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Abstract: 
 

From early May through late September, 2012, we captured, tagged, and collected 

body masses from multiple, free-ranging thirteen-lined ground squirrels (Ictidomys 

tridecemlineatus) in southwestern Michigan, with 14 individuals recaptured 1 or more 

times through the season. Beginning in mid-June, we captured and euthanized 12 of these 

individuals (on average, about 1 per week) to allow study of their lower incisors. We 

serially micro-sampled enamel along squirrel incisors using laser ablation and determined 

stable isotope ratios (δ13C and δ18O) with gas chromatography–isotope-ratio mass 

spectrometry (GC-IRMS). The resulting values fell into two spatial groups.  Specimens 

collected within 25 m of a cornfield displayed more positive δ13C values consistent with a 

C4 plant-rich diet (corn is a C4 plant) and appeared to show a seasonal peak in C4 plant 

use (higher δ13C values) late in the season. In contrast, specimens collected in isolated 

fields separated by buildings and pavement from the cornfield exhibited more negative 

values of δ13C consistent with a C3-plants diet. δ18O values did not show distinct spatial 

grouping and were difficult to interpret. Although a cornfield is an artificial ecosystem, 

the difference in fractionation between C3 and C4 diet displayed in the stable carbon 

isotope profiles demonstrate the sensitivity of isotopic analyses of small teeth for 

elucidating small-scale geographic variation in food availability. Further use of this 

technique may provide additional evidence for fine-scale spatial and seasonal variation of 

modern diet and provide a model for further investigation of paleoseasonality using fossil 

rodent incisors. 
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Introduction: 
 
Rodent incisors grow throughout the life of the animal, typically adding an 

increment of dentin and enamel each day at the incisor’s base. Incremental dental tissues 

may record significant life-history events, such as the occurrence and timing of 

hibernation in ground squirrels and relatives (Goodwin et al. 2005; Goodwin and 

Ryckman 2006; Rinaldi 1999). However, this record is only retained for a few weeks to 

months because as an incisor grows, each increment added at the incisor’s base is 

matched by erosion at its tip. 

The chemistry of tooth enamel also may preserve ecological signals. Notably, 

stable isotope ratios of carbon (13C/12C) and oxygen (18O/16O) in enamel, expressed in 

parts per thousand in relation to a standard (δ13C and δ18O respectively), vary with diet 

(δ13C) and seasonal changes in the temperature of water sources (δ18O) (Hedges et al. 

2005). For example, C3 plants (most trees, herbs, and some grasses) have substantially 

lower values of δ13C than do C4 plants (warm-season grasses), and this difference 

persists in the tooth enamel of herbivores that feed on these plants (Cerling et al. 1993). 

Paleobiologists thus have much interest in the study of stable isotopes, and have used 

isotopic evidence to reconstruct temporal and geographic patterns in ancient 

environmental conditions (e.g., Cerling et al. 1993; Passey et al. 2002). 

Studies done on mammals, such as cows, horses, alpacas, pigs, rabbits and voles, 

have shown that on controlled diets and oxygen sources, stable isotope profiles reflect 

dietary and oxygen sources (Passey et al. 2005; Sponheimer et al. 2003). Carbon is more 

relevant than oxygen to our project because δ13C is known to vary in relation to diet, 

while oxygen isotope results are less reliable and more difficult to interpret.  
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Diet and climate conditions vary seasonally, and paleobiologists have interest in 

reconstructing such seasonality. One possible approach to doing so is to serially sample 

stable isotopes along the growth record of an ever-growing tooth. Until recently, this 

could only be done for large teeth, such as the ever-growing tusks of mammoths and 

mastodons (e.g., Koch et al. 1989), because required sample volumes were much larger 

than could be obtained from small teeth. However, recent advances in micro-sampling 

with laser ablation, and technical advances that facilitate analysis of small volumes of 

CO2 in gas chromatography–isotope-ratio mass spectrometry (GC-IRMS), now make 

possible serial sampling of very small teeth (Passey and Cerling 2006). Previous work 

demonstrated the ability of dental increments to serve as time recorders in thirteen lined 

ground squirrels (Kisser 2009).  The laser-ablation method used by Passey has yielded a 

reproducibility better than 0.1% for all samples (Passey 2005). Thus, it now is possible to 

reconstruct diet, and to a lesser extent temperature-related environmental conditions, at 

~weekly resolution during the life of even small mammals–a resolution generally 

unobtainable in paleoecological studies. 

