches, which suggest promising 

implications of CPO in immunity.   
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CHAPTER 2 

 

METHODS 

 

1. Compilation of CPO expression data 

CPO expression data was obtained from several databases which included RNA 

sequencing (RNA-Seq) and microarray data. RNA-Seq data was obtained from publicly 

available datasets such as Human Protein Atlas (HPA; www.proteinatlas.org) which allow access 

to transcriptomics data, including a compilation of data from prominent datasets such as 

Genotype-Tissue Expression (GTEx), HPA, and FANTOM5 CAGE (Pontén et al., 2011). 

Additionally, data was gathered from the Bgee website (Bastian et al., 2008), which compiles 

RNA-seq data from the Gene Expression Omnibus (GEO; NCBI) and GTEx. Genevestigator, a 

powerful transcriptomics analysis tool (Hruz et al., 2008; Zimmermann et al., 2005), was used to 

access the mRNASeq_HUMAN_GL-1 platform, thus providing an additional RNA-Seq dataset. 

Microarray data was also included in the expression analysis due to its notable prevalence 

in transcriptomic profiling.  Microarray data, although providing less sensitivity for low-

expression genes, constitutes a reliable choice (Zhao et al., 2014). The microarray data was 

retrieved from three platforms. The first one was the Affymetrix Human Genome U133 Plus 2.0 

Array, a microarray platform in Genevestigator. The second one was the Bgee website, which 

compiled data from the GEO and the ArrayExpress from European Molecular Biology 

Laboratory-European Bioinformatics Institute (EMBL-EBI). The third one was the Gene 

Expression database of Normal and Tumor Tissues (GENT2; www.gent2.appex.kr) database, 

which includes gene expression data from healthy and cancerous tissues. GENT2 compiles 
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affymetrix microarray data from U133 Plus 2.0 as well as the U133A platforms (Park et al., 

2019).  

 

2. Site-directed mutagenesis 

The goal of site-directed mutagenesis was to introduce a point mutation, E310Q, into 

plasmid DNA (pcDNA; Fig. 5). First, custom primers were manually designed. To do this, the 

human CPO (hCPO) sequence was translated into its amino acid sequence using the EMBOSS 

explorer interface. The amino acid of interest E310 was located and aligned with the 

corresponding codon on the forward DNA strand. Overlapping primers were created following 

ThermoFisher’s protocol and included the following criteria: 15 base pair complementary 

regions with the point mutation located in the middle along with non-overlapping bases at the 3’ 

end (underlined). The final primer sequences were hCPO-E310Q-F3 5’- 

CGTTTCAGCTGAGGGACAGTGGAAC-3’; hCPO-E310Q-R3 5’- 

CCCTCAGCTGAAACGTATATGAGAAGGG-3’. PCR amplification was used to create the 

mutation, and two 50 μL reactions were prepared. Each reaction contained 1.5 μL Platinum 

Superfi Polymerase (Thermofisher), 2mM dNTP mix,  30 μL 5x Superfi buffer (Thermofisher), 1 

μL template DNA, and 0.5 μM of each primer, and one reaction contained 3% DMSO to enhance 

amplification. A BioRad 100 Thermocycler was used with the following program conditions: 

98°C (30 s), 98 °C (10 sec), 67.1 °C (10 sec), 72 °C (195 s) repeated for 25 cycles, and final 

extension at 72 °C for 5 min. The PCR products were resolved on a 1% agarose gel and 

visualized with ethidium bromide/UV. After confirmation of amplification, PCR products were 

digested with Dpn1 to remove the parental plasmid DNA, which did not contain the mutations.  
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3. Ethanol precipitation   

To purify the digested PCR product, ethanol precipitation was performed. The PCR 

product (40 μL) was mixed with 0.3 M NaAC (pH 5.2), 250 μL of cold 100% ethanol (-20 °C), 

and 50 μL of ddH2O. Following incubation at -80 °C for 30 min, the sample was centrifuged at 

21,130 g for 30 min. The precipitate was rinsed with 500 μL of 70% ethanol, centrifuged 21,130 

g for 15 min, and resuspended in 10 μL ddH2O. 

 

4. Bacterial transformation 

DH5α competent E.coli cells were transferred from the -80 °C freezer and allowed to 

thaw on ice for 15 min. Two controls, a positive and a negative, were prepared by addition of 25 

μL DH5α cells to 5 μL pcDNA [hCPO] (1 ng/μL) and 5 μL ddH2O respectively. Additionally, 

two experimental samples, one with 5 μL digested PCR product and one with 5 μL of the 

digested + purified PCR product were prepared by addition of 50 μL DH5α cells. The samples 

were gently mixed, incubated on ice for 30 min, and heat shocked for 40 s at 42 °C. Following a 

5 min incubation on ice, 200 μL of sterile Luria Broth (LB) were added and mixed by stirring 

with the pipet tip. The samples were incubated at 37°C for 60 min and then spread on 

LB/ampicillin plates, which were incubated at 37 °C overnight. The plates were inspected for 

colony growth 16 h following plating.  

 

5.    Plasmid preparation by NID method  

Colonies were randomly selected from both the plates: three colonies from the plate with 

digested DNA and three colonies from the plate with digested + purified DNA. In culture tubes, 

2 mL of sterile LB broth and 2 μL ampicillin were mixed. The colonies were individually 
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scooped from the plates with a flamed pipet tip and resuspended in the mixture contained within 

the culture tube. The tubes were later placed in a shaking incubator at 37 °C for 20 h.  

A larger working stock of pcDNA-hCPO E310Q was produced by a large-scale bacterial 

transformation. The volumes of reagents and pcDNA (see above) were reduced by 5-fold, while 

bacterial cultures were grown in culture tubes with about 5-fold the volume of LB broth and 

ampicillin. After 12 h of incubation at 37°C, 1 mL of the culture was transferred to a flask 

containing 50-fold volume of LB broth and ampicillin and grown for 8 additional hours. 

The contents of the culture tubes were transferred to 2 mL tubes and centrifuged at 

21,130 g for 30 s. The pellets were resuspended in 150 μL of extraction buffer (5% sucrose, 50 

mM EDTA, 50 mM Tris pH 8.0, 0.75 M NH4Cl, 0.5% Triton X-100, 100 μg/mL lysozyme, 25 

μg/mL RNAase A) and incubated at 65 °C for 5 min. Following centrifugation (10 min at 21,130 

g), the pellet was removed with a sterile toothpick and mixed with 120 μL of isopropanol by 

vortexing. The mixture was centrifuged at 4,602 g and the supernatant was subsequently 

discarded. To the tube, added 500 μL 70% ethanol was added and it was centrifuged at 21,130 g 

for 10 min. In order to remove any supernatant left, the bulk of it was pipetted out and then the 

pellet was allowed to air dry for 10 min. The pellet was resuspended in 50 μL of EB buffer.  

In the large-scale NID plasmid prep, the contents of the culture tubes were transferred to 

50 mL tubes and centrifuged (3,000 g for 5 min at 0 °C). The pellet was resuspended in 5 mL of 

extraction buffer and the tube was incubated in a 65 °C water bath for 8 min. Following 

centrifugation (19,000 g for 30 min at 0 °C), the supernatant was transferred to a new tube, 

mixed with 7 mL of isopropanol. After the sample was centrifuged (19,000 g for 15 min at 0 °C), 

the pellet was resuspended in 1.5 mL of 70% ethanol and centrifuged at 15,000 rpm for 5 min. In 
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order to remove any supernatant left, the bulk of it was pipetted out and then the pellet was 

allowed to air dry for 10 min. The pellet was resuspended in 400 μL of EB buffer.  

 

6. DNA quantification 

DNA isolated from each of the six E.coli colonies was visualized on a 1% agarose gel. 

Each sample loaded contained 1 μL template DNA, 2 μL 6x loading dye and 7 μL ddH2O. An 

image of the gel taken with AlphaImager imaging system was analyzed using ImageJ (NIH). 

This image processing program allowed quantification of the DNA by comparison to the marker 

lane (Tridye 1kb).  

Spectrophotometry was used to calculate the quantity and purity of the pcDNA-hCPO 

E310Q, known as the ratio of absorbance at 260 nm over the absorbance at 280 nm 

(A260/A280). In a UV compatible cuvette, mixed 2 μL template DNA and 198 μL ddH2O were 

mixed and absorbance measured at 260 nm and 280 nm. 

 

7. Sanger sequencing 

In accordance with Genescript’s requirements (NJ, USA), only those DNA samples with 

optimal yields were selected and prepared for sequencing. Preparation was done by addition of 5 

μL of T7 primer (10 μM) to 10 μL of template DNA. Sanger sequencing and subsequent 

alignment to the hCPO sequence (Accession: NM_173077.3) using BLAST allowed 

confirmation of the presence of the target mutation (Fig. 5). 
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Figure 5. Site-directed mutagenesis is used to create the mutant pcDNA-hCPO E310Q. A set of 

custom partially overlapping primers with 3’ overhangs (blue arrows) containing single point 

mutations (red) were used to amplify the plasmid. Transformation into competent cells allows to 

produce large quantities of the primer, which are subsequently purified. Presence of mutation is 

confirmed via Sanger sequencing 

 

 

8. Maintenance of Caco-2 cell line  

Caco-2 were grown in an incubator set to 37°C and 5% CO2  and maintained in 

Dulbecco’s Modified Eagle Medium supplemented with 10% Fetal Bovine Serum (Sigma 

Aldrich) and 1% Penicillin/Streptomycin (Sigma Aldrich). The cells were passaged at 1:5 or 1:10 

(vol/vol) when ≅ 80 % confluency was reached. To passage the cells, the media was removed 

and the cells were washed twice with Dulbecco’s modified Phosphate Buffered Saline (PBS; 

Sigma) and trypsinized (Trypsin-EDTA 1x; Sigma) for 6 min in the incubator. The cells were 

subsequently resuspended in fresh complete medium and seeded at desired density. Medium was 

regularly changed every 48 h. 

