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 Juvenile Hormone III (JHIII) is a prolific and essential hormone in insects, 

controlling many aspects of insect physiology such as egg development, nymphal 

and larval maturation, diapause and metamorphosis. In female crickets, Acheta 

domesticus, JHIII increases selectivity in phonotactic behavior, narrowing 

phonotactic choices for Syllable Periods (SPs) of the Calling Songs (CSs) that most 

closely resemble the natural call of the male. JHIII has been suggested to work 

through a pathway that activates the protein kinase C (PKC) molecule. Chelerythrine 

Chloride (CC) is a potent inhibitor of PKC action.  This study analyzes the responses 

of the L3 auditory interneuron, which has been suggested as an important neuron in 

the prothoracic ganglion for filtering CSs and inducing phonotaxis, in response to 

JHIII and CC.  We recorded neuronal responses extracellularly before and after 



 

 

nanoinjection with JHIII and CC in order to analyze the molecular effects of the two 

substances on the selective processing of the L3 neuron. JHIII increases SP-selective 

decrement in a subgroup of our crickets by significantly reducing decrement at the 

shortest SPs (30 and 40 ms) and centering the response around the SPs most 

similar to the natural call. It has no effect on a smaller, subgroup of crickets. CC 

decreases the selectiveness of decrement in L3. It is suggested that both the 

mechanism for sharpening the females’ phonotactic behavior is expressed through 

molecular pathways in the L3 neuron, and that JHIII carries out at least part of its 

effects on the L3 neurons through a PKC mediated pathway, the effects of which can 

be reversed or blocked following treatment with CC. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

Many species of insects are capable of stridulation, a sound produced by 

rubbing parts of their bodies together, and several studies have shown that this 

ability is commonly used by males to attract females (e.g. Regen, 1913 - Orthoptera; 

Haskell, 1953 - Orthoptera; Walker, 1957 – Orthoptera; Tychsen, 1978 - Diptera; 

Surlykke & Gogala, 1986 - Lepidoptera). Females hear and move toward the sounds 

produced by conspecific males, a behavior known as phonotaxis. This process has 

been observed and well documented in various species of the order Orthoptera such 

as Gryllus kerkennesis, G. campestris, G. bimaculatus, Melanogryllrus desertus,  

Teleogryllus oceanicus, and Acheta domesticus (Popov & Shulavov 1977; Pollack & 

Hoy, 1979; Thorson, 1982; Stout et al., 1983; Pollack, 1986; Ritchie, 1991; Hennig & 

Weber, 1997; Hennig, 2009;) whose calling songs (CSs) are easily recorded and 

modeled. Since phonotaxis was first described, several labs have used this 

behavioral system in an attempt to understand the neuronal networks that underlie 

and regulate the females’ choices in response to model calls.  

 Initial studies were conducted on various species of crickets (Family 

Gryllidae) to determine which temporal and spectral parameters of the males’ CS 

were the most important for eliciting phonotaxis (Walker, 1957; Pollack & Hoy, 
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1979; Stout et al., 1983; Pollack, 1986). In A. domesticus, the most important 

parameter was determined to be the syllable period (SP), the time between the 

onset of successive syllables in the chirp (Stout & McGhee, 1983). The lengths of 

model SPs were altered, to present a range from 30 to 90 ms in experimental 

studies. Those SPs that most closely matched the SPs of the  natural male’s call most 

often elicited positive phonotaxis (50 – 70 ms for A. domesticus, Stout et al., 1983), 

and were defined as the most attractive SP range. 

 Two categories of behavior were recognized for female A. domesticus. 

Selective females were defined as those that responded to 5 or fewer SPs of the 7 

presented, and unselective females responded to 6 or more (Walikonis et al., 1991; 

Stout et al., 1992; Stout et al., 2010). Further studies showed considerable plasticity 

within these categories, which was not initially expected. A study of 4 species from 

two genera of field crickets (Family Gryllidae) indicated that selective females can 

respond to SPs that are not commonly found in the natural conspecific male’s calling 

song (Stout et al., 2010).  Additionally males show considerable plasticity in their 

calling rate dependent upon certain environmental factors (i.e. temperature) of 

their microenvironment. This plasticity is paralleled by changes in female 

preference for SPs (Navia et al., 2015).  

Interest in the neuronal basis for this behavior and its plasticity has been 

centered on networks of auditory neurons in the prothoracic ganglion (PTG), where 

auditory afferents terminate and connect with first order auditory interneurons 

(Esch et al., 1980; Wohlers & Huber 1985) and on the brain where several of these 

first order auditory neurons terminate and synapse with higher order auditory 
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neurons (Schildberger, 1984; Kostarakos & Hedwig, 2012; Schoneich et al., 2015).  