The overall goal of the project was to document  the carbon (δ13C) and oxygen 

(δ18O) isotope make-up of the enamel within the incisors of modern, free-ranging 

thirteen-lined ground squirrel (Ictidomys tridecemlineatus) from May to September 2012 

at single colony in Southwest Michigan. We documented a time-series of stable isotope 

values in one incisor each from 12 squirrels, using laser ablation coupled with GC-

IRMS,. A parallel study tracked squirrel diet through collection and analysis of fecal 

pellets. Combined, the two studies purported to test the hypothesis that seasonal variation 

in food source (primarily C4/C3 plants), and temperature, would be recorded in stable 
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isotope profiles of carbon and oxygen in the squirrels’ incisor enamel. Additionally, after 

preliminary analysis, we also explored small-scale spatial variation in food sources and 

the resulting differences in incisor stable isotope profiles. 

 

Methods: 

 

Field Methodology and Specimen Preparation 

We studied a population of free ranging thirteen-lined ground squirrel (Ictidomys 

tridecemlineatus) at the Andrews University airpark, located ~ 1 mile northwest of 

Berrien Springs, Michigan. We began monitoring the population in early May and 

continued through October, 2012, visiting at least two times per week. Different 

individuals monitored the site from May through mid-July, and from mid-July to mid-

October. Our fieldwork centered around 3 categories of events–initial captures, periodic 

recaptures, and final captures and euthanasia. 

Initial capture– We initially attempted to use standard Sherman live traps, cleaned 

to remove contamination from prior use and baited with oats and peanut butter, to capture 

animals. However, no squirrels were trapped by this method. We then employed an 

alternative method of fencing, with stakes, a 3 foot circular radius around a squirrel 

burrow, waiting for an animal to emerge in order to feed, and then blocking the burrow 

hole with a plywood board using a twine pull cord before the squirrel attempted to reenter 

the burrow. We would then use heavy leather gloves to capture the squirrel by hand 

within the enclosure. This method was successful on first captures, but was very difficult 

to use for recaptures. Finally, we created wire traps out of 0.64-cm heavy wire mesh, with 
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a gravity driven trap door mechanism, tied together with wire and staked over the burrow. 

These were were much more successful for recaptures, and we used them the remainder 

of the field season. 

At initial capture, we recorded capture coordinates with handheld GPS, weighed 

each squirrel to the nearest gram with a handheld balance, tagged it with a numbered and 

color-coded ear tag, and determined its sex and reproductive condition (mature/immature, 

and for females, pregnant or lactating). Thirty squirrels were captured and either tagged 

for further monitoring, or immediately euthanized (see below). We also collected fecal 

pellets deposited by the squirrel in the trap and stored them in clean, labeled plastic vials; 

we injected each squirrel intramuscularly with a solution of oxytetracycline (15 mg/kg 

body mass). Oxytetracycline binds to dental tissue formed while it is in the blood stream, 

and subsequently fluoresces in these tissues under ultraviolet light, thus marking specific 

growth increments in the teeth that correspond to known injection dates. Each squirrel 

was then released at the site of capture. 

Recaptures– we attempted to recapture tagged squirrels every 1-2 weeks between 

initial capture and either final capture, or disappearance of the squirrel from our study 

area. At recapture, each squirrel was identified based on its tag, and its GPS coordinates, 

body mass and reproductive condition was recorded. We collected fecal pellets, re-

injected with oxytetracycline if at least 10 days had elapsed since previous injection, and 

released the squirrel at site of recapture. 

Although our focus was on the tagged squirrels during capture, it was often not 

possible to observe the tags from a distance. Thus, we also made 48 captures of untagged 
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squirrels. Field data was obtained from these additional captures, but we did not study 

them further. 

Final captures and euthanasia–Beginning in June, we captured and euthanized 0 – 

2 squirrels per week, for a total of 12 specimens. 8 of these squirrels were captured 2–12 

weeks after initial captures, but 4 were taken at initial capture. If a captured animal was a 

lactating female, she was released. At final capture, we obtained the same data obtained 

during recapture. Then, within one hour of capture, the squirrel was transported to the lab 

and humanely euthanized by placing it in an enclosed chamber rapidly filled with 

compressed CO2. After euthanasia, the squirrel was immediately frozen to preserve body 

tissues for further study. 

Specimen preparation–We prepared incisors for analysis by thawing frozen 

carcasses, preparing each as a study specimen (usually as a skeleton), and removing the 

incisor of one dentary. This was done by soaking the dentary in water for several weeks 

until the incisor could be extracted. Each incisor was then cleaned separately by soaking 

in a volume of 40 ml 10% H2O2 for approximately 5 hours, rinsed in DI water while 

being gently scrubbed with a small wire brush, and dried overnight in an incubator at 50º 

C. 

Lab Methodology 

We used the lab of Dr. Benjamin Passey (Johns Hopkins University) from Dec 

17–20, 2012 to serially micro-sample incisor enamel with laser-ablation, and document 

δ13C and δ18O  of the CO2 released during micro-sampling through a coupled GC-IRMS 

system using helium as a transfer vehicle. We then adjusted and calibrated the δ13C and 
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δ18O values obtained from GS-IRMS following a published protocol (Passey and Cerling 

2006). 