 

9. Transfection of Caco-2 cells  

Caco-2 cells were seeded in a 6-well plate at a density of 1.5 x105/well with 2 mL of 

complete medium 24 h before transfection. Once at room temperature, the reagents were mixed 

in a sterile 1.5 mL tube as follows: first, 200 μL of serum-free DMEM were mixed with 3 μg 
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total plasmid DNA (Fig. 6). Second, the diluted DNA was mixed with 9 μL Polyethylenimine 

(25kD linear; Polysciences, cat# 23966-2). After incubation at room temperature for 15 min, the 

mixture was added to the cells and the plate was mixed 6-8 times. Cells were incubated at 37°C 

and 5% CO2 for 48 h.  

 

10. Selection of stable transfectants  

Post-transfection, the cells were counted on a hemocytometer and subcultured at the desired 

density in 100 mm dishes. Selection of stable transfectants began 24 h after with addition of 

Geneticin (G418) at 0.8 mg/mL to the medium (Fig. 6). Medium was changed and supplemented 

with G418 three times a week for three weeks. Resistant clones were observed under a bright-

field microscope and those exhibiting healthy morphologies were marked for further expansion. 

To isolate the individual clones, the dishes were washed twice with 5 mL of Dulbecco’s PBS and 

a cloning disc previously soaked on trypsin for 15 min was placed directly on top of each 

selected clone. After incubation at 37°C for 5-6 min, the discs were transferred to a 24-well plate 

containing 0.5 mL medium and mixed 6-8 times. Medium was changed 2-3 times a week. As 

G418-resistant clones reached moderate confluences (50-70%), they were transferred to 6-well 

plates, where they were maintained with addition of fresh medium three times a week. A 

population of stable transfectants were maintained in 100 mm dishes with complete medium 

supplemented with 0.8 mg/mL G418. 

 

11. Preparation of cell extracts for western blotting analysis  

G418-resistant clones of stably transfected cells were trypsinized in 1 mL of trypsin and 

resuspended in 1 mL of complete medium. Resuspended cells were transferred to a 2 mL tube 
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and kept on ice, and 0.1 mL were used for cell counting. The resuspended cells were centrifuged 

for 1 min at 5,000 g. After removing the supernatant, 2 mL of PBS were added and the tubes 

were vortexed and centrifuged for an additional minute. The volume of cold lysis buffer (150 

mM NaCl, 20 mM Tris pH 7.5-8.0, 1% Triton X-100, 2 mM EDTA, 1 mM PMSF) added to the 

pellet was proportional to the number of cells in the extracts. Samples with the highest cell count 

were resuspended in 300-400 μL of buffer, while 70-100 μL of buffer was used for samples with 

the lowest cell counts. The mixtures were passed through a 22 G ½ needle 8-10 times. After 

centrifugation at 21,130 g for 2 min, the supernatant (containing the cell extracts) was transferred 

to a new tube and stored at -20°C overnight.  

 

12. Western blotting  

Samples for western blotting by mixing 20 μL cell extracts with 5 μL 5x sample buffer 

(0.375 M Tris pH 6.8, 12% SDS, 60% glycerol, 0.6 M DTT, 0.06% bromophenol blue). The 

samples were heated for 3 min at 95 °C and 15-20 μL were loaded onto a 10% SDS-PAGE gel 

and ran at 160V for 65 min. The gel was subsequently incubated in 1X transfer buffer (25 mM 

Tris Base, 192 mM glycine, 10% MeOH) and transferred for 60 min at 100 V onto a 

nitrocellulose membrane, then blocked in a solution of 5% non-fat milk in TBST (Tris-buffered 

saline, 0.1% Tween 20). Incubation of the nitrocellulose membrane was done with rabbit RP3-

CPO (Triple Point Biologics; 1:5000 dilution) as the primary antibody and HRP conjugated anti-

Rabbit IgG (Cell Signaling Technology; 1:2000 dilution) the secondary antibody. Nitrocellulose 

was treated with Lumi-GLO chemiluminescent reagent (Cell Signaling Technology) for 1 min 

and exposed to an X-ray film in a cassette, followed by manual development.  
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Figure 6. Illustration of transfection and selection protocols. Plasmid DNA containing WT or 

E310Q CPO (in red) is added to the cell cultures (pictured: 100mm culture dish). Cell cultures 

are treated with geneticin (G418) 2-3 times a week. A population of resistant clones is 

transferred to 24-well plates and expanded. Cell extracts from clones that were successfully 

expanded are analyzed for CPO expression via western blotting. 

 

13. Immunofluorescence 

Coverslips were incubated with Poly-D-lysine in PBS (1 mg/mL) for 1 h, washed with 

sterile H2O, and dried under UV light for 1h. Caco-2 cells from a pooled polyclonal culture 

containing hCPO WT transfectants were seeded at 1.5 x105 cells/well in 6-well plates containing 

poly-D-lysine coated coverslips. When cells reached 60-80% confluency, they were washed 

three times with PBS, fixed in 4% paraformaldehyde for 10 min at room temperature, and then 

washed three times for 5 min on the rocker. The cells were permeabilized in 0.1% Triton X-100 

in PBS for 15 min, washed, and blocked with 5% bovine serum albumin in PBS for 35 min. 

Primary antibodies RP3-CPO (Triple Point Biologics, cat.# MAB41241-100; 1:1000 dilution) or 

human Apolipoprotein B (R&D Systems, 1:25 dilution) were diluted in 5% bovine serum 

albumin in PBS and added directly onto the coverslip and incubated for one hour. After washing 

three times with PBS, the cells were incubated with secondary antibodies anti-mouse Alexa 

Fluor 488 and/or anti-rabbit Alexa Fluor 555 (Cell Signaling Technology, 1:1000 dilutions). 

Coverslips were washed three times and then mounted with 12 μL of aqueous mounting medium 
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(PBS containing 1 mg/mL p-phenylenediamine hydrochloride and 1 μg/ml DAPI). To stain lipid 

droplets, 4 μL BODIPY (Invitrogen) was added to the coverslip during the penultimate washing 

step and incubated on the rocker for 13 min. The slides were allowed to dry in a cool, dark place 

overnight and were later stored at 4°C. 

Images of thirteen fields of view containing at least one CPO-expressing cell were 

captured with a fluorescence microscope. To evaluate association, % values (LD:CPO or 

apoB:CPO) were normalized using the arcsin transformation and subsequently analyzed by a 

one-way ANOVA. 

 

14. Carboxypeptidase Assay  

Twenty microliters of HEK293T cell extracts were incubated with 100 μL 0.5mM Fa-EE 

carboxypeptidase substrate in a 96 well plate and their A340 was measured at 24°C every min 

for a total of 30 min. 
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CHAPTER 3 

RESULTS 

 

1. Analysis of CPO expression  

In order to better understand the potential biological role of CPO, an in-depth analysis of 

data from several gene expression databases was performed. Investigating the levels of 

expression across organs and tissues can potentially shed some light on the biological function of 

this protein. Thus, a comprehensive collection of CPO expression data is an appropriate 

approach to accomplish this.  

Protein expression is commonly similar to RNA expression which can be quantified 

using transcriptomic techniques (Wang et al., 2009). These transcriptomic techniques present a 

high-throughput, highly sensitive sequencing method that allows quantitative assessment of the 

expression of a gene in a given tissue or cell line (McGettigan, 2013). This is achieved by 

measuring the RNA transcript abundance found for a given protein-coding gene. For the 

purpose of the expression analysis in this study, RNA sequencing (RNA-Seq) and microarray 

data were compiled. 

 

a.  CPO expression in the small intestine 

CPO exhibits its highest levels of expression in the small intestine, as found in RNA-Seq 

and microarray databases. The consensus expression found in proteinatlas.org, which includes 

data from HPA, GTEx and FANTOM 5, collectively denote the small intestine as the tissue with 

highest expression in humans (Fig. 7A-C). In addition, HPA indicates that CPO expression is 

tissue enriched, as it is at least 4x greater than in any other tissue. More specifically, microarray 
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data from the Affymetrix Human Genome U133 Plus 2.0 Array platform revealed that CPO is 

overwhelmingly expressed in the ileum (Fig. 8B). The affymetrix microarray data was found to 

closely match the data found in the mRNASeq_HUMAN_GL-1 platform, both referring to 

location and relative levels of expression (Fig. 8A). Notably, in the mRNASeq platform the 

aforementioned ileal epithelium is referred to as the terminal ileal epithelium. High levels of 

expression were detected in the ileal epithelium, also known as mucosa. RNA-Seq data from 

Bgee further suggests that within the ileal mucosa, lymphoid structures known as Peyer’s 

patches, are the anatomical entity with the highest relative CPO expression (Fig. 7D).  