Various interneurons were identified and described such as the AN1 and AN2 

interneurons of G. bimaculatus (Wohlers & Huber, 1985), the omega neurons (ON1 

and ON2) of G. bimaculatus and A. domesticus  (Atkins et al., 1984; Schildberger & 

Horner, 1988) and the “L-shaped neurons” L1 and L3 of A. domesticus (Stout et al., 

1985; Atkins, et al, 1992).  

Atkins et al.  (1984, 1992) found that unilaterally killing one of the pair of L-

shaped (L1 and L3) auditory interneurons in the PTG of A. domesticus resulted in 

significant errors in phonotaxis at all SPs. Further work centered on the L3 

interneuron which unlike L1 responds in a selective manner to SPs that are most 

attractive phonotactically with a reduction in the number of action potentials to the 

2nd and 3rd syllables, termed “decrement” (Atkins et al., 1989). Furthermore, L3 has 

exhibited significant plasticity in its SP-selective responses that closely matches the 

plasticity described phonotactically (Navia, 2005; Stout et al., 2010). Each of these 

studies supported the proposal that L3 played a significant role in phonotactic 

choices made by females.  

Additionally, the AN2 auditory interneuron (homolog of L3) in female G. 

bimaculatus also responds selectively to the SPs of models of the males’ CS that 

match those found in the natural male’s call (Stout et al., 2011) in ways that are 

similar to the L3 of female A. domesticus described by Navia (2005). When 

measurement of phonotaxis by individual female G. bimaculatus was immediately 

followed by recording the SP-selective responses of the AN2 neurons, there was a 

greater than 90% concordance between SPs that resulted in high AN2 decrement 
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and the SPs chosen for positive phonotactic response (Samuel et al., 2013).  That 

study linked for the first time, selective processing of the AN2 (L3) neuron and 

phonotactic behavior in the same animal.  

Juvenile Hormone plays an essential role in regulating many aspects of insect 

physiology such as egg development, nymphal and larval maturation, diapause and 

metamorphosis (Wigglesworth, 1963; Koch & Hoffmann, 1985; Riddiford, 1994; 

Wyatt & Davey, 1996; Riddiford, 2007). Work done in crickets showed that Juvenile 

Hormone III (JHIII) peaks in females on the fourth day following the imaginal molt 

(Renucci & Strambi, 1983; Koch & Hoffman, 1985; Walikonis et al., 1991) which 

coincides with the day on which phonotaxis has been reported to start (Stout et al., 

1992). JHIII can induce phonotaxis in female A. domesticus when topically applied 

as young as 1 day old (Stout et al. 1992). Topical application (Henley et al., 1992) as 

well as nanoinjection into the PTG (Atkins et al., 2008) initiate or restore behavioral 

selectivity in crickets that were previously unselective phonotactically.  It has been 

proposed that JHIII may have some of its effects through a membrane bound 

receptor and PKC mediated pathway (Wheeler & Nihjout, 2003; Liu et al., 2015). 

 In a preliminary study Chelerythrine Chloride (CC), a potent protein kinase C 

(PKC) blocker (Chao et al., 1998) has been suggested to block the effects of JHIII 

behaviorally (Byssainthe, 2008). No work has been done yet in A. domesticus on the 

modulatory effects of JHIII or CC in the neuronal networks of the PTG.   

In order to evaluate whether JHIII influences selective processing by the L3 

neuron in a manner that is similar to its effects on SP-selective phonotaxis by female 

A. domesticus: 1.) JHIII is nanoinjected into the PTG and its influences on selective 
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processing by the L3 neuron are evaluated. 2.) JHIII injection will be followed by 

injection of the PKC blocker CC, and subsequent changes in L3’s selective processing 

will be evaluated in some females, as a check on the possible involvement of PKC in 

mediating JHIII’s effects. 
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CHAPTER 2 
 
 

METHODS AND MATERIALS 
 
 

Animal Care 

Four-week-old A. domesticus nymphs were obtained from Fluker Farms, Inc.  

New colonies were housed in 100-L plastic containers and given water and Cricket 

Chow (Fluker’s Cricket Farm) ad libitum. Egg cartons were provided for shelter. 

Colonies were maintained in climate-controlled incubators at 22 - 24° C, with a 12 

hour light dark cycle (on at 06:00). Females completing their imaginal molt were 

removed, isolated, and kept under identical conditions in 16-L containers. Adult 

males were also removed and discarded daily.  

 
Specimen Preparation 

Females between 5 and 28 days old were selected from the colonies for use. 

The tegmina and inner wings as well as the mesothoracic and metathoracic legs 

were removed. Females were secured to a wax block using a 3:1 beeswax to resin 

mixture warmed by a Digital Wax Carving Pencil (Whip Mix). They were secured 

ventral side up with wax dots to the pronotum, dorsal thorax, and abdomen. Each 

cricket’s head was also secured to the wax block to prevent movement. The 

prothoracic legs were positioned so that the posterior tibial tympani were facing 

laterally toward each speaker and secured with pieces of molding clay. Care was 
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taken to not cover the thoracic spiracles or prothoracic leg joints. Small microscissor 

incisions were made through the exoskeleton on the prothoracic area just ventral to 

the prothoracic ganglion and neck connectives. The exoskeleton and the ventral 

trachea were removed to expose the PTG. Auditory trachea (important for sound 

localization, Schmidt & Romer, 2013) on either side of the PTG were left intact.  