Surface of the incisors were examined carefully under magnification to count 

enamel increments in the tooth. Because incisors typically deposit one increment per day, 

with the last increment before death deposited at the tooth’s base, we were able to 

establish a basic chronology of tooth growth using incremental bands to assign each 

increment to day of growth, starting with the known date of euthanasia. This chronology 

allowed us to date each micro-sampled enamel segment on the tooth to within a few days 

of its initial deposition. 

 At the John Hopkins University isotope lab, incisors were mounted for analysis 

on a metal mounting platform, which was attached to a hollow rod, using a small amount 

of putty. The number and position of each incisor on the mounting platform was carefully 

recorded. This apparatus was subsequently inserted into a glass chamber, with the rod 

extending through a plate at each end that could be clamped onto the end of the chamber. 

The rod allowed inflow of helium into the chamber, and made it possible to rotate the 

mounting plate within the chamber to keep the surface of the enamel under the laser 

approximately perpendicular to the laser beam. We monitored seals between end plates 

and the chamber for leakage, and adjusted clamps as needed to stop leakage. 

The mounting chamber was attached to 2 gas lines, for helium inflow and gas 

outflow, both with access sites for injecting gas of known volume and composition 

during standardization. Access sites displayed silicone septa, which were changed with 

each change of chambers. The analysis chamber was filled with helium, and the mounted 

specimens were allowed to degas for several hours before analysis began. During 
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analysis, helium flow was maintained at a rate of ~350ml/min. All connections were 

checked with a helium detector, and were adjusted if a leak was detected. 

Each day, we prepared a CO2 standard by injecting 5 ml of CO2 with a known 

isotopic composition into a flask first flushed then filled with N2. 

We followed a stereotypic sequence as we collected isotopic values for each 

incisor (or, in some cases, a single sequence was followed for 2 incisors investigated 

sequentially in one chamber): 

a. Injection of wall gas of known composition 

b. Reading of the CO2 blank, by simply collecting CO2 that arises from 

contaminants in the system, or from the specimens themselves, for 240 s  

c. Injection of CO2 standard (25 µl) pre-chamber, by flushing the injection 

syringe 4 times with standard CO2 then injecting 20 µl of the standard into 

the helium stream entering the chamber 

d. Injection of CO2 standard (25 µl) post-chamber, using the same protocol 

noted above but into the gas leaving the chamber 

e. Processed multiple laser-vaporized samples of tooth enamel, in series, 

with the pattern of ablation pits in each sample laid out by computer 

f. Injection of an additional CO2 pre-chamber standard after each 5-10 

enamel samples 

g. Close each analysis sequence with another blank, a final CO2 pre-chamber 

standard, and a final wall gas 
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For each analysis sequence, we recorded the following: specimen number; a 

sketch of specimen with location of each enamel sampling location; number, date, and 

time of commencement of each GC-IRMS analysis; and the following GC-IRMS output: 

sample ID, time analysis initiated, peak number (which tracks sample number unless a 

sample does not produce a peak), peak size. 

 We also maintained proper levels of dry ice, methanol, and liquid N2 in a 

specially designed trap which consisted of 3 cooled chambers, the first with dry ice and 

methanol, the second and third containing liquid N2. This trap concentrated CO2 from 

each analysis prior to GC-IRMS. The trap times were set to have the sample exposed 240 

seconds in the first trap, 90 seconds in the second trap and 60 seconds in the third trap. 

 The laser was calibrated to a spot size of 40 using trial and error between 22 and 

50. We used 1 pass with a dwell time of 0.01, scan speed of 50, manual spot spacing, and 

created four to five lines of ablation pits (typically 16-20 pits total). 
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Results: 

When δ13C isotope profiles for the 12 specimens were plotted against the days 

before death, all showed a progressive decrease that commenced ~30 days prior to death 

(Fig. 1). This is likely an artifact of organics remaining in the enamel for some time after 

initial deposition due to incomplete mineralization, thus the 30 days prior to death were 

removed in subsequent analyses.  

The resulting stable isotope profile values clustered into two groups: those with 

values around -15 δ13C, and a second clustering around -5 δ13C. One specimen (147) 

appears to have moved between groups during the study (Fig. 1). 

The specimen also clustered spatially into two groups: those with relatively 

negative values occupied grassy habitat without easy access to an adjacent cornfield, and 

those with positive values were captured within 25 m of the cornfield (Fig. 2). Spatial 

clusters differed significantly in δ13C values (equal variances not assumed; t = -8.87, df = 

5.65, p < 0.001; Fig. 3). 

