The Classification of the Greek Manuscripts of the Epistle of James

Joel D. Awoniyi
Andrews University

Follow this and additional works at: https://digitalcommons.andrews.edu/dissertations
Part of the Biblical Studies Commons, and the Religious Thought, Theology and Philosophy of Religion Commons

Recommended Citation

Awoniyi, Joel D., "The Classification of the Greek Manuscripts of the Epistle of James" (1979).
Dissertations. 10.
https://digitalcommons.andrews.edu/dissertations/10
https://dx.doi.org/10.32597/dissertations/10/

This Dissertation is brought to you for free and open access by the Graduate Research at Digital Commons @ Andrews University. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ Andrews University. For more information, please contact repository@andrews.edu.

Andrews ©University
 Seek Knowledge. Affirm Faith. Change the World.

Thank you for your interest in the

Andrews University Digital Library of Dissertations and Theses.

Please honor the copyright of this document by not duplicating or distributing additional copies in any form without the author's express written permission. Thanks for your cooperation.

INFORMATION TO USERS

This was produced from a copy of a document sent to us fur microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed. you will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand conner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University
 Microfilms
 International


```
AMONIYI, JEEL DADA
    THE CLASSIFICATIOM EF THE GREEK MANUSCRIPTS
    OF THE EPISTLE DF JAMES.
    ANDREWS UNIVERSITY, PH.D.g 1979
    COPR. I %79 ANUNIYI, JUFL DADA
University
    Microfilms
turernational 300 N zeEbroad. ANn Argor Ml agiog
```


JOEL DADA ANONIYI

ALL RIGHTS RESERVED

Andrews University
 Seventh-day Adventist Theological Seminary

THE CLASSIFICATION OF THE GREEK MANUSCRIPTS OF THE EPISTLE OF JAMES

A Dissertation
Fresented in Partial Fulfillment of the Requirements for the Degree Doctor of Theology

by

Joel D. Awoniyi

June 1979

OF THE EPISTLE OF JAMES

A dissertation presented in partial fulfillment of the requirements
for the degree
Doctor of Theology

by

Joel D. Awoniyi

APPROVAL $3 Y$ THE COMMITTEE

ABSTRACT

the classification of Ifie greek Mavescripts OF THE EPISTLE OF JAMES

by

Joel D. Awoniyi

Chairperson: James J. C. Cox

ABSTRACT OF GRADUATE STUDENT RESEARCE

Dissertation

Andrews University
Seventh-day Adventist Theological Seminary

Title: THE CLASSIFICATION OF THE GREEK MANUSCRIPTS OF THE EPISTLE OF JAMES

Name of researcher: Joel D. Awoniyi
Name and title of faculty adviser: James J. C. Cox, Ph.D.
Date completed: June 1979
Although a significant number of the Greek manuscripts of the Epistles of I and II Peter, I, II, and III John, and Jude have recentiv received long overdue classification, oniy a very few Greek manuscrigts of the Epistle of James have been given comparable treatment.

In this dissertation, we have sought to rectify this situation by classifying 36 Greek manuscripts of the Epistle of James--primarily according to their phenetic reiationships and only secondarily according to their text-types.

In order to accomplish this, we have made use of new compifer methods.

In a recent dissertation on the classificarion of 81 Greek manu-
scripts of the Johannine epistles. W. L. Richards employed a computer to form "tentative groupinga" by Quantitative Analysis. These tentative groupings served as the basis of his classification which was determined ultimately by applying (without the aid of a computer) the Claremont Profile Mechod.

We have taken both of these procedures and combined them into a single program; and have, by means of a computer, applied this program to the raw data of our collations, and have thereby produced both the dendrographic charts and the "merge" tables which serve as the basis of our classification.

An analysis of these dendrograms and merge tables indicates three major manuscript groupings: (A) Group ? (consisting of 10 manuscripts [01-2298]). This group is probably Alexandrian in text-type. (B) Group 7 (consisting of 67 manuscripts [049-876j which may be conveniently divided into 11 suiggroups (subgroups 7^{a-k}]). Subgroups 7^{a-h} are probably Byzantine in text-type. While subgroups 7^{i-k} have a distinct orientation towards the major representatives of che Byzantine text-type, they also show a certain independence in the direction of the Alexandrian text traditions. (C) Group 37 (consisting of 9 maniscripts [522-1505]). This group is patently independent of both the Byzantine and the Alexandrian text traditions.