Fielden (1960) saline was immediately placed over the exposed tissue to keep it 

moist.  Temperatures during each experiment ranged between 22 - 24° C 

 
Sound Stimulation 

Computer generated model calling songs were played using Sound Studio 

(version 3.5.7) through laterally located speakers, (82 cm apart, Optimus 2x6” Horn 

Tweeter) attached to the outside of the Faraday cage (0.6 x 0.7 x 0.8 m) with sound 

insulated walls. The sound emitting from each speaker was calibrated at a location 

midway between the cricket’s ears (at the middle of the cage, approximately 41 cm 

from either speaker) to 85 +/- 2 DB using a Radio Shack ® Sound Level Meter 

(model no 33-256).  

 Calling songs were produced with three syllables (20 ms syllable duration 

(SD), 6 ms rise and fall times) and a chirp period of 666 ms at 5 KHz (within the 

range of typical carrier frequencies for A. domesticus, (Stout et al. 1983).  Pre- and 

postinjection calling song SPs were presented in one-minute durations in a standard 

non-sequential order (50ms, 90ms, 70ms, 30ms, 60ms, 80ms, and 40ms). One 

minute of rest was given between each CS. Sound was directed through either the 

left or right speaker. The last 30 chirps of each recording were used for analytic 

purposes.  
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Extracellular Recordings 

Prepared specimens were placed at the center of a Faraday cage.  Suction 

electrodes were custom made from plastic polyvinyl chloride tubing, heated with a 

mounted Weller Soldering Iron, and pulled to an approximate inner and outer 

diameter of 0.40 and 1.30 mm respectively.  The suction electrodes were filled with 

Fielden (1960) saline and used to obtain electrophysiological recordings from 

inside the split neck connectives (split using the broken tip of a glass 

microelectrode; Jeffery, 2003). A silver wire was inserted into the saline as a ground 

electrode.  

Criteria previously established were used to locate and isolate the L3 

neurons (Navia, 2005).  L3s were identified using their unique sensitivity to 5 KHz 

(65 – 75 db) and 16 KHz (55 – 65 db, Stout et al., 1985) as well as by the existence of 

a reduction in spiking (decrement) and the presence of a prolonged response 

(Navia, 2003). 

The response of the L3 neurons to model CSs were recorded and digitized 

using a P55 A.C. Pre-Amplifier(Grass Products, Warwick RI),  ADInstruments 

Powerlab 2/20, and Chart 5 V.5.54 software. 

 Following the pretests, various solutions (50 pg of JHIII in 9.2 nL of acetone, 

9.2 nL of acetone as a control, 9.2 nL of 10-5 M CC (Sigma) in saline, and 9.2 nL of 

saline as a control) were injected into the PTG using a nanoinjector (Drummond 

Nanoject II; Drummond Scientific Co, Broomal, PA). Post-test experiments were 

conducted following injections of JHIII and again following injection of CC as well as 

following injections of CC only. Model calling songs were presented after each 
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injection in the manner described and used for the pretests, and responses of the L3 

were digitized using identical methods. To control for repeated exposure to auditory 

stimulus, CSs were also played through twice without injecting the animal. 

 
Analysis And Decrement Determination 

 
PostStimulus Time Histograms (PSTs) with 1 ms bins were generated from 

the last 30 chirps of each digitized response of recordings that were clear and 

distinct enough to analyze. Recordings and parts of recordings that were unable to 

be resolved were discarded or excluded. Spike numbers in response to each syllable 

were determined by counting the number of spikes in a number of bins of the PST 

histograms that matched the time frame of the SP being studied.  The count began 

with the distinct onset of spikes usually after a latency of 10 – 20 ms (Fig. 1). 

Procedures used match those described by Samuel et al. (2013). Percent decrement 

for each SP was calculated using the equation (1-(#of spikes to syllable 3/# of 

spikes to syllable 1))*100. Decrements were calculated and analyzed for each SP in 

each pretest, test or control test. Additionally, the total number of spikes from the 

30 chirps of each SP was counted and the average found per 30 chirps. 

Statistical Analysis 

 Error calculation and averages were done in Excel 2011 for Mac version 

14.0.0. Analysis of variance – repeated measures was computed on decrement 

values within the pretests and treatment groups as well as between groups using 

SPSS version 12. Significant differences between means are all based on p values 
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equal to or less than 0.05. Independent t-tests were computed on the average of 

spike numbers for each SP between treatment groups and controls using Excel.  
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CHAPTER 3 
 
 

RESULTS 
 

Order Of Experiment And Effect On L3 Response 
 

 Given that the experimental design used in this study involved a pretest 

followed by nanoinjection of a neurohormone or neurochemical (JHIII, acetone, CC, 

or saline), a control for the sequence of experiments was performed in which model 

calling songs (CSs) were played through twice with no injection into the prothoracic 

ganglion (PTG). The second presentation of the CSs yielded similar results (no 

significant differences), indicating that repeated exposure of virginal females to 

auditory stimulus did not independently affect the outcome (n=10, Fig. 2).  

