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ABSTRACT. - Animal behavior is integral to fitness and arises from complex 

interactions between internal and external factors. An understanding of how external 

environmental factors drive animal behavior is important for understanding the way organisms 

adapt to environmental perturbations such as climate change. Glaucous-winged gulls (Larus 

glaucescens) at Protection Island, Strait of Juan de Fuca, Washington display a variety of 

behaviors on the colony during the breeding season. The most common gull behaviors are 

sleeping, preening, and resting. I used a system of four differential equations to predict numbers 

of sleeping, preening, and resting gulls on the colony as a function of seven environmental 

factors: hour of day, tide height, solar elevation, heat index, humidity, wind speed on the colony, 

and wind speed over open water. The model explained 65%, 51%, 44% and 32% of the 

variability in colony attendance, sleep, preen, and rest dynamics, respectively. Similarly, model 

validation on an independent data set predicted 70%, 64%, 60% and 47% of the variability in 

colony attendance, sleep, preen and rest dynamics, respectively. 

Key words: Animal behavior, environmental factors, glaucous-winged gulls, colony attendance, 

sleeping, preening, resting, differential equation model 
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INTRODUCTION 

In biology, the term fitness refers to the relative ability of an organism to transmit its 

genes to the next generation in comparison with other members of the same species. Animal 

behavior is integral to fitness and arises from complex interactions between internal and external 

factors. An understanding of how external environmental factors drive animal behavior is 

important for understanding the way organisms adapt to environmental perturbations such as 

climate change. 

The behaviors of mammals and birds can be quite complicated due to their individual 

variability (Slater 1978). Glaucous-winged gulls (Larus glaucescens) at Protection Island 

National Wildlife Refuge, Strait of Juan de Fuca, Washington display a variety of behaviors on 

the colony during the breeding season. The most common gull behaviors in the colony are 

sleeping, preening, and resting. Other behaviors include upright postures, walking, vocalizations, 

nest building, courtship, copulation, and tending/feeding chicks (Tinbergen 1961). In addition, 

glaucous-winged gulls can learn new behaviors in response to their environment (Obozova et al. 

2011). 

I focused on the behaviors of sleeping, preening, and resting. When gulls sleep, their 

heads are turned 180° and their bills are tucked in under the scapulars. Gulls can sleep while 

standing or sitting, and with their eyes open. Preening gulls pull their feathers through their 

beaks and move their head around over their body while standing or sitting. Resting gulls have 

their head and neck drawn down upon the shoulders and are either sitting or standing. I focused 

on these three behaviors because they are the most common ones and because they are integral to 

fitness. 
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Previous studies have shown that the behavior of marine birds and mammals can be 

successfully predicted as functions of environmental factors with mathematical models 

(equations) that are tied rigorously to field data. Henson et al. (2004) constructed a differential 

equation model that accurately predicted the number of gulls occupying a loafing habitat as a 

function of day of the year, height of the tide and solar elevation. Hayward et al. (2005) 

compared a suite of competing mathematical models that described the haul-out dynamics of 

harbor seals. The best model was a function of tide height and current direction. Damania et al. 

(2005) used a differential equation model to predict gull occupancy in three loafing habitats as a 

function of tide height, time of day, solar elevation and temperature. Temperature had the 

strongest influence on occupancy dynamics. Moore et al. (2008) revised the model of Damania 

et al. (2005) to include nesting colony occupancy dynamics as a function of the same 

environmental factors. Henson et al. (2007a) used two differential equations to model the 

dynamics of sleep and colony attendance in seabirds as functions of environmental factors. 

Subsequently, Henson et al. (2007b) used two differential equations to model territory 

attendance and preening behavior in seabirds as a function of environmental factors. Other 

studies have also shown that compartmental models can be used to explain avian influenza 

transmission and bird migratory dynamics (Hsieh et al. 2014 and Knisley et al. 2011). 

In this project, I used a mathematical model to predict numbers of sleeping, preening and 

resting gulls in the Protection Island colony as a function of seven environmental factors. My 

research paper synthesizes the methodologies used by Henson et al. (2007a and 2007b) to 

construct a four-differential-equation model of colony attendance, sleeping, preening, and resting 

behaviors as a function of seven environmental factors. In particular, I parameterized (fitted) a 

system of four differential equations to hourly data collected on the Protection Island gull colony 
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during the 2006 and 2007 chick-rearing seasons. The parameterized model is capable of 

predicting the total number of gulls on the colony as well as the number that are sleeping, 

preening, and resting at any time, given a set of known environmental conditions. Such 

predictive models can be useful to wildlife resource managers in helping them to identify how 

environmental trends, such as long-term climate trends, may place populations at risk, and how 

to best ameliorate human-bird interference (Henson et al. 2004 and Hayward et al. 2009). 