 

b. CPO expression in other tissues 

In addition to the small intestine, CPO exhibits varying levels of expression in other 

tissues including male reproductive tissues, brain, adrenal, and thyroid (Figs. 7,8). According to 

the HPA and FANTOM 5 databases, the epididymis is the tissue with the second highest CPO 

expression (Fig. 7A,C). This claim is supported by the Affymetrix Human Genome U133 Plus 

2.0 Array platform, which names two regions with medium expression levels, namely the 

epididymal cauda and corpus (Fig. 8B). Although the mRNASeq platform fails to include the 

epididymis, it mentions another male reproductive structure, the testis, with medium-low 

expression (Fig. 8A).  

The brain exhibits widely spread CPO expression with varying levels of expression. For 

example, the Affymetrix Human Genome U133 Plus 2.0 Array platform indicates that medium 

expression levels are found in a variety of neural structures. Within the medium expression level 

range, the cingulate cortex neuron had the highest expression, followed by the hippocampus 

pyramidal neuron, basal ganglia, entorhinal cortex large stellate neuron, and the hypothalamus 
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(Fig. 8B). While the Affymetrix U133 platform suggests medium expression in multiple brain 

tissues, RNA-Seq data suggests low to background level expression in most of those tissues (Fig. 

8A). 

RNA-Seq data from Bgee and mRNASeq_HUMAN_GL-1 report that the caudate 

nucleus and caudate-putamen complex, respectively, as the sites with highest expression in the 

brain; nonetheless, the expression levels in both structures appears to be modest (Figs. 7D, 8A). 

Further, the mRNASeq_HUMAN_GL-1 platform reports medium expression in the 

hippocampus, which contrasts with the background level expression detected by RNA-Seq from 

GTEx (Fig. 8A, 7B, respectively). GTEx and FANTOM 5 do not report regional specificity nor 

specific distribution of CPO in the human brain. Nonetheless, both databases report low 

expression in the ganglia while GTEx also reports expression in the pituitary gland (Fig. 7A,C). 

Taken together, the data points to an overall low presence in the brain. 

 Low levels of CPO expression are seen in adrenal tissues. The adrenal gland cortex 

presents a moderate expression score, as determined by RNA-Seq databases from Bgee (Fig. 

7D). Expression in the adrenal gland is also reported in the mRNASeq_HUMAN_GL-1, 

Affymetrix Human Genome U133 Plus 2.0 Array, and GTEx platforms (Fig. 8A,B; Fig. 7A). 

While overall expression in the adrenal gland is moderate, it appears to be slightly greater in the 

fetal stage than in adulthood (Fig. 8A,B). Nonetheless, it is important to note that none of the 

aforementioned platforms report expression in both fetal and adult, thus making it challenging to 

establish a fair comparison across platforms. Additionally, low expression is detected in the 

thyroid gland, as reported in and GTEx, HPA, Bgee, and Affymetrix Human Genome U133 Plus 

2.0 Array, (Fig.7 A, B, D; Fig. 8B). 
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Figure 7. CPO is largely expressed in the small intestine and has low expression in a number of 

other tissues. CPO expression levels were determined by RNA-Seq data from HPA (A), GTEx 

(B), FANTOM 5 (C) datasets and both RNA-Seq/Affymetrix from the BGEE website (D). The 

small intestine is collectively reported as the tissue with highest CPO expression (A-D), and 

expression in other tissues is considerably lower than in the small intestine (A,B,C). Expression 

scores from Bgee have been normalized (0-100) from expression call values across genes and 

conditions within the species, with scores below ~80 arguably considered as moderate 

expression (D). Modified from http:// proteinatlas.org and http://bgee.org. 
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Figure 8. CPO is expressed in blood cells, male reproductive, brain, and adrenal tissues, with 

highest expression in the ileum mucosa and ileal epithelial cells. Gene expression is reported as 

absolute levels in log2 scale, with low, medium, and high ranges specific to the 

mRNASeq_HUMAN_GL-1 platform (A) and the Affymetrix Human Genome U133 Plus 2.0 Array 

platform (B). In the affymetrix microarray platform (B), the mean value of the ileal mucosa 

“13.92” (shown as log2) equals “35,075” in linear scale, which compares to “7.25” (shown as 

log2) and “231.77” in linear scale according to the mRNASeq platform (A). Data is modified 

from Genevestigator.  

 

A 

B 
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c. CPO expression in the Blood 

The blood was found to be the third highest tissue displaying significant CPO expression. 

mRNA expression data from the HPA database revealed enrichment of CPO expression in 

granulocytes, specifically the basophils (Fig. 9). Similarly, the mRNASeq_HUMAN_GL-1 

platform also reports medium levels of CPO expression in low density basophils (Fig. 8A). In 

contrast, the Affymetrix Human Genome U133 Plus 2.0 Array platform reports a wider variety 

of blood cells with CPO expression ranging in the medium levels, with bone marrow plasma 

cells at the highest, then CD4 t-large granular lymphocyte, followed by T-cells, neutrophils, and 

eosinophils (Fig. 8B). A small, almost negligible level of expression in eosinophils is also found 

in the HPA database (Fig. 9).  

Interestingly, granulocytes are white blood cells, known to play a crucial role in 

immunity. More specifically, basophils are involved in inflammatory responses such as allergic 

reactions (Wedemeyer et al., 2000). Thus, CPO expression in the basophils alludes to a potential 

role of CPO in immunity. Moreover, the expression in Peyer’s patches, known to play a role in 

immunity by creation of B-lymphocytes also alludes to a link between CPO and immunity.  

 

 

 

 

 

 

 

 

 

 

Figure 9. CPO expression in blood cells. Out of 29 total cell types analyzed by RNA-Seq, only 

three showed CPO expression, with basophils exhibiting the highest levels of expression at 8.9 

pTPM. Modified from http://proteinatlas.org. 
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d.  CPO expression in cell lines  

While CPO is expressed across a variety of cell lines, its highest levels of expression are 

detected in cancer derived cell lines. RNA-seq data from the HPA database reports four cell lines 

where CPO is moderately expressed, and three of which are human cancer cell lines (Fig. 10A).  

These cancer cell lines are NB-4, from the bone marrow, ASC diff, from sarcoma, BEWO, from 

the brain, and the non-cancerous telomerase immortalized cell line hTCEpi, originating from the 

cornea. The mRNASeq_HUMAN_GL-1 platform cites four different cell lines with medium 

expression, with HD-iPS4-HTT at the highest followed by NCl-446, SNU-349, and WA09 (Fig. 

10B). HD-iPS4-HTT constitutes induced pluripotent stem cells from Huntington’s disease 

patient, while WA09 is a human embryonic stem cell line. The remaining two, NCl-446 and 

SNU-349 are cancer cell lines, from the lung and renal carcinoma respectively. A lung cancer 

metastatic cell line is reported to have high levels of CPO expression, according to the 

Affymetrix Human Genome U133 Plus 2.0 Array platform (Fig. 10C). Additionally, medium 

CPO expression levels are reported in embryonic stem cell WA07, mammary epithelial cell line 

76N-RHOA, and bone marrow metastatic cancer cell line Rh30 (Fig. 10C).  

Because CPO has prominent expression in the small intestine and basophils, we sought to 

investigate this expression in cell culture models, namely Caco-2, which has an intestinal 

phenotype, and a human basophil cell line, KU812. Both cell lines presented low to no 

expression according to mRNASeq_HUMAN_GL-1 and Affymetrix Human Genome U133 Plus 

2.0 Array platforms. Overall, Caco-2 has a more consistent record of expression, with medium-

low expression reported by the Affymetrix Human Genome U133 Plus 2.0 Array platform and 

low expression reported by the mRNASeq_HUMAN_GL-1 platform (Fig. 10B,C, respectively). 
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In turn, KU812 has medium CPO expression according to the affymetrix microarray platform, 

whereas the mRNA-seq platform notes no expression (Fig. 10C; 10B, respectively).  

 

 

Figure 10. A diverse number of cell lines, mostly cancer derived, have moderate levels of CPO 

expression.  RNA-seq data from HPA (A) shows three cancer cell lines with important CPO 

expression (in pTPM), NB-4, ASC diff and BEWO, while the mRNASeq_HUMAN_GL-1 platform 

(B) includes two, NCI-H446 and WA09 with medium expression (in absolute levels in log2 scale). 

The Affymetrix Human Genome U133 Plus 2.0 Array (C) is the only platform to report a cell line 

(CL-H446) with high CPO expression. Data modified from Genevestigator and 

http://proteinatlas.org.  

