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Photocatalysis Using CdSe Quantum Dots 
 
Abstract 
 
 In this project, we synthesized water soluble CdSe quantum dots (QDs) that 

photocatalyzed the reduction of resazurin to resorufin.  Absorption spectra of the CdSe QDs in 

water solution is the same as in the toluene suspended QDs solution.  The retention of 

optoelectric properties implies that the QDs retain their chemical properties upon water 

solubilization.  Absorption spectra also showed photoreduction of resazurin to resorufin after a 

period of light exposure only in the presence of quantum dots. These preliminary results suggest 

that CdSe quantum dots could be a viable photocatalyst for production of hydrogen gas through 

the water splitting reaction. 
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I. Introduction 
 
A. Background 
 
 Prior to the development of coal and oil-dependent processes, all energy used by man 

was renewable; with the primary sources being man and/or animal power, water, wind, and fire. 

This period of world history, characterized by the dramatic change from man to machine labor, 

is known as the Industrial Revolution and it allowed various countries around the world to 

flourish and achieve better standards of living1. However, as the world’s population increased, so 

did the demand for energy.  Since the beginning of the 20th century that need has been 

increasingly filled by non-renewable resources such as coal and oil.  Given the limited availability 

of these , scientists have commenced the search for alternative sources of energy. 

 Among the alternatives, hydrogen gas (H2) has shown great potential as an 

environmentally friendly motor fuel2. Hydrogen can be used in internal combustion just like 

gasoline but it is not as readily available. Because of this, three main problems arise regarding the 

handling and transportation of gaseous H2: (1) hydrogen gas requires a large space for storage. 

"Hydrogen needs about four times the volume for a given amount of energy. A 15 gallon 

automobile gasoline tank contains 90 pounds of gasoline. The corresponding hydrogen tank 

would be 60 gallons, but the hydrogen would weigh only 34 pounds." (2)Liquid hydrogen can 

freeze air, and accidents can occur from built-up pressure at plugged valves; an explosion is 

risked if the hydrogen is stored in a confined space. (3) Hydrogen cannot easily be insulated from 

the environment, leading to its rapid evaporation3 

 One possible solution to these problems would be the local production of hydrogen gas 

through the water splitting reaction (            ), which can be triggered with the aid of 

a photocatalyst. Plants routinely do a similar process through photosynthesis, in which they 

                                                   
1 R.F Clermont; Standards of Living in Britain during the Industrial Revolution (1700-1820). 
 
2 Bockris, John. Energy: the solar – hydrogen alternative. New York: John Wiley and Sons, Inc., 1975. Print 
 
3 formal.stanford.edu. 2008. Hydrogen (7-Dec-2008). Web. 18 November 2012. 
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convert carbon dioxide and water into a sugar and oxygen gas with the help of an electron donor 

and sun light.  The water splitting reaction can be photocatalyzed using nanocrystals (or quantum 

dots) made out of semiconductor materials such as cadmium sulfide (CdS), cadmium zinc sulfide 

(ZnS:CdS) and cadmium selenide (CdSe)4,5,6. However, despite the importance of this catalytic 

process in industry, the photolytic activity of the nanoparticles still remains poorly understood. 

In order to exploit the maximum potential out the photocatalysts above mentioned, a critical 

understanding of the morphological, chemical and optical properties of such materials is 

required7.  

 Although the ultimate goal of this research project was the in situ characterization of 

CdSe quantum dots, in its early stages (during which my contributions were made) it focused on 

the development of a system in which the characterization of the nanoparticles can be performed 

while their stability was guaranteed for a long period of time. In order to find this system, my 

specific project initially explored the ability of CdSe quantum dots to photocatalyze the reduction 

of the resazurin molecule in the presence of light in an aqueous environment.  

 Resazurin (C12H7NO4) is a non-fluorescent blue dye that becomes highly fluorescent and 

pink when reduced to resorufin (C12H7NO3). Because of this, the resazurin-resorufin chemical 

system (Figure 1) serves as a fluorogenic probe of photocatalytic reduction. Demonstrating 

photocatalytic reduction of resazurin using CdSe quantum dots will in turn set the future stage 

for a fluorescence microscopy-based method for measuring single particle photocatalysis.  