δ13C values trended more positively during the season among squirrels trapped , 

but this trend was not observed in the cluster isolated from the cornfield (Fig. 4). In 

contrast to the δ13C values, the δ18O values showed no clear spatial or seasonal patterns, 

although many specimens displayed a progressive decrease in these values over the 

course of the season (Fig. 5). 
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Fig. 1 - Grouped δ13C Enamel Values Over Time Including 30 Days Prior to Death. Red 

symbols represent profiles of squirrels trapped within 25 m of a cornfield, blue symbols 

represent individuals isolated from the cornfield by buildings and pavement. 
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Fig. 2 - Capture GPS Coordinates by δ13C Group at AU Airpark. Red symbols represent 

profiles of squirrels trapped within 25 m of a cornfield, blue symbols represent 

individuals isolated from the cornfield by buildings and pavement. 
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Fig. 3. - Statistical significance using T-test with 

equal variances not assumed; t = -8.87, df = 5.65, 

p < 0.001 
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Fig. 4- Grouped δ13C Enamel Values Over Time (30 days prior to death removed). Red 

symbols represent profiles of squirrels trapped within 25 m of a cornfield, blue symbols 

represent individuals isolated from the cornfield by buildings and 

pavement.
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Fig. 5 - Grouped δ18O Enamel Values Over Time (30 days prior to death removed). Red 

symbols represent profiles of squirrels trapped within 25 m of a cornfield, blue symbols 

represent individuals isolated from the cornfield by buildings and pavement. 
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Discussion: 

Roughly 30 days preceding death, δ13C values dropped in all specimens, no 

matter when in the active season they were collected. This drop appears to be an artifact 

of mineralization, perhaps due to organics present in the enamel matrix as it is 

mineralizing. Thus, we recommend that studies of isotope profiles in small incisors such 

as done here be cautious in interpreting the proximal part of the tooth record.  Further 

study is needed to test the hypothesis that organics in the matrix are the cause of this 

decrease, and to determine how this artifact varies across species and higher taxa. 

The oxytetracycline injections were only performed on 3 of the 12 specimens that 

we were subsequently able to collect, thus we did not use these as time markers in final 

analysis of the data. In the future, more regular oxytetracycline injections, starting at the 

time of initial capture would help calibrate more precisely the dates from daily enamel 

deposition. Even so, we suspect our estimated dates will be close given what is known 

about the circadian periodicity of dental growth. 

We demonstrate that small-scale spatial variation in diet is reflected in the stable 

isotope values across teeth due to the differences in isotope profiles of C3/C4 vegetation. 

C3 plants, making up 90% of trees and grasses, have more negative values of δ13C (on 

average, about -25.5 ppm) than C4 plants, largely warm-season grasses including corn 

and sugarcane, which have higher δ13C values (on average, about -13.0 ppm). The gap 

between C3 and C4 isotopic values remains in tooth enamel of animals which depend on 

C3/C4 plants (Cerling et al. 1993), but are offset by approximately 13 parts per thousand 

because of fractionation during enamel growth (Fraser et al. 2008).  
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The artificial separation of squirrels by buildings and pavement overemphasized 

the difference in the isotope profiles in two distinct groups at our study site. Further 

research is needed in order to investigate whether reliable spatial grouping in δ13C values 

can be found in more natural environments without artificial separation in the population. 

The group with higher δ13C  values appears to show a seasonal pattern toward 

more positive values (higher proportion of C4 vegetation) late in the season. This trend is 

likely explained by variation of C3 and C4 vegetation. It is possible that a drought during 

the time of the study resulted in an increase in the amount of C4 vegetation the squirrels 

consumed later in the season, but we have no clear observational data to confirm this 

hypothesis. 

It was difficult to discern any pattern in the oxygen isotope profiles data (δ18O). 

According to the literature, δ18O values may provide a basis for inferring information 

about environmental water; “[F]actors that can affect the oxygen isotope composition… 

[are] …habitat, drinking behaviour, population dynamics, body size and 

thermophysiology,” which should be considered before making inferences about 

environmental drinking water (Gehler et al. 2012). More study is necessary to more 

precisely measure and identify oxygen isotope profiles and any clues they might provide 

about dietary or seasonal signals available in rodent incisor data. 

Our study was highly focused on recapturing squirrels. Recapture of squirrels 

proved to be problematic due to learned avoidance of wire squirrel traps. Further work 

needs to be done on more reliable methods of repeated recapture in order to provide 

better data over longer periods of the season on the same animals. 
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This study, along with the analysis of the squirrel diet through fecal pellet 

collection, may provide key information in the creation of a model which may assist in 

fine-scale (weekly) paleoecological interpretation of diet in fossil ground squirrels. For 

paleobiology, the application of the data collected and further insights into the limitations 

of the laser ablation micro-sampling method, necessitate further study of fossil 

collections to extrapolate about diet and seasonality from the past as evidenced by the 

fossil record.  
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