 

e.  CPO expression and associated pathology  

A number of pathological disorders characterized by chronic inflammation of the 

digestive tract have shown abnormal CPO expression levels. These pathological disorders are 

considered subtypes of the inflammatory bowel disease (IBD) and include Crohn's disease and 

ulcerative colitis (Baumgart and Sandborn, 2012). Since they share many symptoms, these two 

pathologies are mainly differentiated by their localizations. Crohn's disease can develop 

anywhere along the digestive tract, while ulcerative colitis is confined to the colon (Baumgart 

and Sandborn, 2012; Head and Jurenka, 2003). Clinical data retrieved from Genevestigator 
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mRNA-Seq (mRNASeq_HUMAN_GL-1) and affymetrix microarray (Human Genome U133 

Plus 2.0 Array) platforms revealed two main sites with high CPO expression where such 

pathological conditions have been reported. 

The first site was identified as the ileal mucosa and was characterized by the highest CPO 

expression (Fig. 11A, 12A). A study by Arijs et al. (2009; Genevestigator ID (G-ID): HS-00598) 

assessed expression in healthy patients and Crohn’s disease patients who were receiving 

Infliximab treatment. The results of the study suggest a pattern of decreased expression in 

Crohn’s disease patients (Fig. 11B).  

Similarly, the ileal epithelium, which was ranked second highest in expression in the 

affymetrix microarray platform, reported high-medium expression in all patients (n = 6) 

diagnosed with Crohn's disease (Funke et al., 2009; G-ID: HS-01050; Fig. 11C). These levels of 

expression in diseased patients appear to be less than those detected in healthy patients, 

coinciding with the presumed trend observed by Arijs et al. (2009; G-ID: HS-00598) in the ileal 

mucosa. Furthermore, a large study conducted by Howell et al. (2018; G-ID: HS-03228) reported 

expression ranging from high to medium in 17 patients with IBD (n = 17) (Fig. 12B). Upon 

analysis of the individual cases, it was found that all the patients with ulcerative colitis (n = 7) 

exhibited higher expression levels than those with Crohn's disease (n = 10; Fig. 12C). Likewise, 

most Crohn's patients exhibited decreased expression versus healthy individuals (n = 6).  

Additionally, ulcerative colitis appears to modulate CPO expression, as seen by a 

differential modulation in ileal tissue. For example, one study (Haberman et al., 2014; G-ID: HS-

01562) reported CPO expression was modestly downregulated in ileal tissue of young patients 

(aged 0-10 years old) with ulcerative colitis (Fold Change (FC): -1.63; p < 0.001) (Fig. 12C). In 

the same study, older diseased patients (10-17 years old) showed increased expression than 
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younger patients (FC: +1.61; p < 0.001), indicating that CPO expression specifically in the ileum 

of diseased patients may be age dependent.  

In contrast, CPO is more drastically regulated in Crohn’s disease. One study by Peck et 

al. (2015; G-ID: HS-01505) found a very large upregulation of the CPO gene in colon tissue of 

patients with bowel stricture (B2) and penetrating (B3) Crohn's disease (FC: 12.15 and 4.28, 

respectively; p < 0.001) (Fig. 12C). Conversely, CPO was significantly downregulated in the 

ileum of diseased pediatric patients, as reported in study G-ID: HS-01562 (Haberman et al., 

2014). More specifically, the downregulation was greater in patients aged 10-17 (FC: -4.45; p < 

0.001) than in patients aged 0-10 (FC: -3.57; p < 0.001).  

Although CPO is modulated in both IBD conditions, ulcerative colitis and Crohn’s 

disease, the data indicates a much more evident relationship between CPO and Crohn’s disease. 

When comparing CPO expression in both pathologies, a study (G-ID: HS-01562; Haberman et 

al., 2014) found that CPO is significantly more downregulated in ileal tissue in Crohn’s disease 

versus ulcerative colitis (Fig. 12C). In fact, this difference is greater in Crohn’s patients who 

exhibit deep ulcers (FC: -4.51; p < 0.001) than in those with a clinically affected colon (FC: -

2.13; p < 0.001) (Fig. 12C). Downregulation in Crohn’s disease was more moderate in younger 

patients (FC: -1.38; p = 0.033; Fig. 12C). 

In addition, moderate CPO expression has been reported in several pathologies, including 

cancer. In an analysis of expression across 72 paired tissues, the GENT2 database showed that 

CPO was significantly overexpressed in cancerous small intestinal and blood tissue (p = 0.026 

and p < 0.001, respectively) (Fig. 13). Colon carcinoma and lymphoma, although based on a very 

small sample size (n = 2), exhibit high CPO expression (Fig. 11A). Other pathologies with 

medium expression levels were the monoclonal gammopathy of undetermined 
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significance (MGUS) and multiple myeloma. Furthermore, a study on adrenal cortical carcinoma 

(G-ID: HS-01616; Zheng et al., 2016) found a moderate downregulation in patients on stage IV 

compared to those on stage I (FC: -2.2; p < 0.001). (Fig. 12C).  

 

 

 

Figure 11. CPO expression data from the Affymetrix Human Genome U133 Plus 2.0 Array 

platform. The platform identifies high levels of CPO expression the ileal mucosa and ileal 

epithelium cells, with a trend indicating decreased expression in Crohn’s disease patients. 

Microarray data from Genevestigator includes CPO expression levels across 1,066 

anatomy/cancer entries, and identifies the ileum as the primary site of expression (A). Two 

studies, G-IDs: HS-01050 and HS-00598, found decreased expression in the ileal epithelium 

cells (B) and ileal mucosa (C) of patients with Crohn’s disease. The experimental treatment in 

study HS-00598 consisted of a single Infliximab dose (5mg/kg body weight) (C). Values shown 

are absolute expression levels in log2 scale. Modified from Genevestigator.  
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Figure 12. CPO expression data from the mRNASeq_HUMAN_GL-1 platform. This RNA-Seq 

platform reports CPO expression levels across 624 anatomy/cancer entries, and identifies the 

ileum as the primary site of expression (A). A study (G-ID: HS-03228) reported decreased levels 

of expression in IBD patients, with ulcerative colitis patients exhibiting higher expression than 

Crohn’s (B). Values shown are absolute expression levels (TPM) in log2 scale. C. CPO 

expression is differentially modulated in IBD patients, with older patients (aged 10-17) 

presenting stronger regulations than younger patients (aged 0-10). CPO expression is regulated 

more strongly in Crohn’s disease patients than in ulcerative colitis patients. Log2-ratio 

represents the difference between the average log2 expression for experimental and control 

samples. Modified from Genevestigator. 

 

 

 
 

 
 

 

 
 

 
 

Figure 13. CPO is overexpressed in cancerous small intestinal and blood tissues. In an analysis 

of expression across 72 healthy and cancerous “paired” tissues, the GENT2 database reported a 

significantly increased log2 fold-change in small intestine (p = 0.026) and blood tissue (p < 

0.001). Modified from http://gent2.appex.kr/gent2. 
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2. Creation of the hCPO E310Q mutant 

Unlike other members of the M14 family, CPO is expressed as a constitutively active 

enzyme, as it does not need to undergo proteolytic cleavage to be activated (Garcia-Guerrero et 

al., 2018). Thus, to control for enzyme activity and protein expression, it is useful to employ an 

inactive CPO mutant as a means of comparison against the fully active (WT) CPO. This may be 

achieved through mutagenesis of a key catalytic residue, namely E310, which will effectively 

suppress the catalytic ability of CPO. An hCPO E310Q mutant was created with the ultimate 

goal of comparing the association of CPO with lipid droplets (LDs) and apoB48 in WT and 

E310Q CPO expressing Caco-2 cells. Differences in association would be considered in light of 

CPO activity (in WT) or lack thereof (in E310Q). 

 

a. Why E310Q?  

The selected mutation was on a key catalytic residue, E310. To assess any potential steric 

strain in the hCPO E310Q mutant, a 3-D model of the molecule was visualized using PyMOL 

(Fig. 14A). A close-up on the catalytic residue area revealed minimal change in structure due to 

the similarity of the two amino acids, glutamic acid (E) and glutamine (Q; Fig. 14B). Essentially, 

these two residues only differ in the terminal side chain, where E contains a -COOH group and Q 

has a -CONH2. Thus, modeling of the point mutation E310Q in hCPO verified that the steric 

hindrance produced by the mutagenesis was negligible. 
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Figure 14. The E310Q mutation substitutes a key catalytic residue in hCPO without contributing 

steric hindrance. A. Three-dimensional structure of hCPO in its monomeric form (PDB: 5RMV). 

E310, a key catalytic residue, is shown in magenta. Zinc cofactor is depicted as a yellow sphere. 

B. A close-up of the 3-D hCPO model showing a key catalytic residue E310 (top) and its mutated 

form Q310 (bottom). While the E310Q mutation does not add any steric hindrance, it effectively 

inhibits hCPO catalytic activity. 

 

b. Site-directed mutagenesis  

A PCR-based mutagenesis procedure was used to perform site-directed mutagenesis. 

Amplification of hCPO DNA using mutagenic primers was visualized via gel electrophoresis 

(Fig. 15). Bands of similar sizes were seen in +DMSO and -DMSO PCR products, indicating 

that addition of DMSO did not enhance amplification. 

 

 

 

 

 

Figure 15. HCPO DNA was successfully amplified and resolved using gel electrophoresis. PCR 

products with and without DMSO exhibited similar bands.   