   

                                                   
4 J.F. Reber and M. Rusek; Photochemical hydrogen production with platinized suspensions of cadmium sulfide and 
cadmium zinc sulfide modified by silver sulfide; The Journal of Physical Chemistry 1986 90 (5), 824-834 
 
5 F.A. Frame, E.C. Carroll, D.S. Larsen, M. Sarahan, N.D. Browning and F.E. Osterloh; First demonstration of 
CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light; Chem. Commun. 2008 44 (19), 
2206-2208 
 
6 M.K. Arora, A.S.K. Sinha, and S.N. Upadhyay; Active Cadmium Sulfide Photocatalysts for  Hydrogen Production 
from Water; Industrial & Engineering Chemistry  Research 1998 37 (10), 3950-3955  
 
7 M.G. Bawendi,  M.L. Steigerwald, and L.E. Brus;  The Quantum Mechanics of Larger Semiconductor Clusters 
("Quantum Dots"); Annual Review of Physical Chemistry 1990 41, 477-496 

 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Bawendi,+M&fullauthor=Bawendi,%20M.%20G.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Steigerwald,+M&fullauthor=Steigerwald,%20M.%20L.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Brus,+L&fullauthor=Brus,%20L.%20E.&charset=UTF-8&db_key=PHY
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Figure 1. The resazurin-resorufin system. This reaction was expected to be catalyzed (triggered) with the energy 
released from the CdSe quantum dots after the solution has been exposed to white light. 

 
B. Review of Literature 
 
 Nanoparticles made out semiconductor materials have been used for photocatalysis in 

previous research. Rusek and Reber for example, reported production of hydrogen gas by 

irradiating suspensions of platinized CdS in solutions of S2- and/or SO3
2- ions, which provided 

the reducing equivalents. Additionally, this study reported increased efficiency/photocatalytic 

activity as the surface area of the CdS nanoparticles decreased4. A similar result was reported by 

Osterloh and co workers in 2008, study in which CdSe nanoribbons were used instead5. 

 Furthermore, Upadhyay et al. conducted a study in which CdS quantum dots were 

reported to photocatalyze the water splitting reaction with a strong correlation to its 

semiconducting behavior (n- or p-type). The n-type CdS quantum dots showed superior 

photocatalytic activity6. 

 Moreover, Alivisatos research group studied water soluble CdSe/ZnS quantum dots, 

which were prepared by embedding the nanoparticles in a siloxane shell and adding thiol and/or 

amine groups. In their study, silica coating did not affect the optical properties of the 

nanoparticles and helped with their biocompatibility8. 

  Fluorescence imaging has also been performed previously. Webb and co-workers 

reported usage of water soluble CdSe/ZnS quantum dots for multicolor imaging of biological 

                                                   
8 D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S. Weiss and A.P. Alivisatos; Synthesis and Properties 
of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots; The Journal of Physical 
Chemistry B 2001 105 (37), 8861-8871 
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samples9. As their article points out, "quantum dots are bright, photostable fluorophores," which 

make them suitable for fluorescence microscopy single-particle measurements 

 
C. Theoretical  

 
 The process of chemical bonding is described by 

considering the overlapping of individual atomic orbitals and the 

sharing of the outermost electrons of an atom (valence 

electrons). This overlapping is called a molecular orbital.  The 

process is typically described with a molecular orbital diagram10 

as shown in Figure 2.   

 While sodium chloride (molecular formula NaCl) is 

commonly thought as an ionic compound11,the NaCl molecule 

exists in the gas phase and a molecular diagram can be used to 

illustrate the theoretical model of bonding. Under the 

assumption that one and only one atom of both sodium (Na) and chlorine (Cl) are participating in 

the formation of a NaCl(g) molecule, the number of valence electrons given by each atom 

(indicated by ↑ and ↓) must be first counted and then distributed over the different molecular 

orbitals that their combination generates. See Figure 2 as an illustration.  