METHODOLOGY 

DATA COLLECTION  

The Seabird Ecology team collected hourly data at the Protection Island National 

Wildlife Refuge, Jefferson County, Washington in a sample plot of the colony during the chick 

rearing season in 2006 and 2007. The data were collected from plot C of the colony from 0500 to 

2000 hr Pacific Standard Time (PST) 1323 June 2006 and 919 July 2007. This plot contained 

approximately 70 nests in 2006 and 60 nests in 2007 and was in the densest part of the colony 

with few eagle disturbances. Hourly census counts and behavior scans were made using a 

spotting scope. The number of gulls on the colony and the number of gulls sleeping, preening 

and resting were recorded. The census counts of gulls in the colony differed from the total 

number of birds scanned for behaviors because the observations were not done at exactly the 

same time. I accounted for this difference by dividing the number of birds exhibiting a particular 

behavior by the number of birds scanned and multiplying this number by the census count to 

obtain the number engaged in the behavior. Temperature, humidity, wind speed on the colony, 

heat index, barometric pressure, rainfall and other environmental data were obtained from an on-

site weather station. Other environmental data such as hourly tide heights, solar elevations, and 
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  or 

wind speeds over open water were obtained from the National Oceanic and Atmospheric 

Administration (NOAA) website.  

DIVIDING THE DATA SET 

I used stratified random sampling to divide the data set into two parts, keeping 75% of 

the data for parameter estimation and setting aside 25% for model validation. First I grouped the 

data by morning (05001000 hr), midday (11001300 hr), and evening (14002000 hr). Each 

group contained days 164172 and 174 from June 2006, and days 190194 and 196-200 from 

July 2007. I then randomly removed 25% of the days from each group for the validation data set. 

The model validation data set contained days 167, 169, 174, 191, and 196 for the morning, days 

169, 192, 194, 197, and 199 for the midday, and days 166, 167, 170, 171, and 193 for the 

evening time period. The estimation data set contained the remaining 14 days for the morning 

period and 15 days for the midday and evening time period. 

MODELING ASSUMPTIONS 

Differential equations measure rates of change for continuous-time processes. The rate of 

change of a quantity n with respect to time t is the derivative dn/dt. A compartmental model is a 

list of equations that models the dynamics of inflows and outflows between a connected set of 

“compartments” (in this case, behavioral states) in a population. Each compartment is modeled 

by the total inflow rate minus the total outflow rate: 

                                                            (1)               
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where in  represents the number of individuals in compartment i, that is, exhibiting behavior i, rij 

represents the per capita transition rate from the j to the i compartment, and fij represents the 

number of animals eligible to transition from the j to i compartment.  

Equation (1) is a system of ordinary differential equations that is similar to a 

deterministic Markov discrete-time model which can be applied to predict the number of gulls 

exhibiting a particular behavior (Chen et al. 2002 and Lusseau 2003). Since there is nothing 

inherently discrete in the time scale, I used a differential equation model (ODE) instead of a 

discrete-time Markov model. The ODE can predict gull behavior once the eligibility functions fij 

and the per capita transition rates rij are specified based on underlying biological assumptions 

observed in the field. The assumptions used to construct the model are based on previous work 

done by Henson et al. (2004, 2007a, and 2007b) and knowledge of gull behavior.  

The state variables in  are defined by categorizing each gull into five mutually exclusive 

compartments. The compartments are sleeping (S), preening (P), resting (R), every other 

behavior on the colony (E), and away from the colony (A). The total number of gulls attending 

the colony is the sum of the number of gulls sleeping, preening, resting, and displaying every 

other behavior, that is C = S + P + R + E. Figure 1 shows these state variables in a conceptual 

diagram of the compartmental model. The number of gulls in the colony (C) is assumed to 

satisfy the condition K/2 ≤ C ≤ K, where K represents the total number of nesting gulls in the 

colony. This assumption is based on the fact that there is always one mate guarding the nesting 

territory during the chick rearing season. During this season, gulls are quite protective of their 

nests and drive intruders away from the colony.  
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The eligibility functions fij are defined by assumptions that determine whether a gull is 

eligible to transition between the S, P, R, E and A compartments. I assume that there is no 

transition between the S and the P compartments (fPS = fSP = 0). Gulls are eligible to transition to 

the A compartment (away from the colony) only through the E compartment (every other 

behavior) and are ineligible to transition from the S, P and R compartments (fAS = fAP = fAR = 0). 