 

Prior to performing ethanol precipitation, the PCR products (± DMSO) were mixed with 

each other resulting in two products that contained about half of the +DMSO PCR reaction and 

half of the -DMSO. Both 50/50 products were digested by addition of 2.5% Dpn1. Ethanol 
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precipitation was performed only on one of the samples to purify it by concentrating the DNA 

and remove unwanted substances (Soares et al., 2012). Because of the complexity of the 

technique and the risk of losing DNA, it was decided that it would be appropriate to perform this 

only on one sample. Subsequent assessment of bacterial growth confirmed that the ethanol 

precipitation step was unnecessary, as colonies containing digested DNA were larger and more 

abundant than those containing ethanol purified DNA (n = 16 and n = 14, respectively).  

After transformation, plasmid from E.coli colonies was purified and visualized on a 1% 

agarose gel (Fig. 16A). DNA quantification showed that only colonies 2 and 3 had optimal 

amounts of plasmid required for sequencing.  

Sanger sequencing was used to confirm the presence of the novel mutation (C→G) in 

both samples. Presence of the E310Q mutation (*) was confirmed using sequence alignment 

against the hCPO WT (BLAST). The best mutant was selected on the basis of presence of the 

mutation and overall DNA quality, as determined by the base calls in the chromatogram (Fig. 

16B).  

 

 

 

 

 

 

 

 

 

 

Figure 16. Confirmation of the mutagenesis in bacterial cells. A. After transformation, pcDNA 

from three E. coli colonies (1-3) was purified and visualized on a 1% agarose gel. B. Presence of 

the E310Q mutation (*) was confirmed using sequence alignment against the hCPO WT 

(BLAST). The missense mutation results in the coding of glutamine (Q) instead of glutamic acid 

(E). The best mutant was selected on the basis of presence of the mutation and overall DNA 

quality, as determined by the base calls in the chromatogram. In blue, reverse compliment of 

codon coding for E; in red, reverse compliment of codon coding for Q. 



 38 

 

c. Testing the expression and catalytic activity of the hCPO E310Q mutant  

i. Western blotting 

To determine expression of the hCPO E310Q mutant, HEK293T cells were transiently 

transfected with pcDNA-hCPO E310Q. HEK293T cells were also transfected with empty vector 

pcDNA3.1(-) and pcDNA-hCPO WT, which were used as negative and positive controls, 

respectively. Each transfection was performed in duplicate. The cell extracts were subsequently 

collected and analyzed via western blotting. Analysis via western blotting revealed that the 

E310Q mutant had similar hCPO expression as the WT hCPO (Fig. 17A). 

ii. Carboxypeptidase Assay 

Two carboxypeptidase (CP) assays were run independently. Successful proteolytic 

cleavage of the substrate by CPO can be measured by a decrease in absorbance at 340 nm (Fig. 

17B). The average activity of the E310Q mutant (0.051 milliUnits/min) was significantly smaller 

than that of the WT (1.59 milliUnits/min) as determined by Student’s t-test (p < 0.005). In 

contrast, E310Q and empty vector had similar activity, suggesting that hCPO E310Q lacked 

catalytic activity. 

 

 

 

 

 

 

 

 

 

Figure 17. Analysis of hCPO E310Q expression and catalytic activity in mammalian cells. A. 

Extracts from HEK293T cells transiently transfected with empty vector (-), pcDNA-hCPO WT 

and pcDNA-hCPO E310Q were analyzed via western blotting. The E310Q mutant had similar 

hCPO expression as the WT. B. To measure enzymatic activity, HEK293T cell extracts were 
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incubated with 0.5mM Fa-EE substrate and their A340 was measured at 24°C every min for a 

total of 30 min. Values shown are averages from two separate carboxypeptidase (CP) assays.  

 

3.  Cell transfection and selection with hCPO WT and hCPO E310Q 

Caco-2 cells are considered a good model to study intestinal physiology, as they mimic 

molecular and physiological characteristics of the small intestinal epithelium (Natoli et al., 

2012). Although the Caco-2 cell line is an optimal choice for this study, its endogenous 

expression of CPO is low and thus insufficient to accurately assess enzyme activity (Fig. 10B,C). 

Therefore, to be able to study the activity of CPO in Caco-2 cells, it was necessary to produce a 

hCPO stably expressing cell line.  

 

a. Control experiments 

Prior to performing the transfection with pcDNA-hCPO WT and pcDNA-hCPO E310Q, 

several control and optimization experiments were conducted. First, to control for transfection 

efficiency, Caco-2 cells were transiently and stably transfected with a fluorescent plasmid. Also, 

the selection protocol was optimized by experimentally determining optimal G418 concentration. 

Finally, an attempt to optimize the transfection protocol included the testing of two transfection 

reagents, PEI and FuGENE6.  

 

i.  Determining effective G418 concentration 

In order to serve as a good selective agent, G148 must be used at an optimal 

concentration to induce cell lethality before cells reach confluency. Thus, G418 concentration as 

well as seeding cell density are key factors to consider when optimizing the selection protocol. 

Thus, an experiment was designed where Caco-2 cells were seeded at 43,000 cells/ml in a 6-well 
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plate. G418 was added at three different concentrations: 0.6 mg/mL, 1mg/mL, and 4mg/mL. One 

well that received no G418 supplementation was used as a control. Medium was changed and 

supplemented with fresh G418 every 48 h. Cell toxicity was visually assessed at 48 h, 72 h, and 

92 h following the first G418 addition.  

Visual assessment of cell toxicity revealed that the minimum lethal concentration was 

between 0.6-1mg/mL. Approximately 48 h after the first G418 addition, cell toxicity was similar 

at 0.6 mg/mL and 1mg/mL of G418, whereas it was much more severe at 4 mg/mL, as seen by a 

considerably larger number of floating cells. At 92 h, the confluence at 1 mg/mL was half of that 

observed at 0.6 mg/mL. In contrast, the confluency at 4 mg/mL G418 was extremely low (10 %) 

with large cohorts of dead cells as compared to the control. These results suggest that a 

concentration of 4 mg/mL is not optimal, since large amounts of dead cells will correlate to 

secretion of undesired substances that may in turn affect the resistant cells leading to their death. 

Treatment with 0.6 mg/mL and 1 mg/mL G418 successfully killed non-resistant cells within 92 h 

without massive cell death. Thus, optimal lethal concentration required for optimal selection of 

resistant clones lies in the 0.6-1mg/mL range.   

 

ii. Transient transfection using fluorescent plasmids  

To assess the efficiency of transfecting Caco-2 cells using the PEI transfection reagent, 

Caco-2 cells were transiently transfected with various fluorescently tagged plasmids. Three 

plasmids with fluorescent tags were used for transfection: pEGFP-N2, pcDNA-GFP-CAAX, and 

pcDNA-mCherry-CAAX. The cells were observed under a fluorescent microscope 48 h post 

transfection. Quantification of transfection efficiency was calculated by dividing the number of 

fluorescent cells per field of view by that area (0.35 mm2) and multiplying by surface area of the 
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6-well plate (9.6 cm2). The total number of transfected cells was reported as the average of three 

fields of view. While all three transfections were successful, quantification of the observed 

fluorescence revealed varying transfection efficiencies (Fig. 18). The pEGFP-N2 had the highest 

transfection efficiency at ≅ 21,000/250,000 transfected cells per well, while pcDNA-mCherry-

CAAX had the lowest with ≅ 15,500/250,000. This suggests a transfection efficiency of 5-10% 

for this system.  

 

Figure 18. Caco-2 cells transiently transfected with fluorescently tagged plasmids. Plasmids 

pEGFP-N2 (A), pcDNA-GFP-CAAX (B), and pcDNA-mCherry-CAAX (C) were used as 

transfection markers to assess the transfection efficiency in Caco-2 cells. Fluorescent cells in 

three fields of view were manually counted and the average was used to estimate the transfection 

efficiency for each of the plasmids. Images show fluorescent cells, n = 8 in (A), n = 4 in (B), and 

n = 3 in (C). With a total cell number of about 250,000 cells per 9.6cm2 , 21,000 cells were 

transfected with pEGFP-N2 ,20,800 with pcDNA-GFP-CAAX, and 15,500 with pcDNA-mCherry-

CAAX.  

 

iii.  Stable transfection using a fluorescent plasmid  

Caco-2 cells were seeded in a 6-well plate at a density of 3 x105/mL and subsequently 

transfected with 3 μg total pEGFP-N2 pcDNA 24 h after (see Chapter 2, section 9). 48 h post-

transfection, the cells were subcultured at ≃ 54,500 cells/mL in 100 mm dishes with fresh 

medium. After selection with G418 (see above), cells were observed under a fluorescent 

microscope and three resistant clones presenting uniform, bright fluorescence were selected by 

marking their location on the plate. Two isolated resistant clones were grown to ≃70 % 
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confluency in a 24-well plate at 37°C and 5% CO2, and expanded into 60 mm dishes. 

Fluorescence was observed three weeks post-selection, suggesting that the transfection and 

selection protocols were optimal for producing stable transfectants (Fig. 19). 

 

 

 

 

 

 

 

 

 

Figure 19. Caco-2 cells stably transfected with a fluorescently tagged plasmid, pEGFP-N2. Here 

pictured are four fluorescent cells in a field of view. Two stably transfected clones were isolated 

and visualized with a fluorescent microscope to confirm fluorescence three weeks post-selection 

with G418.  