 The number of valence electrons is determined by the electronic configuration of each 

atom. In the case of Na and Cl, whose electronic configurations are 3s1 and 3s23p5  (according to 

their positions on the periodic table) and are located at the left and right sides of Figure 2 

respectively, there are eight electrons that must be distributed over the different molecular 

orbitals (middle), which in turn have different energy levels. Figure 2 shows that when 

                                                   
9 D.R. Larson, W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise, and W.W. Webb; Water-Soluble 
Quantum Dots for Multiphoton Fluorescence Imaging in Vivo; Science 2003 300 (5624), 1434-1436 

 
10 Atkins, Peter, and Julio de Paula. Physical Chemistry Ninth Edition. New York: W.H. Freeman and Company, 2010. 
Print 
 
11 Kotz, John, Paul Treichel, and John Townsend. Chemistry and Chemical Reactivity. Belmont: Thomson Higher 
Education, 2009. Print 

Figure 2. Molecular orbital diagram 
of sodium chloride (NaCl). This 
diagram shows the distribution of the 
valence electrons of each individual 
atom over the different molecular 
orbitals formed.   
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chemical bonding occurs and electrons are distributed in the molecular orbitals labeled σ and π 

(middle), there is a molecular orbital that remains unoccupied (σ*). This molecular orbital is 

referred to as the lowest unoccupied molecular orbital (LUMO), while the highest-energy 

molecular orbital that contains one or more electrons is known as the highest occupied 

molecular orbital (HOMO). All molecules posses both a HOMO and a LUMO.  In the case of 

NaCl(g) the LUMO is the orbital labelled σ*, while the HOMO is the orbital labelled π   

 Crystalline structures are more complex than 

the simple example of NaCl(g) described above. 

Instead of having a single atom of each element 

interacting with each other to form a molecule, crystals 

are a three-dimensional network of several atoms 

arranged in an ordered pattern. When one considers 

the more complex crystalline structure in Molecular 

Orbital Theory, the molecular orbital diagram contains 

more orbitals, but remains as an extension of the NaCl 

model. See Figure 3. 

 Due to the many atomic and electron-sharing interactions taking place in a crystalline 

structure (which contains billions of NaCl molecules), the number of molecular orbitals and 

energy levels increases; resulting in a MO diagram with closely spaced energy levels. In this 

case, the HOMO becomes the valence band and the LUMO becomes the conduction band. 

The amount of energy required to promote (move) an electron from the valence band to the conduction band is 

known as the band gap when dealing with crystalline structures12.   

 For a semiconductor material the energies of the valence band and the conduction band 

are somewhat similar, resulting in a small band gap of about 2eV (electron-volts) or less. This 

gap, in many instances, can be overcome through light exposure — shining light onto the 

                                                   
12 Miessler, Gary, and Donald Tarr. Inorganic Chemistry Fourth Edition. Glenview: Pearson Education, Inc., 2011. Print 

Figure 3. Extension of the NaCl model to a 
crystal. The HOMO becomes the valence band 
and is composed by a series of closely spaced 
molecular orbitals. The LUMO is now known as 
the conduction band. 
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crystal can promote (excite) an electron from the valence band to the conduction band.  This is 

how photo diodes (solar cells) work:  light energy is converted into energy to move electrons 

within the crystal. Two electron-volts are equivalent to approximately 620 nm, which means that 

low energy light (red) is required to excite an electron. This energy can be easily obtained from 

the sun because it is located within the visible range of light.  

 Eventually, however, the excited electron will return to the lower energy valence band. 

Because energy is conserved in all processes, the energy required to promote this electron will be 

released in one or many different ways: (a) as light, (b) through charge (electron) transfer or (c) 

through energy (heat) transfer. When the energy gets released through non-radiative processes 

(b and c), it can be utilized to cause or accelerate (catalyze) a chemical reaction13. 

 Such is the case in cadmium selenide (CdSe) quantum dots, which are nanoparticles (2-6 

nm in diameter14) composed of a semiconductor material (in this case CdSe), and whose capacity 

to release energy can be used to photocatalyze the reduction reaction of resazurin as studied in 

this research project or ultimately the water splitting reaction . It is important to note that the 

chemical and optical properties of quantum dots are size-dependent. Smaller quantum dots 

posses larger band gaps; the larger the band gap, the larger the amount energy released and 

available for photocatalysis13,15. 