 
JHIII Effect On L3’s Decrementing Response To Model CSs 

 
  L3 interneuron’s response to the SPs of model CSs was evaluated in 16 

females. Two types of responses from the L3 interneuron were described based on 

their characteristics. In one group of crickets, the L3s responded with significantly 

higher decrements to 30 ms than to longer SPs and displayed low spiking rates 

(hereafter referred to as Group 1, n = 5 Fig. 3A, B). The second group of crickets 

(hereafter referred to as Group 2, n=11, Fig. 3A, B) contained L3s whose 

decrements to 30 or 40 ms were the same as or lower than to subsequent SPs (see 
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also Fig. 5D) and had significantly higher spiking rates than Group 1(t test, 

p<0.0005).   

 The Group 1 neurons displayed SP-selective decrement that was not 

noticeably influenced by JHIII (Fig. 4).  This is illustrated by recordings from an 

individual L3 in a Group 1 female in which JHIII had no effect on the decrementing 

response to SPs of 40 (Fig. 4A) or over all to the 7 SPs presented (Fig. 4B). There 

was no significant difference following JHIII injection in the averaged response 

(ANOVA, p>0.05 Fig. 4C) 

  L3s in Group 2 responded with higher spiking rates (see Fig. 3B) and 

decrements that were responsive to JHIII (Fig. 5A-E).  The decrement pattern from 

an individual in Group 2 was sharpened (Fig. 5C) by JHIII, with the largest 

decrements following injection given in response to SPs of 50 to 70 ms. Before JHIII 

injection, decrements in response to SPs of 80 and 90 ms were significantly lower 

than to 70 ms (ANOVA p<0.05), but the response to shorter SPs were not 

significantly different (ANOVA, p>0.05, Fig. 5D). On average, JHIII reduced the 

decrements to SPs of 30 and 40 ms resulting in significantly smaller decrements at 

these SPs (t test, 30 ms p=.076 and 40 ms p=.052) than the decrement to 70 ms SPs 

(Fig. 5D, E). The overall effect of JHIII was that decrements of Group 2 L3s in 11 

females were significantly tuned to the SPs contained in the males’ CSs (Navia et al. 

2015, Fig. 5E). Results following injection of acetone (the solvent and control for 

JHIII) showed no significant change in L3’s decrement response before and after 

treatment (ANOVA, p>0.05, n=11, Fig. 5F). 
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CC’s Effect On L3’s Decrementing Response To Model CSs 

 
 For a female in Group 2, treatment with CC after treatment with JHIII 

resulted in a clear increase of decrement (Fig. 6A, B, 40 ms shown) at all SPs 

presented. L3s on average significantly increased their decrement (19% vs 28%, t 

test, p<0.004, Fig. 6C) and tended to decrement more uniformly following 

treatment with CC (the greatest difference in decrements before CC treatment was 

17%, following CC treatment the greatest difference was less than 10%).  

 Seven additional crickets were chosen and the SP- selectiveness of their L3 

interneurons was analyzed before and after CC nanoinjection. For an individual in 

this group, the L3’s decrementing response following treatment became more 

uniform and consistent to all SPs (Fig. 7A, B).  The high selective decrement for 70 

ms (45%) was significantly decreased (to 30%, ANOVA, p<0.05, Fig. 7A, B).  The 

average decrements of this group (Fig. 7C) show a similar pattern. After treatment 

with CC the decrementing response is adjusted higher at some SPs, lower at others 

(significantly higher at 40 ms and significantly lower at 70 ms, ANOVA, p<0.05) 

such that the L3 does not decrement particularly highly to any one SP or SP range, 

but on average decrement reduces for SPs longer than 50 ms. Though the averaged 

decrements were not significantly different following CC injection (t test, p = 0.627 

Fig. 7C), the CC response is more uniform. The decrementing response following CC 

injection at most differed by less than 14%, while before injection the greatest 

difference in decrement was greater than 20%. Nanoinjection of Fielden Saline 

(1960), the control for CC, did not significantly change the decrements at any SP for 

the six individuals tested (ANOVA, p>0.05, Fig. 7D).  
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 There are very notable differences between the average L3 decrement 

following CC injection that was preceded by JHIII injection (32%) and that following 

only CC injection (22%) (Fig. 6C and 7C). The average difference in decrement 

between CC only injection and JHIII  - CC injection is significant (t test, p <0.004).  