TABLE OF CONTENTS

ABBREVIATIONS v
LIST OF TABLES vi
ACKNOWLEDCMENTS vii
INTRODUCTION 1
Chapter
I. MATERIALS AND METHODS 10
Materials 10
Methods 11
The Master Sheet 14
II. TYPES OF VARIANTS 26
Variant Readings 27
The Singular Reacings 31
The Questionable Readings 31
Readings in Two or Three Manuscripts 33
III. METHODOLOGY AVD APPLICATION 34
Methodology 34
The Claremont Profile Method 34
Quantitative Analysis 35
Use of a Computer 36
a. Coefficients 37
b. Clustering Metinods 38
Application 40
Tnterpretation 43
Group 2 43
Group 7 45
Group 37 50
CONCLUSIONS 53
SELECTED BIBLIOGRAPHY 208

ABBREVIATIONS

ATR	Anglican Theological Review
AUSS	Andrews University Seminary Studies
$\underline{\text { JBL }}$	Journal of Biblical Literature JThS
NTS Journal of Theological Studies SBL Sow Testament Studies	

LIST OF TABLES

MANUSCRIPTS USED IN THIS STUDY 16
MASTER SHEET 20
THE SINGULARS 21
MANUSCRIPT WITNESSES 22
UNITS EVALUATED 24
CLASSIFICATIONS 55
UNITS OF VARIATION AND THEIR SUPPORT 59
CLUSTER ANALYSIS: SINGLE LINKAGE 132
MERGE POINTS AND GROUP CONTENTS: SINGLE LINKAGE 133
CLUSTER ANALYSIS: AVERAGE LINKAGE 145
MERGE POINTS AND GRGUP CONTENTS: AVERAGE LINKAGE 146
CLUSTER ANALYSIS: COMPLETE LINKAGE 157
MERGE POINTS AND GROUP CONTENTS: COMPLETE LINKAGE 158
SIMILARITY COEFFICIENTS 168
TAXONOHY 188

ACKNOWLEDGEMENTS

Since I first sat in Dr. Sakae Kubo's class on text criticism in 1966, I have had a continuing interest in the manuscripts of the New Testament. For instance, my Master of Theology thesis is a comparison of the Yoruba ${ }^{1}$ translation of the book of Hebrews with the Greek text of same. This interest has now climaxed in this study of the Greek manuscripts of the Epistle of James.

Two former members of the faculty at Andrews Liniversity have given considerable attention to the text-criticism of the Catholic Epistles. Dr. Kubo wrote als joctorai dissertation on the text of I and II Peter and Jude, while Dr. W. L. Richards wrote his on the text of the three Epistles of John. I have sought to give the same kind of attention to the Epistle of James.

Dr. James J. C. Cox indicares that Andrews tniversity and Pacific Union College hope to publish in the near future text-critical studies on all the Catholic Epistles. The collations and the findings in this study, I trust, will make a user̂ul contribution to such publishing.

Sincere thanks are due Dr. Walter F. Specht for encouraging me in text-critical studies, Dr. Richards for his suggestions with respect to text-critical methodology, Dr. Leona G. Running for her careful
${ }^{1}$ Yoruba is spoken by over sixteen million people in West Africa. My thesis, "An Evaluative Analysis of the Yoruba Bible Translation on the Basis of the Book of Hebrews" was used by the committee which embarked on a fresh translation of the Greek New Iestament into Yoruba in 1970-74.
reading of th:is manuscript, Dr. Kubo for so kindly lending me his private collations of the Epistle of James, and Dr. Cox for his guidance in the research and writing of this dissertation.

I am most grateful for the kind help of a number of people whose assistance made possible the completion of this dissertation. Mr. LeRoy H. Botten and iliss Ruth Ann Plue of the Computing Center of Andrews University were most supportive in many ways. Mr. Terry Robertson checked and rechecked all of the collations and assisted in their compilation, and Mr. James K. Brower designed the basic methodological programs, fed the raw data into the computer, and produced, by means of the computer, most of the charts and dendrograms. Mrs. Vern Ferris has contributed significant personal and financial assistance, and Miss Deborah Anfenson has brought cosmos out of chaos by transforming a complex and untidy manuscript into an organized and legible typescript.

Finally, I am more grateful tinan I can adequateiy express for the parience, encouragement, support, and love of my wife, Vertibelle, and my children, Andrew and Deboran.

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark r.