II. Methodology 
 
All chemicals were obtained from Sigma-Aldrich. No purification was required. 
 
A. Synthesis of CdSe quantum dots 
 
 While there exists several methods to synthesize and characterize CdSe quantum 

                                                   
 
13 Harris,  Daniel. Quantitative Chemical Analysis Eight Edition. New York: W.H. Freeman and Company, 2010. Print 

14B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober , K. F. Jensen, and M. G. 

Bawendi; (CdSe)ZnS Core−Shell Quantum Dots:  Synthesis and Characterization of a Size Series of Highly 
Luminescent Nanocrystallites; The Journal of Physical Chemistry B 1997 101 (46), 9463-9475 

15 D.J. Norris and M.G. Bawendi;  Measurement and assignment of the size-dependent optical spectrum in CdSe 
quantum dots; Physical Review B (Condensed Matter) 1996 53 (24), 16338-16346 

 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Norris,+D&fullauthor=Norris,%20D.%20J.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Bawendi,+M&fullauthor=Bawendi,%20M.%20G.&charset=UTF-8&db_key=PHY
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dots16,17,18, the CdSe "seeds" utilized in this research project were produced in the following 

manner: 

1. 3.0 g of trioctylphosphine oxide (TOPO), 0.280 g of octadecylphosphonic acid (ODPA) 

 and 60 mg of cadmium oxide (CdO) were mixed in a 25 mL three-neck flask inside a  

 glove box. The flask was then heated to 150ºC outside the glove box and exposed to 

 vacuum for 1 hour (after reaching 100 ºC). 

2. In a separate 25mL roundbottom flask, a trioctylphosphine-selenide solution (TOP:Se) 

 was prepared inside a glove box using 0.058 g of selenium powder (Se) and 0.360 g of 

 TOP. 

3. Under argon, the solution from step 1 was heated to 320ºC in order to dissolve the CdO 

 (solution turns optically clear and colorless).  

4. At this point, 1.5 g of trioctylphosphine (TOP, from glove box) were injected slowly into 

 the flask. 

5. After 5 minutes, the temperature was raised from 320ºC to 370ºC and the TOP:Se 

 solution (Step 3) was rapidly injected using a 5mL syringe. According to the procedure 

 provided by the Jain lab, the reaction time is modified in order to synthesize CdSe 

 dots of different sizes. 2.3 nm CdSe seeds with green fluorescence can be obtained by 

 removal of the heating mantle immediately after the injection, while 3.1 nm seeds are 

 obtained after heat removal after 3 minutes. 

6. After the synthesis, the nanocrystals were precipitated with methanol, and were washed 

 by repeated (~ 2-3 times) redissolution in toluene and precipitation with the addition of 

                                                   
16 C.B. Murray, D.J. Norris, and M.G. Bawendi; Synthesis and characterization of nearly monodisperse CdE (E = 
sulfur, selenium, tellurium) semiconductor nanocrystallites; Journal of the American Chemical Society 1993 115 (19), 8706-
8715  
 
17 Z.A. Peng and X. Peng; Mechanisms of the Shape Evolution of CdSe Nanocrystals; Journal of the American Chemical 
Society 2001 123 (7), 1389-1395  
 
18 Z.A. Peng and X. Peng; Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes:  
Nucleation and Growth; Journal of the American Chemical Society 2002 124 (13), 3343-3353. 
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 methanol. The nanocrystals were finally suspended in toluene and kept inside the glove 

 box to avoid air exposure.  

 The repeated dissolution and precipitation cycle in the last step of the procedure 

procures high levels of monodispersity16,which is a measure of the size distribution of the 

nanoparticles. High levels of monodispersity indicate that more nanoparticles of the same size 

are present in solution (the distribution in size is smaller).  Consistently sized particles are an 

advantage when the purpose of the project is to find a correlation between morphological, 

optical and chemical properties.  

B. Synthesis of water-soluble CdSe quantum dots 

 In addition to the steps underlined in the previous section, the following steps were 

taken to make the CdSe quantum dots soluble in water: 

1. Take an aliquot (sample) of the CdSe quantum dots solution stored in toluene and 

evaporate the toluene with either dry argon or dry nitrogen. Avoid air contact. A solid film 

should result upon drying.  

