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To find the constant vectors that satisfy the equation, we 

know that  and                    .  

Also, we have to find the coefficients for each degree of the 

polynomial, and set them equal to zero.  
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Frenet-Serret Theorem 
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The structure of helix is a significant 
field in the differential geometry 
studies, and it is profoundly studied 
and still studied over the period. A 
curve of constant slope or general 
helix is defined by the property that 
its tangent vector field makes a 
constant angle with a fixed straight 
line (the axis of the general helix) in 
Euclidean space . 

Definition:  
Let        be a unit speed curve. Then, the torsion of         is 
denoted as the function        where               . 
  
Note, by taking the dot product with      , using      , we 
define     by       . 

Note that the unit vectors     and     are perpendicular to each 
other. However, since the vectors are defined in       , we can 
easily assume that there is a third unit vector. This can be 
defined by the binomial which is orthogonal to both     and     .  
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The curvature is defined as  
 
The unit tangent vector of is denoted as  
 
The principle normal vector of is denoted as   

Τ(t) = α '(t)
|α '(t) |

Ν(t) = Τ '(t)
|Τ '(t) |

= 1
κ '(t)

⋅Τ '(t)

Β = Τ ×Ν

Τ Ν

Τ Ν

Τ Ν Β
R3

Then, these three vectors,    ,    ,    , form orthonormal 
basis in     , which is called the Frenet Frame. 

The Frenet Frame {T, N, B} satisfies the following derivatives 
given by the definition: 
                                              
  

 A prevalent result stated by M.A. Lancret in 1802 and first 
proved by B. de Saint Venant in 1845 is: A necessary and 
sufficient condition that a curve be a general helix is that the 
ratio of curvature to torsion be constant.  
Now we know that a general helix has a constant ratio of 
curvature to torsion, it can be further studied by considering 
different relationship between curvature and torsion. The 
purpose of this study is to investigate the behavior of the 
helix when the ratio of curvature to torsion is a linear 
function.  

Research Question 

Assume that                  (constant) and              

From the Frenet Frame formulas, we have the following 

        ,                     , 

Take the third derivative of     . 

 

We take               to solve the third order differential equation. 

Then we have                                  . 

By index shift and rearranging the above equation, we have 

     . 

Curvature and Torsion of Plane Curves 

We consider the case of which curvature is constant and 
torsion is a linear function. Investigate how the curve alters 
under these conditions.  
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n = 2Consider          , then  which gives               .     

If         , then                   which gives                    . 

Continuing this process, we are able to substitute each     

value into the polynomial equation,                           . 

Then, by rearranging the equation, we get the following. 

(5 ⋅4 ⋅3)a5 + 3a3 + 4a1 = 0 a5 = − 7
120
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To find     and          from     , we take antiderivative of the 

above equation twice which gives the following equations.  
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Since we know that     ,    ,    are mutually perpendicular to 
each other, we write        . Then, we calculate      by 
differentiating the previous relation. 

Ν = Β×Τ
Τ Ν Β

Ν '

Ν ' = Β'×Τ +Β×Τ '

Using    and     , we derive following formula: Τ ' =κΝΒ' = −τΝ
Ν ' = Β'×Τ +Β×Τ ' = −τΝ ×Τ +Β×κΝ = −κΤ ×τΒ

Analysis 

Because     and     are orthonormal to each other, it satisfies     

       for  . 

To simplify the equation, we take       for the equations    and    . 

Then we have     and    , where      and      are constant 

vectors. Hence, we conclude that dot product of the those two 

constant vectors are zero since they are perpendicular to each 

other.  i.e., 

Also, by using the fact that     is a unit tangent vector            , 

we conclude that the dot product of T and itself is equal to 1.  

 i.e.,  
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Τ ⋅Τ =|Τ |2=1
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