 

iv. Semi-transient transfection with pcDNA-hCPO WT and hCPO E310Q  

Caco-2 cells were transfected with 3 μg total pcDNA-hCPO WT and pcDNA-hCPO 

E310Q (see Chapter 2, section 9). 48 h post-transfection, the cells were subcultured at ≃ 10,600 

cells/mL for WT and 19,500 cells/mL for E310Q in 100 mm dishes. The cells were grown to 

confluency at 37°C and 5% CO2 for seven days, and media was changed every other day. After 

trypsinization and resuspension, a small volume of the cells was set aside to be counted. The 

remainder of the cells (2,012,800 cells WT and 3,180,800 cells E310Q) were harvested and lysed 

in lysis buffer (see Chapter 2, section 11). Cell extracts from transient hCPO WT and E310Q 

transfectants were analyzed via western botting with rabbit RP3-CPO as the primary antibody 

and HRP conjugated anti-Rabbit IgG as the secondary antibody (see Chapter 2, section 12). After 

a 55 min exposure, both transfectants exhibited bands at the expected product size for CPO 
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(about 42.5 kDa; Fig. 20). Nonetheless, the presence of a shadow in an empty lane adjacent to 

the mutant sample “Caco-2 hCPO E310Q” argues to consider the possibility of spillover.  

 

 

 

 

 

 

 

 

 

Figure 20. Caco-2 cells transiently transfected with pcDNA-hCPO WT and pcDNA-hCPO 

E310Q. Transient hCPO expression was assessed seven days post-transfection. Cell extracts of 

Caco-2 hCPO WT and E310Q transfectants were harvested, lysed, and analyzed via western 

blotting. Cell extracts from HEK293T cells transfected with pcDNA-hCPO WT were used as a 

positive control. 

 

v.   Optimization of transfection with PEI and FuGENE6  

Since the semi-transient transfection results did not confidently indicate a successful 

transfection, it was decided to revisit the transfection protocol to investigate the efficiency of the 

transfection reagent, PEI. Given that transfection efficiency is largely determined by the ratio of 

the transfection reagent to the DNA, I attempted to optimize the transfection protocol by testing 

the transfection efficiency using multiple PEI:DNA ratios. To do this, Caco-2 cells were seeded 

at 3x105 cells/well in 6-well plates and transfected with WT hCPO pcDNA at varying PEI:DNA 

ratios (μL PEI, and μg for DNA, respectively): 1:3, 3:3, 9:3, 15:3, 20:3, 1:1, 3:1, 9:1, 15:1, 20:1. 

Transfection with fluorescent plasmid pEGFP-N2 at a 9:3 ratio was used as a control.  

Cell extracts were harvested, lysed, and analyzed via western blotting (see Chapter 2, 

sections 11,12). None of the cell extracts showed expression (not shown). While these results 

may be suggestive of some form of human error in the experiment, the control sample showed 

abundant fluorescence, thus ruling out that possibility. An additional attempt to optimize the 
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transfection efficiency with CPO involved the use of a high efficiency transfection reagent, 

FuGENE 6. The transfection was done according to the manufacturer’s protocol (Roche) and 

pEGFP-N2 was used as a control. Assessment of the control sample post-transfection with 

FuGENE6 revealed minimal fluorescence, and it was concluded that this fluorescence was less 

than that observed in the previous optimization experiment with PEI. Thus, the low levels of 

fluorescence in the control sample suggested low transfection efficiency with FuGENE6. In 

contrast, high levels of fluorescence demonstrated that transfection with pEGFP-N2 using PEI 

was successful; however, low hCPO expression, possibly below the western blot detection limits, 

prevented confirmation of transfection. Thus, failure to detect hCPO expression via western 

blotting did not necessarily indicate failure of the transfection, but rather suggested low hCPO 

expression levels.  

 

b. Isolation of stable transfectants expressing hCPO WT and hCPO E310Q  

Caco-2 cells were seeded at 0.8 x105 cells/well in a 6-well plate and subsequently 

transfected with plasmids expressing hCPO WT, hCPO E310Q, and pcDNA3.1(-) empty vector 

(see Chapter 2, section 9). 48 h post-transfection, cells were passaged at 1:2 (vol/vol) and seeded 

into 100 mm dishes. Twelve hCPO WT resistant clones, thirteen hCPO E310Q, and nine empty 

vector resistant clones were grown in 24-well plates using the aforementioned protocol (see 

Chapter 2, section 10). Cell extracts were centrifuged at 5,000 g for 1 min and the pellet was 

resuspended in 1x sample buffer. Volumes of sample buffer added ranged from 100 to 300 μL 

and were directly proportional to the size of the pellet. Cell extracts from resistant clones (four 

hCPO WT, eight hCPO E310Q, and three empty vector) were analyzed by western blotting (see 

Chapter 2, section 12). Western blotting analysis of four hCPO WT and eight E310Q resistant 



 45 

clones showed that all lacked CPO expression (not shown). A closer inspection of the western 

blotting results revealed that some resistant clones presented a single band of faint intensity at 

around 65 kDa, which corresponded to bovine serum albumin (BSA) protein.  

Resistant clones with BSA expression indicated protein presence in the sample, which 

argued for potential presence of hCPO. If hCPO expression was presumably too low to be 

detectable via western blotting, then further expanding the clones would increase the number of 

hCPO expressing cells thus allowing detection of expression. Thus, resistant clones with BSA 

expression (four hCPO WT and four hCPO E310Q) were transferred from their respective 6-well 

plates to 100 mm dishes for further expansion. After reaching 70-100% confluency, the resistant 

clones were harvested and lysed in lysis buffer (see Chapter 2, section 11). Eight resistant clones 

(four hCPO WT and four hCPO E310Q) showed no CPO expression, as determined by western 

blotting analysis (Fig. 21A) 

In a second attempt to isolate stably expressing hCPO WT and E310Q transfectants, 

Caco-2 cells were seeded at 3x105 cells/well in 6-well plate and transfected with WT, E310Q and 

3.1 pcDNA (see above). Resistant clones with healthy morphologies (nineteen hCPO WT, 

nineteen hCPO E310Q, and three empty vector) were harvested from the 100 mm dishes and 

expanded in 24-well plates. Twenty-one resistant clones (eleven hCPO WT and ten hCPO 

E310Q) showed no CPO expression, as determined by western blotting analysis (Fig. 21B).  
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Figure 21. Resistant clones from stably expressing hCPO WT and hCPO E310Q transfectants 

showed no CPO expression. Caco-2 cells were transfected and subsequently selected with G418 

for three weeks. WT (n = 15) and E310Q (n = 14) resistant clones were harvested and analyzed 

via western blotting to test for hCPO expression. Extracts from HEK293T cells transfected with 

plasmids expressing hCPO, either WT (A,B) or L230K (A), and two empty vector clones Cl.3, 1 

(-) (B) were used as controls. 

 

4. Immunocytochemistry 

Previous research has shown an association between CPO and LDs in canine kidney cells 

and has further suggested the possibility of an association between CPO and chylomicrons. In 

this study, we investigated the association between CPO, LDs, and chylomicrons in Caco-2 cells, 

which are known to closely mimic intestinal physiology and anatomy. To test the potential 

association between CPO and LDs or chylomicrons, immunocytochemistry was performed using 

a culture of Caco-2 cells that contained pooled hCPO WT stable transfectants. Notably, the usage 

of a Caco-2 cell line that stably expressed both hCPO WT and E310Q would have been more 

optimal than a pooled culture containing a small number of hCPO WT expressing cells. 
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Nonetheless, transitioning to using this pooled culture was deemed as the next logical step after 

numerous unsuccessful attempts to create hCPO WT and E310Q stable transfectants.  

In order to compare any differences in association in differentiated and undifferentiated 

cells, a batch of Caco-2 cells from the pooled culture was differentiated. Caco-2 cells were 

differentiated into an epithelial monolayer of mature enterocytes by growing them in 6-well 

plates with coated coverslips (see Chapter 2, section 13) for 21 days. Prior to being analyzed via 

immunocytochemistry, undifferentiated and differentiated cells were fixed at 12 h and 48 h post-

feeding. For immunocytochemistry, the samples were divided into two groups: LD/CPO and 

apoB/CPO. Following permeabilization and blocking (see above), cells in the LD/CPO group 

were labeled with RP3-CPO primary antibody, whereas cells in the apoB/CPO group were 

labeled with both RP3-CPO and Apolipoprotein B primary antibodies. Similarly, secondary 

antibody anti-rabbit Alexa Fluor 555 was used for the LD/CPO and the same antibody in 

conjunction with anti-mouse Alexa Fluor 488 was used for the apoB/CPO group.  

Observation of the slides under the fluorescent microscope revealed that the number CPO 

expressing cells was low (not shown). This reduced number of transfected cells presented a 

challenge to assess association of CPO with LDs and chylomicrons. In addition, differentiated 

cells presented blurry staining, possibly as a result of the thickness of the cell monolayer (not 

shown). In light of these results, it was decided to transiently transfect the pooled culture of 

undifferentiated Caco-2 to increase the number of CPO expressing cells. Transiently transfected 

cells from the pooled Caco-2 cell culture were fixed at 6 h, 12 h, and 24 h post-feeding and 

analyzed via immunocytochemistry (Figs. 22,23). 