2. In a separate vial, prepare a 25mL aqueous solution of 50.0 mg of mercaptoundecanoic 

acid (MUA) and  add tetramethylammonium hydroxide (TMAOH) to the solution until its 

pH is above 12 measured with pH paper. 

3. Inject about 5mL of the MUA:TMAOH solution from step 2 to the vial containing the 

 CdSe quantum dots solid film (step 1) and sonicate the solution at room temperature 

 until the solid film dissolves (about 45 minutes). 

4.  After the solid film has been completely dissolved, the nanocrystals are precipitated with 

 ~1µL of concentrated hydrochloric acid (HCl), and are washed by repeated redissolution 

 in water with TMAOH and precipitation with the addition of HCl. Do not perform this 

 step more than twice. Concentrated HCl can degrade the nanocrystals. 

5. The quantum dots are finally stored in water containing a small amount of TMAOH at a 

pH greater than 12. 
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Figure 4. Attachment of mercaptoundecanoic acid chain to surface of CdSe quantum dot. Water solubilization is 
accomplished through deprotonation of the carboxylic acid with tetramethyl ammonium hydroxide. 

 
C. Fluorescence Measurements 
 
 Because the chemical and optical properties of quantum dots are size-dependent7, CdSe 

seeds of different sizes have different spectroscopic signatures5.  Thus, it is possible to determine 

the level of monodispersity of a solution of quantum dots by analyzing the fluorescence 

spectrum of the solution. Solutions with a high degree of monodispersity should have a 

narrower fluorescence, while those with lower monodispersity should have a broader 

fluorescence. For CdSe quantum dots, fluorescence spectra were acquired using an Agilent 

Technologies Cary Eclipse fluorescence spectrophotometer in (approximately) the visible range 

of the spectrum of light (450 - 900nm) with an approximate λex of 440nm. This measurement 

were performed while the quantum dots are still suspended in toluene.  

 
D. Absorption Measurements 
 
 The absorbance measurements were conducted on a Shimadzu UV 3600 diode array (or 

scanning) spectrophotometer.  While absorption measurements were used to characterize the 

CdSe quantum dots solution, they also helped in the investigation of photocatalysis due to the 

presence of the nanocrystals in the resazurin-resorufin system. Absorption spectra of four 

solutions was collected using the UV-Vis spectrophotometer in the range between 311 - 800 nm 

in quartz cuvettes with path length of 1.0cm. These solutions were prepared as follows: all four 
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of them contained 20 to 25 drops of a saturated resazurin solution in water (~ 10 mM); solutions 

1 and 3 also contain 300µL of the CdSe quantum dots solution. While solutions 1 and 2 are 

exposed to a xenon arc lamp and monitored with the UV-Vis spectrophotometer at time 

intervals that vary from 5 to 10 minutes, solutions 3 and 4 are stored in the dark and their 

absorption spectra is recorded after the reduction of resazurin has reached completion in 

solution 1. It is important to note that an absorption spectrum of each solution is recorded at a 

time 0 minutes, which is defined to be the time at which the simultaneous preparation of all 

solutions has been finished. We did not characterize the number of MUA chains / QD.   

III. Results 
 
A. Fluorescence Spectra:  Characterization of Nanoparticles 
 
 During this research 

project, two different 

“batches” of CdSe quantum 

dots were prepared. The 

fluorescence spectrum 

shown in Figure 5, which 

belongs to the first batch, 

indicates a high level of 

monodispersity because the 

width of the peak at about 590 nm is small. If the size distribution was greater (lower 

monodispersity), the width of the fluorescence peak would increase. Beyond the width of the 

peak, the peak's location also gives an idea of the size of the quantum dots and about how much 

energy is required to overcome the band gap. Energy decreases as the wavelength increases 

(      ), and so it is possible to conclude that the energy band gap of these particles is 

Figure 5. Fluorescence spectrum of CdSe quantum dots. Peak intensity 
and location provide information about the structure of the nanocrystals. 
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"small". Because the energy of the exciton band is inversely related to the size of the quantum dot 

it also means that the CdSe quantum dots present in this solution are relatively "big" in size7,19. 