 
Effects Of JHIII And CC On L3’s Excitation 

 For each group analyzed (Group 1, Group2, and CC only), evaluation of the 

average number of spikes per 30 repetitions of the model CS for each SP 

demonstrated clear trends during the pretest as well as following treatment with 

JHIII and CC. First, during the pretest the average number of spikes at each SP are 

significantly lower in Group 1 than in Group 2 (t-test, p<0.0005, Fig. 3B). Second, 

treatment with JHIII does little to change the average number of spikes/30 chirps at 

each SP in either Group 1 or Group 2 (t-test, p>0.05, Fig 8A, B,). Finally, treatment 

with CC significantly increases the total number of spikes for both groups treated 

with CC (Fig. 8B, C, Group 2 p< 0.05; Just CC p<0.005). Variability (as measured by 

the standard error of the means) is minimal in all groups. The location (timing) of 

the CC effect was evaluated by determining the amount of increase at each syllable. 

CC caused the greatest increase in spike numbers to the first syllable of each chirp. 

The increase is less to the second syllable, and for most SPs, least to the third 

syllable (Fig. 8D).  No significant change was seen in the average number of spikes 

when CSs were played through twice, or with injection of either control substance (t 

test, p>0.05, Fig. 8E). 



 

 

 

Figure 1 Sample PST histogram demonstrating the method used to
count and allocate spikes in response to different SPs of the model CS.
The example shown is for 30 chirps of L3's response to a 50 ms SP CS.
Spikes are counted with the first distinct onset of spiking, usually after
some latency, and the number of spikes from 50, 1 ms bins are assigned
as the response to each syllable of the chirp. The timing for the onset of
the response to the third syllable is calculated as the average latency of
the response to the first syllable plus two times the SP (in this case 50
ms = 114 ms).
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Figure 2 SP-selective decrement showing response of L3s (n=10) in
female A. domesticus after model CSs were played through twice. The
similar responses show that the order of experiments and repeated
exposure to auditory stimulus has no effect on the L3's decrementing
response.
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Figure 3 Two types of L3 responses based on percent decrement values
and average spike numbers per SP. A Group 1 (n =5) percent decrement
values were higher to 30 or 40 ms than to subsequent syllable periods
while Group 2 (n = 11) had decrement values that were equal to or
lower than to subsequent SPs. Unique symbols(ie and ) indicate sig-
nificant differences between SP means in Group 1. B Average spike
numbers per SP were lower for Group 1 neurons when compared to
Group 2 neurons.



 

 20 

 



 

 

 

 
  

Figure 4 Decrement graphs, traces, and PST histograms showing SP -
selective decrement of L3s before and after treatment with JHIII on
Group 1 neurons. A Recordings and PST histograms from an individual
in Group 1 show no difference following treatment with JHIII at 40 or B
to any of the 7 SPs presented. C No effect was observed following JHIII
injection in the group of L3s with initially higher decrements to the
shortest SPs (Group 1, n=5).
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Figure 5 Decrement graphs, traces, and PST histograms showing SP -
selective decrement of Group 2 L3s before and after treatment with JHIII.
A Recordings and PST histograms from an individual in this group show
the decreased decrement at 40 ms, and B the unchanged decrement at 50
ms. C The decrement graph of all SPs presented to the same individual
shows the sharpening effect of JHIII with largest decrements for 50 - 70
ms following injection. D,E The SP - selective response of all Group 2 L3s
(n=11) was sharpened following treatment with JHIII, with smaller decre-
ments for 30 and 40 ms after injection. Unique symbols (ie and ) indi-
cate significant difference between Group 2 SP means. F No change was
seen following acetone injection into the PTG.
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Figure 6 SP - selective decrement graphs illustrating the change in
decrement following JHIII and CC injection into the PTG for Group
2 females (n = 8). A A sample recording from an individual in
Group 2 shows an increase in decrement at 40 ms following CC
injection and B across all SPs presented, with a clear loss of SP-
selective decrements in the unit. C On average, CC removes the SP-
selective decrement induced by JHIII.
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Figure 7 Decrement graphs, traces and PST histograms showing SP-
selective decrement response before and after only CC injection. A An
individual in this group shows a decrease in decrement at 70ms, and B a
more uniform response across all SPs. C The average of this group (n=7)
shows a change in decrement (significant at 40 and 70 ms) and a more
uniform, consistent response following CC treatment. D Injection of
saline did not alter the decrementing response of L3s (n=6).
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Figure 8 Average total number of spikes for 30 chirps at each SP for all
treatment and control groups. JHIII has no effect on the number of
spikes for A Group 1 and B Group 2. While CC increases the average
number of spikes in Group 2 as well as C treatment with CC only. D The
difference in the number of spikes following CC in Group 2 is greatest at
the first syllable and less for the second and third. E No difference was
found in the number of spikes in any control group.
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CHAPTER 4 
 
 

DISCUSSION 
 

Atkins et al. (1989) first showed that the L3, a prothoracic, first order, 

auditory interneuron, responded selectively to the SPs of model CSs. This SP-

selective response was characterized by a reduced excitation to the second and 

third syllables of each chirp in the CS and was termed “decrement”.  Decrement in 

spiking (measured as percent decrease) was greatest in response to computer 

generated CSs with SPs most similar to the male’s natural call (50 to 70 ms at the 

temperatures (20 - 22 C) used during the current study (Navia et al., 2015).  Since 

Stout & McGhee (1983) had already shown that 50 to 70 ms was the most 

phonotactically attractive SP range for female A. domesticus, interest was focused 

on the L3 and its possible involvement in the behavioral recognition of attractive CS 

SPs.  