1. Glossy photographs \qquad
2. Colored illustrations \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Print shows through as there is text on both sides of page \qquad
6. Indistinct, broken or small print on several pages throughout ——
7. Tightly bound copy with print lost in spine \qquad
8. Computer printout pages with indistinct print \qquad
9. Page(s) \qquad lacking when material received, and not available from school or author \qquad
10. Page(s) seem to be missing in numbering only as text follows \qquad
11. Poor carbon copy \qquad
12. Not original copy, several pages with blurred type \qquad
13. Appendix pages are poor copy \qquad
14. Original copy with light type \qquad
15. Curling and wrinkled pages \qquad
16. Other

INIRGDUCTION

Until quite recentiy, the only independent and substantive work on the classification of the Greek manuscripts of the Catholic Eplsties (including the Epistle of James) was that of Hermann E. von Soden.

Reviev of Relevant Rescan oh

A survey of text-critical research (especinlly with respect ro
 Epistles makes obvious the zart that the work ci vor Sodon form a watershed.

That being the case, we review, rather brietly, d; tha reievart researcin prior to voa Sodan and (2) tie relevant reseaich since von Soden.

 Alexander Duticker, is02), ep. isto-9S.

Von Socen classified the Green manuscripts of the Now Tesaineat,

 Johann J. Griesjach, as tite "By\&antine" tesi; (2) the "Hasyoimisn" (:ihicin he identified with :!e Greak letter \because a ajer-cype correspondia; to those designared by iestoote and Hort as the "sentral" and "Alom:nedrana" texts; and (3) the "Jerusaiem" iwhicis de ideatificd with the brect better I), a text-type corrosbondias romblity to tiat diosigated by inestcott and Hore as tie "Nestera" cext. Ennlowiag, in general, the pria-

Prior to von Soden
Prior to von Soden, Juhann A. Bengel, ${ }^{1}$ Johann S. Semler, ${ }^{2}$ Johann J. Griesbach, ${ }^{3}$ Johann L. Hug, ${ }^{4}$ Brooke F. Westcott and Fenton I. \therefore. Hort, ${ }^{5}$ all of whom gave special attention to the classification of the Greek manuscripts of the New Testament as a whole, gave little or no attention to the classification of the Greek manuscripts of the Catholic Epistles in particular. Indeed, they assumed that classifications determined by a study of the Gospels andior the Paininc Epistles would apply to the Catholic Epistles equally. ${ }^{6}$
${ }^{1}$ See the sumary of his text-critical principles in the preface to his comentary, Enomon Novi Testamenti (Tübingen, iJt2), and the application of these principles in his text, fovun pestamentum veace (Tüingen, 173i).

2
${ }^{2}$ His text-critical coments are to be found in his Netstenii libelli ad cr: - atque intereretacionem Vovi Testamenti (itale, i64): and his classificat of the leek manuscripes of tee New restament in his Apparatis adi - jeralem Sovi Testamenti interprecationom asile, 1767).
${ }^{3}$ Griesbaci's elassification is set forth in his Symotae Criticae ad suppie:das et corrigendus variarum $\mathrm{A} . \mathrm{T}$. Jectionum coliecinome i? vols.; Haile, 7 (5s-93), and his Comenearius Criticus in rextum Graecum Novi Yestamenci (Jena, 1i98-i31i).
${ }^{4}$ His now system of recensions is proposed in his Einleitume in

${ }^{5}$ Westcott's and Hort's system of classification is cuplained in The New Testarenc in the Original Greek. Vol. 2: Introducion ari drpendix (2nd ea.; New Yorik and London: Macmillan, iś96).
${ }^{6}$ On the purticular contributions of all these text-criti.s. with respect to the viassification of the Greek manuscripts of the Sew Testament, see, among others. Jack Finegan, Encountering Sov Testiment Manuscripts: A Workine introduction to Textual Criticism (Grand Rapids: Eerdmans, 197\%), pp. bl-uj; j. Harold Greenlee, intenduction to fev Testament Texthal Criticism Grand Rapids: Eerdians, i964), pp. i2-it; Werner Georg Kümel, Fe Vew Testament: The history of the Investigation of its Problems, trans. Jy S. NeClean dilmour and iowari C. See (Nashville and New York: Abingdon Press, 1972), pp. 47-48, 62-59. $14-$ 75, 185-86; and Bruce M. Metzger, The Text of the New Tostament: [ts Transmission, Corruntion. and Restoration (2nd id.; Sew York and oxford: Oxford Liniversify Press, 1968), pp. 112-13, 115, 119-22.