 

 
 

Figure 6. Fluorescence spectrum shows a lower level of monodispersity. Broad peak indicates the presence of 
quantum dots of various dimensions (broad shoulder between 550-820nm).  The peak at 520 nm indicates the presence 

of smaller QDs compared to those in the first batch.  

 

 Figure 6 shows the fluorescence spectrum of the second batch of CdSe quantum dots. 

Compared to the first batch prepared, this solution possesses a lower level of monodispersity, 

which is indicated by the presence of a broad peak (shoulder) between 550 – 820 nm. As 

opposed to the first batch, the second batch contains a significant amount of smaller CdSe 

quantum dots, as shown by the presence of a sharp peak at about 520 nm. 

 

B. Absorption Spectra 
 
 Absorption measurements were collected under three different conditions:  

  (1) Because direct contact with water leads to the degradation of the CdSe 

quantum dots and resazurin does not dissolve in nonpolar solvents such as toluene (water is a 

polar solvent, quantum dots are stored in toluene), methanol was used as the solvent. See 

Appendix A for results. 

                                                   
19 Que, Lawrence, Physical Methods in Bioinorganic Chemistry: Spectroscopy and Magnetism. Sausalito: University 
Science Books, 2010. Print 
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  (2) Still using methanol as the solvent, an electron donor (scavenger) such as 

Na2S or Na2SO3, was used in order to replace the promoted electron in the CdSe seeds and avoid 

the nanoparticles' decomposition due to charge instability.  See Appendix A for results. 

  (3) Water soluble CdSe quantum dots were synthesized as indicated in the 

Synthesis of water-soluble CdSe quantum dots section of this document. The reduction reaction of 

resazurin to resorufin is carried out in aqueous environment at pH ~12.  

 The final condition, which was also the most challenging to produce, guaranteed the 

interaction of the CdSe quantum dots with the resazurin molecules because there existed the 

possibility that when carrying the reaction in methanol, the quantum dots would be "trapped" in 

toluene bubbles.  

 The absorption spectra in Figure 7 are from batches 1 and 2 of CdSe quantum dots. The 

spectra further support the results of the fluorescence measurements. Relative to the absorption 

spectrum of the second batch, the QD-exciton band of the first batch is red shifted. Because the 

QD-exciton band of the absorption spectrum of the second batch is located at 492 nm (short 

wavelength), these quantum dots are smaller compared to the quantum dots in the first batch. 

To determine the size (diameter) of the QDs, the location of the QD-exciton band is considered 

along with the absorption intensity at that location.  This corresponds to the peak located at 581 

nm in the case of the first batch and at 492 nm in the case of the second one,. The absolute size 

was determined with a calculator provided by group members of the Jain lab20. According to the 

calculator, the average diameter of the CdSe quantum dots were 3.85 nm and 2.27 nm for 

solutions 1 and 2, respectively. This is consistent with the trends observed from fluorescence 

spectroscopy of the two batches of QDs. 

   

 

                                                   
20 Jain, P.K. Personal communication. Summer 2012. 
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Figure 7. Absorption spectra of two batches of quantum dots. Spectrum of first synthesis is red shifted relative of the 
spectrum of the second batch, which indicates the presence of bigger CdSe nanoparticles. 

 

 Water solubilization of the CdSe quantum dots was corroborated using absorption 

spectroscopy as well. Figure 8 shows the absorption spectra of the quantum dots of the second 

batch before and after water solubilization. The spectra in Figure 8 suggest that water soluble 

CdSe quantum dots shared electronic properties with those synthesized according to the 

procedure outlined above. This is because the absorption spectra of both solutions are similar:  

the QD-exciton band is located at 492 nm in both spectra and the overall shape of the curve is 

similar, which suggests that the nanoparticles remained intact.  

This is important and indicates that attachment of mercaptoundecanoic acid to the 

surface of the nanoparticles does not affect their optoelectric properties. The spectra vary in 

intensity because the water soluble quantum dots were made from an aliquot of the second 

batch. This means that they were present in lower concentration.  