 A series of subsequent studies reinforced the possibility that L3 played a 

pivotal role in the phonotactic choices made by female A. domesticus by 

demonstrating that the largest decrements of the L3 neurons matched behaviorally 

attractive SPs in females (Henley et al., 1992; Atkins et al., 1992; Stout et al., 1997; 

Stout et al., 2002; Navia, 2005). In recent work, the SP-selective decrementing 

responses of the L3 homolog, AN2, were demonstrated to be strongly correlated 

with the phonotactic choices made by female G. bimaculatus (Stout et al., 2011). 
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Furthermore, Samuel et al. (2013), studied phonotactic choices and decrement of 

the AN2 neuron sequentially in the same female, and reported that female G. 

bimaculatus were most likely to choose SPs for phonotaxis to which their AN2s 

responded with the highest decrements.  These results together strengthen the 

possibility that L3/AN2 plays a central role in the regulation of phonotactic choices 

made by both female A. domesticus and G. bimaculatus.  

 Higher rates of JHIII biosynthesis in female A. domesticus are strongly 

correlated with an increase in SP-selectiveness during phonotaxis (Walikonis et al., 

1991).  Topical application of JHIII to crickets that were not phonotactically 

selective caused a significant increase in responses that were selective (Henley et 

al., 1992).  For both female A. domesticus (Atkins et al., 2008) and G. bimaculatus 

(Choi et al., 2012) nanoinjection of JHIII into the PTG, significantly increased the 

phonotactic selectiveness within 10 minutes by reducing the number of SPs 

responded to phonotactically, and centering this behavior on the SPs most 

commonly produced by their conspecific males.  

 The strong correlation between L3’s SP-selective response and behavior by 

A. domesticus females as well as JHIII’s role in behavior and phonotactic selectivity 

let to the study of JHII’s role in the SP-selective processing of the interneuron. The 

proposed mechanism of JHIII’s effects through a protein kinase C (PKC) mediated 

pathway (Wyatt & Davy, 1996; Wheeler & Nijout, 2003; Liu, et al., 2015), led to the 

evaluation of the effects of a PKC blocker CC (Chao et al., 1998) and its role in the 

selective processing by L3. 
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JHIII’s Role In Selective Processing Of The L3 Interneuron 

 
 Analysis of the L3s’ responses to the model SPs led to the discrimination 

between crickets with Group 1 and Group 2 neurons.  It was clear that the L3s were 

producing two different responses; one that decremented more to the shortest SPs 

(30 and 40 ms, Group 1 neurons, n = 5) than to the subsequent SPs, and one that 

decremented less or equal to the shortest SPs than longer SPs (Group 2 neurons 

n=11, Fig. 3A). It was discovered that the Group 1 neurons also displayed 

significantly lower spiking rates across all SPs than Group 2 neurons (Fig. 3B). 

 This finding is paralleled by a recent study on G. bimaculatus females. Samuel 

et al. (2013) found that AN2 in G. bimaculatus also produced two types of 

responses: a. one group that respond with higher decrement to the shortest SPs (25 

and 35ms) b. another group that respond with lower or equal decrement to the 

shortest SPs.  Samuel et al. (2013) additionally reported that the selection for longer 

SPs was identical between the two groups, an observation that is also noted in this 

study, as Group 1 and 2 decrement percentages and overall trends are very similar 

from 50 ms to 90 ms (Fig. 3A.) and both experience a drop in decrement values past 

70 ms. The parallels between the two studies (current study and Samuel et al., 

2013) are not complete though, as Samuel et al. (2013) shows a distinct behavioral 

correlate to the “Group 1” neurons, a subgroup that is also phonotactically selective 

for the shortest SPs only. To date, there are no well-defined behavioral subgroups in 

A. domesticus that match with the Group 1 neurons from this study.  

 In the present study, JHIII treatment had very different effects on the two 

groups of neuronal responses. JHIII left Group 1 neurons relatively unchanged (Fig. 
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4) but significantly narrowed selectivity in Group 2 neurons (Fig. 5D, E) to more 

closely match the SPs of the males natural CS (Navia et al., 2015). This largely 

results from reduced L3 decrement in response to SPs of 30 and 40 ms (Fig. 5D, E). 