The number of gulls eligible to leave the colony (C) and go away from the colony (A) is either C 

- K/2, because there is always at least one mate guarding the nesting territory on the colony, or 

the number of gulls displaying every other behavior (E). Therefore, the number of eligible gulls 

is the smaller of the two. All gulls are eligible to transition between the S and R, R and E, R and 

P, P and E, and E and A compartments.  

The per capita transition rates are defined as functions of the environmental factors. The 

flow rates are proportional to powers of seven environmental variables: hour of day (t), tide 

height (T), solar elevation (S), heat index (I), humidity (H), wind speed on the colony (Wc), and 

wind speed over open water (Ww). The per capita rate can vary depending on the time period of 

the day. The flowrates are different in the morning (5 ≤ t < 10), midday (10 ≤ t < 14), and 

evening (14 ≤ t ≤ 20): 
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Here mij, nij, and eij > 0, and ijkijkijkijkijkijkijk hgfdcba ,,,,,,  are parameters. The per capita 

transition rates used in the model, based on previous studies (Henson et al. 2004, 2007a and 

2007b, and Damania et al. 2005), are shown in Table 1.  Figure 1 shows these flowrates between 

the compartments.         
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The compartmental model is a system of five differential equations:  
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Given that E = C – S – P – R and A = K – C, the model can be reduced to a system of four 

differential equations  
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where C, S, P and R represent the number of gulls in the colony, the number in the colony that 

are sleeping, the number in the colony that are preening, and the number in the colony that are 

resting, respectively. The model is visually represented in Fig. 2.  

PARAMETER ESTIMATION 

I used Matlab to estimate the 37 parameters for the CSPR model from the estimation data 

using the least-square method (LS) on the square-root scale, which renders demographic noise 

additive (Cushing et al. 2003). The LS method relaxes the assumptions about the distribution of 
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the residual errors (Hayward et al. 2005) and minimizes the residual sum of squares (RSS) as a 

function of the vector  of parameters: 

(5) 

 

MODEL VALIDATION 

Model validation is the process by which a model that has been parameterized on one 

data set is then used to predict another data set without re-parameterizing. In order to measure 

how well the model fit the data, I used a generalized R2 for goodness-of-fit:  

  (6) 

 

The ‘mean’ here denotes the mean of the square roots of the observations, and RSS() denotes 

the fitted value of the RSS. The R2 value estimates the proportion of observed variability 

explained by the model. The closer R2 is to 1, the better the model fit. R2 values were computed 

for the estimation data set and were compared to those computed for the validation data set.  

RESULTS 

Table 1 shows the LS parameters. The R2 values for the estimation data set and the 

validation data set are recorded in Table 2. The model explained 65%, 51%, 44% and 32% of the 

variability in colony attendance, sleep, preen, and rest dynamics, respectively, in the estimation 

data set. Model predictions for colony attendance from the estimation data set are shown in Fig. 

3A-B.  Model predictions for the validation data set explained 70%, 64%, 60% and 47% of the 

variability in colony attendance, sleep, preen and rest dynamics, respectively, indicating 
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successful model validation. Model predictions for colony attendance from the validation data 

set are shown in Fig. 4A-B.   

DISCUSSION 

Model (4) with the flow rates in Table 1 poses hypotheses about how environmental 

factors affect gull behavior. These factors influence gull behavior differently in the morning, 

midday and the evening time periods (Table 1).  

In the morning, gulls tend to enter the colony when tide height is elevated; otherwise they 

would leave the colony at a constant per capita rate. When humidity goes up, the gulls tend to 

preen. However, as the morning progresses, this tendency decreases. Gulls also tend to preen less 

when the sun rises and if the weather is hot or if it is windy on the colony. Gulls tend to sleep as 

time approaches around 0800 hr but this tendency decreases afterwards.  

During the midday time period, gulls tend to leave the colony when the sun is high; but, 

they come back into the colony if it is windy over the open water and in this case preen as soon 

as they arrive on the colony. If the sun is high and it feels hot, gulls lose their tendency to preen. 

As the time approaches 1300 hr, when solar elevation is at its highest point, gulls tend to sleep; 

but, the tendency decreases after 1300 hr. If it is windy on the colony, gulls tend to sleep. 

However, this tendency dissipates as soon as it feels hot, likely because gulls must extend their 

necks to pant when it is hot. 