 The photocatalytic capacity of the CdSe quantum dots in the resazurin-resorufin system 

was evaluated through absorption measurements. Because both resazurin and its reduced form 

(resorufin) possess a unique absorption spectrum (signature), a change from resazurin's spectrum 
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to that of resorufin's was expected to be observed in the presence of CdSe quantum dots only 

and upon light exposure. Resazurin is highly absorbent at 602 nm, with two other minor peaks 

between 350 – 400 nm. Resorufin (reduced for of resazurin) absorbs at 572 nm21.  

 

  

 

 

 

 

 

 

 

 

 The results of the study of the photocatalytic properties of the water soluble CdSe quantum dots 
are summarized in the following table: 
 
Table 1 

Resazurin control conditions Dark Light 

No QD No photo reduction No photoreduction 

With QD Limited photo reduction* PHOTOREDUCTION 
OBSERVED 

*See Appendix B 

   
 Spectra of a solution of resazurin shown in Figure 9 demonstrated photoreduction of 

resazurin in the presence of water soluble CdSe quantum dots. Before illuminating the sample 

(time = zero), the spectrum of the aqueous solution of resazurin containing the nanoparticles 

matches that of pure resazurin (peaks at 602 nm and between 350 - 400nm). This spectrum also 

shows the QD-exciton band at 492 nm, indicative of their presence in the solution. After 15 min 

of light exposure however, we observe that the 602nm resazurin peak decreases and another 

                                                   
21 C. Bueno, M.L. Villegas, S.G. Bertolotti, C.M. Previtali, M.G. Neumann, and M.V. Encinas; The Excited-State 
Interaction of Resazurin and Resorufin with Aminesin Aqueous Solutions. Photophysics and Photochemical 
Reaction; Photochemistry and Photobiology 2002 76: 385–390 

 

Figure 8. Absorption spectra of CdSe quantum dots before and after water solubilization. The similarity 
of the spectra indicates that the nanoparticles remain intact after attachment of MUA chain, which was 
needed for water solubilization. 
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peak appears at about 572 nm.  This absorption spectrum matches that of resorufin, the reduced 

form of resazurin. As a reference, an absorption spectrum of resorufin is included22. The fact 

that the exciton peak at 492 nm remains sharp and is of similar (or even more) intensity  also 

demonstrates that the CdSe quantum dots remain intact after complete photoreduction has 

occurred. A shoulder of unknown origin grows between 600 – 750 nm (partially cut off in the 

figure). The features of resazurin between 350 – 400 nm also disappear from the spectrum after 

photoillumination, which is further evidence of photoreduction of resazurin to resorufin, since 

these peaks are not present in the resorufin absorption spectrum.  

 

 
 
 

Figure 9. Absorption spectra of resazurin in the presence of quantum dots. After a period of light exposure 
photoreduction is observed as the peak growing at 592 nm matches that of resorufin. The water soluble CdSe quantum 

dots are also preserved after reduction.  The data are summarized in Table 1. 

 

IV. Discussion 
 
 As hoped, the water soluble CdSe quantum dots synthesized in this project were capable 

of catalyzing the reduction of resazurin. Absorption spectra showed that the water solubilization 

procedure did not affect the optoelectric properties of the quantum dots. Additionally, the CdSe 

                                                   
22 invitrogen.com. 2013. Product Spectra │Life Technologies. Web. 22 March 2013. 
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quantum dots appear to have remained intact after complete photoreduction of resazurin. The 

spectra showed a slight blue shift in the location of the QD-exciton band. Nevertheless, this 

indicates that these nanoparticles can be reutilized for photocatalysis, which is of special 

importance in industry and hydrogen gas production. Quantum dot preservation also makes this 

model system suitable for single particle measurements with fluorescence microscopy because 

the reduction reaction proceeds without significantly affecting the nanoparticles.  

 Absorption spectra of the redox reaction of resazurin showed a growing peak between 

600 – 750 nm. The origin of this feature is unknown and could belong to by-products caused by 

the reaction of impurities (some MUA present) with resazurin and possibly quantum dot 

aggregates. Compared to previous research however, an electron donor (scavenger) was not 

necessary to trigger photoreduction5. 