 Thirteen fields of view of each experimental condition were analyzed, with at least one 

hCPO transfected cell in each field of view (range 1-4, x̄: 1.6). LDs, apoB, and CPO puncta were 
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manually counted, and the association was computed by calculating how many of the total LD or 

apoB molecules were seen associated with CPO (expressed as % of total LDs or apoB). 

Similarly, association was computed in non-transfected cells to evaluate baseline background 

staining.  

CPO was associated with both LDs and apoB, with the highest % association found 12 h 

post-feeding (29.8% and 30.4%, respectively; Figs. 22A; 23A). Both LD and apoB presented the 

lowest association with CPO at 6 h (17.9% and 22.8%, respectively), reaching a maximum at 12 

h, and later slightly decreasing at 24 h (26.3% and 29.1%, respectively; Figs. 22B; 23B). CPO-

expressing cells exhibited defined, bright red puncta, which appeared as fuzzier and dimmer 

background spots in non-expressing cells. Non-transfected cells consistently exhibited lower 

association values, suggesting that the computed CPO, LD, and apoB puncta in transfected cells 

likely were not background staining (not shown). However, we note that the distribution of CPO 

and apoB puncta in Fig. 23A does not appear to correlate with the association values reported in 

Fig. 23B. Thus, we express a limited level of confidence regarding the apoB:CPO association 

reported herein.  

LD:CPO association was found to be significantly different at 6, 12, and 24 h (F = 4.27, p 

= 0.02), whereas apoB:CPO association was found to be non-significant between the time points 

(F = 1.8, p = 0.179). 
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Figure 22. CPO associated with lipid droplets in transiently transfected Caco-2 cells. A pooled 

culture of stable CPO transfectants was transiently transfected and fixed at 6, 12, and 24 h post 

feeding. A. The cells were immunostained with CPO antibody and BODIPY to observe lipid 

droplets. CPO-expressing cells exhibited defined, bright red puncta (A, cell on the left of  upper 

left panel), which appeared as fuzzier and dimmer background spots in non-expressing cells (A, 

cell on the right of  upper left panel). B. The LD:CPO association (%LDs) was determined using 

thirteen fields of view, and was found to be the highest at the 12 h mark. The LD:CPO 

association was significantly different at 6 h, 12 h, and 24, h (p = 0.02), by one-way ANOVA. 
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Figure 23. CPO associated with apoB, a marker for chylomicrons, in transiently transfected 

Caco-2 cells. A pooled culture of stable CPO transfectants was transiently transfected and fixed 

at 6, 12, and 24 h post feeding. A. The cells were immunostained with CPO and apoB antibodies. 

B. The apoB:CPO association (%apoB) was determined using thirteen fields of view, and was 

found to be the highest at the 12 h mark. ApoB:CPO association did not significantly vary 

amongst the three time points. 

A 

0

10

20

30

40

6hr 12hr 24 hr

A
p

o
B

:C
P

O
 (

%
A

p
o

B
)

B 



 51 

CHAPTER 4 

DISCUSSION 

 

1. Evaluation of expression data  

Protein expression data collected from several RNA-Seq and microarray databases (see 

Chapter 3) collectively identify the small intestine, more specifically the ileum epithelium, as the 

site of highest CPO expression in the human body. In this case, RNA-Seq and microarray data 

indicate the same site of maximum expression; however, these expression scores vary greatly 

from each other. More importantly, microarray data appears to show rather high levels of 

background expression. This becomes evident when comparing the expression scores for the 

anatomical structure with the lowest expression in the Affymetrix Human Genome U133 Plus 

2.0 Array microarray platform and the mRNASeq_HUMAN_GL-1 platform. As it would be 

expected, the lowest expression reported in the mRNASeq platform is 0, which corresponds to 

the spinal cord motor neuron. In contrast, the lowest mean score in the affymetrix microarray  

platform is 179, which corresponds to the myeloid progenitor cell. 

 For many years following the creation of the first Affymetrix GeneChip®  technology in 

1994, microarrays have continued to play an essential role in research (Lenoir and Giannella, 

2006). However, microarrays are being gradually replaced by newer, more complex sequencing 

technologies such as RNA-Seq. This transitioning to RNA-Seq can be understood in light of the 

numerous disadvantages associated with microarrays such as limited detection range, cross-

hybridization, and high background noise (Song et al., 2015; Wang et al., 2009; Zhao et al., 

2014). My findings show high levels of background noise in data collected from Bgee and 

Affymetrix Human Genome U133 Plus 2.0 Array platform. While it is important to identify 
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background noise, it may not drastically affect the interpretation of expression data with high 

expression levels. In contrast, interpretation of medium and low expression data can be easily 

affected by background noise, thus leading to an overestimation of expression. The present study 

found medium CPO expression in a myriad of anatomical entities such as the epididymal cauda 

and adrenal gland (Figs. 7D; 8B). In light of the large background noise (i.e. 231 in Affymetrix 

Human Genome U133 Plus 2.0), a corrected expression would place the aforementioned entities 

in the low expression range. This correction of the microarray expression data would then match 

the values of similar structures reported by RNA-Seq (Figs. 7A-C; 8A).  

 Additionally, analysis of CPO expression in IBD pathologies revealed several patterns 

that could provide insight into the physiological function of CPO. For example, Crohn's disease 

presents significant upregulation in colon tissue and downregulation in ileal tissue. Interestingly, 

the upregulation in colon tissue, reported to be upwards of 12-fold (p < 0.001; Fig. 12C), is the 

largest upregulation of CPO across all pathologies shown in the Genevestigator database (Peck et 

al., 2015). Preliminarily, this finding can raise questions regarding the underlaying mechanisms 

of Crohn's disease. Such mechanisms can presumably lead to overexpression of CPO in the 

colon, or alternatively, rely on a transport and subsequent relocation of CPO from ileal 

epithelium to the colon. Although it would be exciting to investigate these possibilities, low 

expression of CPO in the colon (1.5 pTPM in HPA, 1 pTPM in GTEx, and 0.4 pTPM in 

FANTOM 5; Fig. 7A-C, respectively) seems to undermine the relevance of such a large fold 

change.  

 The findings of Haberman et al. (2014) point to modulation of  CPO expression in the 

ileum with promising implications. The study, which included Crohn's disease patients aged 0-17 

(Satsangi et al., 2006) showed a significant downregulation of CPO in ileal tissue of (p < 0.001; 
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Fig. 12C). Since the ileum is the site of highest CPO expression (Figs. 7, 8), a downregulation of 

about 4-fold is considered prominent, and further suggestive of a function of CPO in this disease.  

 Crohn's disease is characterized by chronic intestinal inflammation emerging at an 

interface of genetic susceptibility, environmental factors, imbalance of enteric bacteria, and a 

strong immune response led by T-cells (Sartor, 2006; Shanahan, 2002). This pathology presents 

a variety of phenotypes, which have been classified into age (A1- 3), location (L1- 4) and 

behavior (B1- 3) categories according to the Montreal guidelines (Satsangi et al., 2006). Thia et 

al. (2010) investigated the clinical characteristics of 306 patients who had been diagnosed with 

Crohn's disease. They showed that 56% of diagnoses corresponded to patients aged 17 – 40 (A2), 

and only 11% corresponded to patients aged 0-16 (A1). Moreover, the study showed that the 

terminal ileum was the most commonly affected site, accounting for 45% of the total. While the 

disease may shift amongst behavior phenotypes (B1-3), it reportedly maintains a constant 

location (Baumgart and Sandborn, 2012). This would suggest that the findings of Haberman et 

al. (2014), although pertaining to a younger patient cohort, may likely apply to older patients as 

well. 

 Although a series of pathologies are expressed at varying levels across phenotypes 

(Antoni et al., 2014), a common feature in the pathogenesis of Crohn's disease is a defective 

intestinal mucosal barrier. The mucosal barrier represents the first line of immunological defense 

in the small intestine, so the emergence of disease associated perturbations directly affects 

intestinal function and integrity (Sartor, 2006). Such defects include, but are not restricted to, 

decreased presence of mucus biofilm, alterations in expression of intercellular junction proteins, 

increased transepithelial permeability linked to migration of leukocytes, and decreased 

production of antimicrobial peptides (Antoni et al., 2014; Baumgart and Sandborn, 2012). 
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Ultimately, these factors have been shown to produce epithelial apoptosis in Crohn's disease 

patients (Antoni et al., 2014; Zeissig et al., 2007). Thus, destruction of mucosal barrier 

epithelium, with appearance of gaps and microerosions (Antoni et al., 2014), would explain the 

downregulation of CPO in the ileal epithelium reported by Haberman et al. (2014). 