In the evening, gulls tend to return to the colony and do not tend to leave. If heat index or 

barometric pressure is high, the gulls tend to stop preening. Gulls also tend to preen if it is quite 

humid and when the colony starts filling up in the evening. As the day comes closer to an end, 

the gulls’ tendency to preen and sleep increases. 
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The initial goal of my project was to parameterize the model on the 2006 data set and 

validate it on the 2007 data set. However, while compiling the two data sets for analysis, I could 

not include all of the available behavioral data because the NOAA website did not have some of 

the corresponding environmental data. As a result, the data sets were small and I was not able to 

parameterize the model on the 2006 data. In order to resolve this challenge, I combined the 2006 

and the 2007 data, used 75% of the combined data set for parameter estimation, and reserved 

25% for model validation. This yielded stable parameter estimates and good R2 values (Table 2), 

and the parameterized model gave good predictions on the independent data set (Table 2; Fig. 

4A-B). Based on these results, I was able to conclude that glaucous-winged gulls’ behaviors are 

largely deterministic and are driven by environmental variables. Particular behaviors such as 

colony attendance and sleeping are more deterministic than other behaviors such as preening and 

resting (Table 2). 

In summary, it is clear that the most common behaviors of some colonial marine birds are 

largely deterministic, and that compartmental mathematical models can be used successfully to 

predict the behavioral dynamics as a function of environmental variables.  
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FIGURE CAPTIONS 

FIGURE 1. A diagrammatical representation of the CSPR model showing the state variables and 

the flow rates in between the compartments. 

FIGURE 2. A visual representation of the CSPR model with pictures of the gulls exhibiting the 

behavioral state of the compartment.   

FIGURE 3. Model predictions (orange) and estimation data (blue) for colony occupancy. A. 

Days 164174. B. Close-up view for days 164166.  

FIGURE 4. Model predictions (red) and validation data (blue) for colony occupancy. A. Days 

164174. B. Close-up view for 169172.  
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Figure 4  
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TABLE 1. Per capita transition rates rij and Least Square (LS) parameter estimates.  

 
Per capita transition rates  Parameters LS estimates 

Morning 
(5 ≤ t < 10) 

 

 

 

 

 

 

 

 

(5 ≤ t ≤ 7) 

 

 

 

 

 

(8 ≤ t < 10) 

 

 

rPA = mPA * T2 * H mPA 0.0051307952365960 

rEA = mEA * T2  mEA 0.0755457449515250 

rAE = mAE  mAE 0.8589807639988070 

rPE = mPE * H mPE 0.2307122039416090 

rRP = mRP * Wc mRP 1.9144540780549200 

rPR = mPR * H mPR 1.2654782372738300 

rRS = mRS  mRS  1.5698610500445800 

rSR = mSR * t2  mSR  0.2306201564791630 

rRE = mRE * Wc mRE  0.9999801907515030 

rEP = mEP * Wc * S / H mEP  0.5867791239196410 

rER = mER * t2  mER  0.0038028474598140 

rSR = mSR star / S
2  mSR star 1.3421735189812800 

rRE = mRE star * Wc * t2 mRE star 1.3512578879955100 

rEP = mEP star * S / H mEP star 0.8906520131670580 

rER = mER star  mER star 0.4154008765133420 

    

Midday 

(10 ≤ t < 14) 

 

rPA = nPA * Ww
 2 * H / S nPA  0.0001422609055870 

rEA= nEA * Ww
 2  nEA 0.0358512660642240 

rAE = nAE * S2 nAE 0.1303916958061210 

rPE = nPE * H / S nPE  0.2646100129552590 

rRP = nRP  nRP  5.7867114259226600 

rPR = nPR * H nPR 2.2045160173868500 

rRS = nRS * I3  nRS 0.2934296892158480 

rSR= nSR * S * Wc
 2 nSR 0.0600168184548500 

rRE = nRE * I nRE 0.0007591547888090 

rEP = nEP * S / H nEP 0.7528607680934700 

rER = nER  nER 0.0679325585750790 

    

Evening 

(14 ≤ t ≤ 20) 

 

rPA = ePA * t6 * H ePA 0.0028200510184460 
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rEA = eEA * t6  eEA  0.0044865700879940 

rAE = eAE * S2  eAE 0.0649957341330130 

rPE = ePE * H * t2  ePE 0.0443309322517170 

rRP = eRP  eRP 2.1384652277039100 

rPR = ePR * H * t ePR 0.6460955992277160 

rRS = eRS  eRS  0.4012585815045750 

rSR = eSR * t2 / S2  eSR 0.2124387360578280 

rRE = eRE * S eRE 0.0017779882827390 

rEP = eEP / H2  eEP 1.1920917115915200 

rER = eER * t * H2  eER 0.0361886118883590 
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TABLE 2. Goodness-of-fit of CSPR model for estimation data and validation data. 

Goodness of fit (R2) Colony Sleep Preen Rest 

Estimation Data 0.65 0.51 0.44 0.32 

Validation Data 0.70 0.64 0.60 0.47 
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