 
V. Conclusions 
 
 Synthesis of water soluble CdSe quantum dots was performed by attaching 

mercaptoundecanoic acid chains to the surface of the nanoparticles and deprotonation of the 

carboxylic acid with tetramethyl ammonium hydroxide. Absorption and fluorescence spectra of 

two batches of (non-water solubilized) quantum dots are consistent with the idea that the 

optoelectrical properties of these nanoparticles depend on their size. After the water 

solubilization procedure, the spectral signature of the CdSe remains intact, as shown by 

absorption measurements.  Thus, we conclude that the CdSe structures themselves remain intact. 

 Preliminary results also demonstrate the capacity of these water soluble CdSe quantum 

dots to catalyze the photoreduction of resazurin. After light exposure (or photoillumination), an 

absorption spectrum of an aqueous resazurin solution containing quantum dots matches that of 

resorufin. An unknown shoulder grows between 600 – 750 nm. This could be originated by 

impurities present in the aqueous solution of the quantum dots. 
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Finally, after comparison of the QD-based exciton band of the absorption spectrum before and 

after photoreduction, it is also clear that the quantum dots are preserved (remain intact) after the 

photoreduction has been completed.  

 
VI. Future Work 
 
 Further synthesis of water soluble CdSe quantum dots should be attempted in order to 

perfect the purification procedure. Additionally, more data to support the photoreduction of 

resazurin due to the presence of the nanoparticles and determine the origin of the unknown 

shoulder. 
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Appendix 
 
Appendix A. Results of other experimental conditions for the study of the 
resazurin-resorufin redox system. 
 
Argon atmosphere and methanol 
 
 
 In this section, results of other 

experimental conditions under which 

the resazurin-resorufin system was 

studied are shown. Figure 10 shows 

photoreduction resazurin in the absence 

of CdSe quantum dots. According to a 

member of the Jain Lab,  this behavior 

has been observed when resazurin is 

present in methanol. 

 These experiments were 

performed using the first batch of CdSe 

quantum dots, which were not subject 

to the water solubilization procedure. 

The absorption spectra (both top and 

bottom) does not show the quantum dots present in solution. This could be for two reasons: (1) 

because the quantum dots are suspended in toluene, they do not mix with the rest of the solution 

and are located at the top of it (outside the path of beam of the spectrophotometer), or (2) 

because the QD-exciton band of the CdSe quantum dots is located at longer wavelength (first 

batch), the spectrum is masked by resazurin, which is present in much higher concentration. 

Figure 10. Absorption spectra of resazurin in methanol. Data shows 
that the quantum dots inhibit photoreduction. 
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 When the quantum dots are present, however, the reduction of resazurin seems to be 

inhibited, which might be caused by the decomposition of the quantum dots because of 

methanol.    

 
Experiments in the presence of an electron donor and methanol 
 
 
 The following data was collected with Na2S/Na2SO3 present in solution in order to 

replicate the result obtained by Osterloh et al3. As can be seen, photoreduction is observed 

regardless of the presence of the CdSe quantum dots in solution. 

 
Figure 11. Absorption spectra of resazurin in methanol with Na2S or Na2SO3. Photoreduction is observed regardless of 

the presence of quantum dots in solution. 
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Appendix B. Limited photoreduction in the presence of water soluble CdSe 
quantum dots and the absence of light. 

 
 Figure 12 shows the results of 

an attempt to replicate the 

photoreduction of resazurin due to 

the presence of the water soluble 

CdSe quantum dots and light 

exposure. Photoreduction is observed 

in the absence of light as well (top), 

which is due to inappropriate 

purification of the water soluble 

quantum dots. More data should be 

collected however, in order to support 

this conclusion. 

 It is important to notice that 

light exposure increases reduction of 

resazurin which reinforces the conclusion of the main document: it is possible to photocatalyze 

the reduction of resazurin using CdSe quantum dots and demonstrates that they are a viable 

photocatalysts to trigger the water splitting reaction. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Absorption spectra of aqueous solution of resazurin with 
CdSe quantum dots. Reduction is observed in the absence of light 
which might be caused by the presence of impurities. 
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