 Additionally, RNA-Seq data from Bgee showed high expression of CPO in Peyer’s 

patches (Fig. 7D), which are intimately associated with the immunological response of Crohn’s 

disease. These structures represent the first-line of adaptive immunological defense in the 

intestine (Kogan and von Andrian, 2008) and have significant presence in the ileum (Shah and 

Misra, 2011). In an effort to assess the presence of Peyer’s patches in the small intestine, a 

preliminary study by Cornes (1965) set out to quantify these organs across selected age groups 

ranging from gestational period to adolescence. The study showed that in adolescents, the 

number of patches ranged from 100 to 239, but most importantly, that the number and size of the 

patches increased with age (Cornes, 1965). Thus, an increased abundance of Peyer’s patches in 

later developmental stages could imply a similar pattern in CPO expression. Interestingly, RNA-

Seq data from Bgee shows highest expression in early adulthood (25 – 44 years old), and 

moderate expression in late adulthood, with no reports of earlier developmental stages. Taken 

together, these reports may indicate that Peyer’s patches and CPO expression could follow a 

bell-shaped curve; increasing from childhood until early adulthood, and subsequently decreasing 

after. A modulation of CPO expression resulting from variation in abundance of Peyer’s patches 

could suggest that CPO activity is relevant in these organs, possibly aiding in their proliferation. 

Another potential role of CPO in immunity is suggested by significant expression in basophils 

(Fig. 9). Although basophils are the least abundant granulocytes, they are known to play 

important roles in adaptive immunity, namely allergic reactions (Min et al., 2004). Future studies 
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should further investigate these promising associations to gain more insight into the 

physiological function of CPO.  

 

2. Evaluation of Caco-2 transfection attempts 

We set out to investigate the function of CPO in a stably-expressing Caco-2 cell model. 

Two separate attempts were made to stably transfect and isolate G418 resistant hCPO WT and 

E310Q clones; however, we found no CPO expression amongst the analyzed clones (n = 38; Fig. 

21). Analysis of CPO expression following a semi-transient transfection presumably showed 

expression in both hCPO WT and E310Q samples (Fig. 20). Nonetheless, this possibility was 

refuted after close inspection of the X-ray film, which showed a faint shadow on an empty lane, 

thus hinting at the possibility of spillover.  

These results prompted us to question if the inability to produce stable transfectants was 

related to CPO or rather cell-line specific. Lyons and Fricker (2011) reported creation of an 

epithelial Madin-Darby canine kidney (MDCK) cell line stably expressing CPO. MDCK cells 

can be easily transfected (Di et al., 2011) unlike Caco-2 cells, which are well-known for being 

difficult to transfect (Cerda et al., 2015). Other studies have successfully stably transfected Caco-

2 cells with a myriad of proteins including cyclooxygenase-2 (Tsujii et al., 1997), insulin-like 

growth factor I (IGF-I) receptors (Di Popolo et al., 2000), and integrin-initiated extracellular 

signal-regulated (ERK) kinase (Sanders and Basson, 2000). Notably, these studies used high-end 

transfection reagents (Lipofectamine and Lipofectamine PLUS), which contrasts with the cost-

effective reagent, namely PEI, used in this study. To our knowledge, we are the first study to 

report use of PEI to produce transiently and stably expressing Caco-2 cells. The reliability of the 

PEI reagent was demonstrated in separate transfection experiments with GFP (Figs. 18,19). 
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Given the abundant evidence showing that Caco-2 cells can be stably transfected, we 

wondered whether the inability to produce stable transfectants was CPO-specific. More 

specifically, we hypothesized that CPO overexpression in Caco-2 cells could be cytotoxic. Due 

to the low endogenous CPO presence in Caco-2 cells (Fig. 10), an increased expression post-

transfection could be toxic to the cells. Reeves et al. (2002) reported numerous cases of 

cytotoxicity linked to protein expression when attempting to create stably expressing cell lines. 

In this regard, Andréll and Tate (2013) argue against constitutive expression of membrane 

proteins when seeking to create stably expressing mammalian cell lines. Protein overexpression 

induces cellular stress, further leading to loss of expression over time and delayed cell growth. 

To address these issues, Andréll and Tate (2013) propose the use of an inducible system such as 

tetracycline, which enables inducible expression of the protein for short time periods. In our 

study, CPO was presumably constitutively expressed for 42-52 days, from time of transfection 

until harvesting of the cells. It is possible that CPO was expressed upon transfection and that 

factors such as extended length of the G418 selection (40-50 days), excessive stress and toxicity 

could have resulted in low protein expression at the time of analysis.  

 

3. CPO association with LDs and apoB in Caco-2 cells  

Using a culture with pooled stably expressing Caco-2 transfectants, we show that CPO 

associated with LDs and apoB; nonetheless, we acknowledge a discrepancy between the 

quantified apoB:CPO association, which ranges from 22-30%, and the association shown in the 

immunocytochemistry images (Fig. 23A), which appears lower. CPO association with LDs was 

found to be dependent on the time elapsed post-feeding, as seen by lowest association at 6 h 

(18%) and highest at 24 h (30%), followed by a small decrease at 48 h (26%) (p = 0.02; Fig. 
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22B). A similar, yet not statistically significant association pattern was shown by apoB (Fig. 

23B).  

The observed association between CPO and LDs expand on findings previously reported 

by Burke et al. (2018), which showed this association in differentiated MDCK cells. Burke et al. 

(2018) found an association that, similarly to ours, varied upon time elapsed from the last 

feeding until fixation; however, two notable differences were found when comparing association 

patterns. First, we report an increase in association from 6 h and 12 h time points (12%) which is 

6-fold higher than that reported by Burke et al. (2018). Secondly, the decrease in association 

from 12 h and 48 h time points (4%) represents a fourth of that reported in Burke et al. (2018). 

Despite use of similar methods by Burke et al. (2018), the variability between association levels 

could be due to differences in quantification techniques. Overall, the association of CPO with 

LDs confirms results previously reported by Burke et al. (2018) in a more optimal intestinal 

model, and further strengthens the hypothesis that CPO plays a role in lipid formation in 

enterocytes.  

We also report association of CPO with apoB in stably expressing undifferentiated Caco-

2 cells; nonetheless, we express a limited level of confidence in these results due to an apparent 

discrepancy between the immunocytochemistry images and the quantification data. Although not 

statistically significant, our results point to a similar pattern of association to that of LDs at 6 h, 

12 h, and 48 h time points (Fig. 23B). A rather weak fluorescence of apoB detected through 

immunocytochemistry (Fig. 23A) suggested lower abundance than initially expected. Thus, it 

appeared that low detection could correlate to low apoB secretion in undifferentiated Caco-2 

cells. Early work by Reisher et al. (1993) confirmed secretion of apoB in undifferentiated Caco-2 

cells, an event previously thought to occur only after differentiation. In a subsequent study, 
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Luchoomun et al. (1997) stably expressed the apoB48 isoform in Caco-2 cells and found that 

over 50% of the apoB48 was degraded intracellularly. 

 Since the present study sought to investigate the association between CPO and 

chylomicrons, we wondered if levels of apoB48, a well-known chylomicron biomarker 

(Nakajima et al., 2014), could predict the presence of chylomicrons in undifferentiated Caco-2 

cells. The findings of Luchoomun et al. (1997) indicate that undifferentiated Caco-2 cells can 

secrete chylomicron-like particles if subject to conditions that mimic a postprandial state, which 

can be achieved by supplementation of media with oleic acid. This evidence suggests that 

apoB48 metabolism, and to a lesser extent chylomicrons, can be studied in undifferentiated 

Caco-2 cells. Nonetheless, it appears that the use of differentiated Caco-2 cells may be more 

appropriate, as demonstrated by their use in a large amount of studies on chylomicron and 

apoB48 metabolism (Jiao et al., 1990; Nauli et al., 2014; van Greevenbroek et al., 1996).  

In addition, it is uncertain what percentage of the apoB detected in the 

immunocytochemistry assay pertained to apoB48 and/or apoB100, since the primary antibody 

appears to detect both isoforms of the apolipoprotein. Therefore, future studies should consider 

the use of western blotting analysis to resolve both apoB isoforms, or alternatively, the use of an 

apoB48-specific antibody. In addition, it is suggested to mimic postprandial state conditions in 

differentiated cells by use of oleic acid and/or lecithin to further enhance chylomicron production 

(Nauli et al., 2014). Overall, the evidence suggests that the conditions used in this study were not 

ideal for an adequate study of chylomicron metabolism.  
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4. Conclusion  

In conclusion, the results of the present study show that CPO associates with LDs in 

undifferentiated Caco-2 cells and that this association is dependent on time elapsed post-feeding. 

Furthermore, this study used an intestinal model to expand on the findings of Burke et al. (2018), 

thus strengthening the hypothesis that CPO plays an intracellular role in the formation of lipid 

droplets in enterocytes. Future studies aiming to analyze intracellular CPO substrates and 

binding partners could provide insight into the potential physiological function of CPO. We also 

report that CPO associates with apoB in undifferentiated Caco-2 cells; however, we express a 

limited level of confidence in these results since the immunocytochemistry images presumably 

suggest lower association levels than those reported in the quantification data. Further, we 

acknowledge that the parameters used to study chylomicron metabolism were not optimal and 

hence should be revised ahead of future studies. Further work should investigate the association 

of CPO and chylomicrons in differentiated Caco-2 cells in the presence and absence of oleic 

acid. Lastly, a comprehensive analysis of CPO expression data revealed modulation of CPO 

expression in Crohn’s disease as well as expression in basophils and Peyer’s patches, all of 

which could be indicative of a function of CPO in immunity. 
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