While the p values for 30 and 40 ms are significant at the p=0.08 and p=0.06 level 

respectively, they stand in sharp contrast to comparison of the L3 responses to all of 

the other SPs.  JHIII also has a narrowing effect on the SP-selective responses of AN2 

neurons in G. bimaculatus females (Stout et al., 2011b), that is similar to the effects 

of JHIII on the phonotactic selectiveness of this species (Choi et al. 2012). Thus, JHIII 

effects on behavior match closely the effect we see in the Group 2 neurons of A. 

domesticus females (Fig. 5D, E; Atkins et al., 2008) and G. bimaculatus females 

(Stout, 2011; Choi et al., 2012).  

 Atkins et al. (2008) and Choi et al. (2012) both showed that injection of JHIII 

into the metathoracic ganglion had no effect on phonotactic selectivity, and control 

data from the current work show that injection of acetone into the PTG (Fig. 5E) has 

no effect on the decrementing response of L3s.  

 A possible explanation for the Group 1 findings is given by the fact that L3 as 

well as AN2 in G. bimaculatus, consistently responds vigorously to the first chirp 

and rapidly habituates, so that the response to the 10th or later chirp is much lower 

(Stout et al., 2011).  Additionally, the neurons in Group 1 of the current study were 

shown to be experiencing lower levels of excitation than the Group 2 neurons, as 

exhibited by the significantly lower spiking rate of Group 1 neurons in response to 

PreTest SPs (Fig 3B). It is possible that inhibitory input, coupled with the normal 

habituation experienced by these neurons results in lower number of spikes to the 
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3rd syllable, and causes substantially higher levels of decrement in response to the 

shortest SPS.  JHIII’s method of action, and its ability to narrow the selective 

decrement at these SPs might be impeded somewhat by lower levels of excitation. 

 In summary of the current findings for Group 2 neurons, the parallel studies 

on female A. domesticus (Atkins et al., 1989; Henley et al., 1991; Atkins et al., 2008; 

Stout et al., 2010) and on female G. bimaculatus (Stout et al., 2010; Stout et al., 

2011a; Stout et al., 2011b; Choi et al., 2012; Samuel et al., 2013), demonstrate the 

following for both species: a. Females respond with SP-selective phonotaxis to 

models of the male’s natural CSs that are tuned to the SPs most common in the 

conspecific’s call, b: L3/AN2s respond to model CSs with SP-selective responses that 

closely parallel the female’s SP-selective phonotactic behavior; c. Nanoinjection of 

JHIII into the PTG sharpens SP-selective phonotaxis, tuning it more closely to the 

SPs of the conspecific males’ CSs; d. Nanoinjection of JHIII into the PTG also tunes 

the SP-selective response of the L3/AN2 neurons more closely to the SPs found in 

the conspecific males’ CSs.  

 The parallel roles that JHIII plays in both species’ behavior and neuronal 

processing suggest that the mechanism for sharpening the females’ phonotactic 

behavior is expressed through molecular pathways in the L3 neuron.   

 
CC’s Role In Selective Processing Of The L3 Interneuron 

 
In insect orders, the search for mechanisms of JH’s diverse actions have led to 

the study of membrane, cytosolic, and nuclear receptors, since JH is quite nonpolar, 

lipid soluble, and can easily pass through cell membranes (Li et al. 2007). A model 

for JH action through a PKC pathway for insects was suggested by Wheeler & 
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Nijhout (2003) who cited numerous examples of JHIII action by this pathway in 

other insect species. This pathway for JH action was recently confirmed by Liu et al. 

(2015) with the demonstration that in mosquitos, JH activated the phospholipase C 

(PLC) pathway and upregulated the molecular components that leads to activation 

of PKC molecules. A method to test JHIII’s use of the PKC mediated pathway in the 

L3 neuron was given by CC, a potent inhibitor of PKC (Chao et al., 1998).  

Chao et al. (1998) demonstrated that CC works by inhibiting the 

translocation of PKC from the cytosol to the plasma membrane, which would 

impede the activation of PKC as a review paper on the regulation of PKC (Newton, 

1995) stated that the PKC molecule must be present at the cell membrane to be 

activated. Historically, CC has been used in many different studies to modulate PKCs 

effects in different molecular pathways including evaluation as an anti tumor agent 

(Chmura et al., 2000; Yang et al., 2008).  

 Recently CC was used in a study of phonotaxis and SP-selectivity (Byssainthe, 

2008), which showed that CC could block the selective effects of JHIII injection in A. 

domesticus, when injected sequentially. A second study by Creighton (2012) 

suggested that crickets that were selective during the pretest exhibited less SP-

selective phonotaxis following injection with CC.   

 Results from the present study indicate that the L3 decrementing response 

follows a similar pattern. Data show a clear loss of decrements that are selective for 

individual SPs following nanoinjection of CC into the PTG (Fig. 6, and 7A-C), and no 

change when injecting the control, saline (Fig. 7 D).  Decrements by L3s treated with 

both JHIII and CC in Group 2 crickets were unselectively and significantly increased 



 

 38 

(Fig. 6C) and the responses became much more uniform by decrementing more 

similarly to all SPs (Fig. 6), which demonstrates a reversal of the selective 

decrement induced by treatment with JHIII. Additionally, SP-selective decrement is 

decreased (most noticeably at 70 ms) following CC only injections into the PTG (Fig. 

7A-C).  

It has been shown in this study, that JHIII, possibly through a PKC mediated 

pathway, increases the selectivity of L3, by tuning decrements to be highest for the 

SPs most similar to the conspecific males call (Fig. 5 A-E). CC, a known PKC inhibitor 

reduces SP-selective decrement following JHIII injection (Fig. 6) or when injected 

singularly (Fig. 7A - C).  This suggests an integral role for PKC in inducing selectivity, 

and supports the possibility that JHIII works through a PKC mediated pathway.   

JHIII in A. domesticus (current study) and in G. bimaculatus (Stout et al., 

2011b) sharpens the decrementing response of L3/AN2 to SPs by reducing 

decrement to the range of SPs that are outside the range of SPs in the conspecific 

males’ CSs. CC alone, in this study flattens SP-selective decrement by L3 without 

increasing the overall decrement (Fig. 7). These results support the importance of 

PKC mediated pathways within the network of neurons in the prothoracic ganglion 

that influence SP-selective decrement by L3. However, the significant increase in 

decrement by JHIII-CC treated L3s in response to all SPs might seem anomalous, or 

could be interpreted to suggest that JHIII might also operate on this network 

through other pathways not dependent on the uninhibited activity of PKC. A 

reduction in SP-selective decrement by L3 as a result of the blocking PKC’s activity 

with CC is consistent with preliminary results in which JHIII injection into the PTG, 
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followed by CC injection did not sharpen the phonotactic selectiveness of female A. 

domesticus (Byssainthe, 2008), while injection of only JHIII did sharpen the females’ 

phonotactic responses.  

 
JHIII And CC And The Excitation Of L3 

 
L3’s SP-selective decrement has been shown to result from both excitatory 

modulation of its response to the first syllable as well as a delayed inhibition that 

cuts down its response to subsequent syllables. The delayed inhibition is timed such 

that the decrement in A. domesticus is maximal in response to 50 – 70 ms (Henley et 

al., 1991, Navia, 2005).  

 In this study, the number of spikes produced in response to each SP following 

JHIII was no different, on average, from pretest values in both Group1 and Group 2 

crickets (Fig. 8A, B). This suggests that JHIII does not primarily alter SP-selective 

decrement in L3 by changing its overall excitation. JHIII then may be more subtly 

altering the selective excitation and delayed inhibition documented by Henley et al. 

(1991) and Navia (2005).  

 The average number of spikes following CC treatment is increased 

significantly in Group 2 and CC Only Group (Fig. 8B, C) though not as dramatically in 

Group 2, whose average number of spikes during the pretest were noticeably higher 

than in Group 1.  As there are no other relevant data yet collected on CC’s effect on 

the spiking rate of L3s, it is suggested only that CC increases the excitation of these 

neurons unselectively.  The increase in decrement, for Group 2, as discussed earlier 

(Fig. 5), is possibly due to a larger increase in the number of spikes in response to 
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the first syllable, and a lesser increase in response to the third (Fig. 8 D). No change 

is seen in the excitation of L3s in any control group (Fig. 8E). 

 
L3 As The First Filter In A Pathway 

 
 Schieldberger (1984) described neurons in the brain of G. bimaculatus that 

responded with tonic output to SPs that represented the natural call, and proposed 

that they were the filter neurons responsible for the females’ selective phonotactic 

behavior. L3 is one of the auditory interneurons that send an axon to the brain and 

synapse with higher order auditory neurons (Kostarakos & Hedwig, 2012; 

Schoneich et al. 2015). The results of the current study support the suggestion that 

the L3’s decrementing response may be the first step in filtering and selective 

processing, which is further carried out by the brain neurons that are also 

responsive to SPs of the model CSs. 

 
Further Studies 

 
 In an effort to further elucidate the roles of CC and JHIII in SP-selective 

behavior and decrement the following studies are suggested: First, an increase in 

the sample size for phonotactic behavior following CC only injections. Second, CC 

injections before and after JHIII injections – followed by behavior studies and 

neuronal recordings. This may shed light on how CC influences phonotactic 

behavior and if JHIII’s effect requires that PKC be present at the membrane. Thirdly, 

it is suggested that Ca++ channel blockers be used in both types of studies, as Ca++ is 

necessary for PKC’s activation. Finally, intracellular recordings of L3 under the 
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influence of both JHIII and CC should be conducted to better understand the effect of 

these compounds on the PSPs influencing L3.  
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