Since von Soden

Since von Soden, of those who have given special attention co the classification of the Greek manuscripts of the New Testament, or a part thereof, only Sakae Kubo, ${ }^{1}$ Wayne A. Blakely, ${ }^{2}$ Muriel M. Carder, ${ }^{3}$ and W. L. Richards ${ }^{4}$ have done major work ${ }^{5}$ on the Greek manuscripts of the Catholic Epistles; and, of these, none has attempted to classify the Greek manuscripts of the Epistle of James. ${ }^{6}$
$1_{p} 72$ and the Codex Vaticanus, Studies and Documents, 27, ed. by Jacob Feerlings (Salt Lake CiEy: University of Utah Press, 1965).
${ }^{2}$ Manuscript Relationships as Indicated by the Epistles or Jude and II Peter," - そols. (Dh.D. dissertation, Emory lniversity, 1964).

3"An Enquiry into the Textual Transmission of the Catholic Epistles" (Th.D. dissertation, Victoria University, 1958).

4 The Classificatinn of the Greek Manuscrizts of the Johannine Epistles, SBL Pinctation Series, 35 , ed. jy H. C. Lee and D. A. Knight (ilisscuia, Montant: Schoiars Press, i97i).
${ }^{5}$ Others have contributed siorter and more specialized studies. For example, note the essays jy 1 . - J. Lagrange, incroduction ì l'atude du Nouveau Testament: Deuxième partie: Critique textuelie, if, La critique rat aneil: (Paris: Gabaida, 1935): jean Duplacy, "te taxte occidental iiss ipitres Catholic̣ues," XTS 16 (i970), $297-90 ;$ and i. T, Gallagher, "t Study of von Soden's t-Text in the Catholic Epistles," AUSS 8 (1970), 97-119.
${ }^{6}$ Others since von Soden have given considerable attention to the classification of the Greek manuscripts of the New Testament, especially the manuscripts of the Synoptic Gospeis and ?auline Episties. Sote, for example, the studies of Burnett H. Streeter The Eour Gospels: A Study of Origins (New fori ani London: Vacmillan, 1924; 9th inpression revised, 1956j): Hans Lietzmann (Einführung in die Textgescinichte der Paulusbriefe, in die Römer, vol. 3 , in the series iandouch zua ieuen Testament [Tüingen: j. C. B. Mohr (Paul Siebeck), Ind ed., i919!); Paul R. McReynolds ("The Claremont Profile Yethod and tie Groupinas of Byzantine New Testament lianuscripts" [Ph.D. dissertation. Claremone Graduate School, 19631): and Frederik Nisse ('The Claremont Protile Method for the Classification of the Byzantine New [estament hanuscripts: A Study in lethod" PPh.D. dissertation, Claremont Graduate School, 1963]). Sut none of these sciolars has dealt with the manuscripts of the Catholic Epistles in general, or the Epistle of james in particular.

The Epistle of James

To date, apart from the work of von Soden, the only text-critical observations which include any reference to the classification of the Greek manuscripts of the Epistle of James that are worthy of note here are the following:

1. M.-J. Lagrange, Introduction à I'étude du Nouveau Testament: Deuxiène partie: Critique textuelle, II, La critique rationnelle (Paris: Gabalda, 1935). Lagrange discusses von Soden's methodology: and conclusions and raises serious questions concerning his proposed I-text and his deteraination of sub-groups on the basis of incomplete collations. In the process he draws heavily on tine Greek manuscripts of the Epistie of James to support his arguments.
2. Joseon B. Yayor, The Epistle oESt. James: Ghe Greek mext with Introduc:. \therefore Yotes, Coments London: YacMillan, 1913 ; reprint, Grand Rapids: Zondervan, 1954), pp. cclaxx-ccixxxix. Mayor, who gives an annotated list of ten uncials (B, K, A, C, K, L, 卫, ב [now 048], :' and S) and notes that Caspar R. Gregory gives a list of " 416 :1SS. of the Acts and Catholic Epistles," merely observes, on the question of classification, in patent dependence on westcott and Hort. and apparently with Euil approval, that Codex Vaticarus (B) "is generaily regarded as the most valuable of all the ASS. containing a pure DreSyrian text" ${ }^{2}$ and that Codex Sinaiticus (H^{2}) is "the most valuable MS. after B, giving in che main a Pre-Syrian text but to a certain extent compped by Western and Alexandrian readings."3
${ }^{1}$ Die griariniscien Handschriften des Veven Testaments (Leipzig: Hinrichs, 1908!.
${ }^{2}$ St. James. p. celxxx. ${ }^{3}$ Ibid., p. celxxxi.
3. Janes H. Ropes, A Critical and Exegetical Commentary on the Epistle si St. James, International Critical Commentary, 40 (Edinburgin: T. \& T. Clark, 1916), pp. 74-86. Ropes, who lists two papyri (${ }^{21}$ [sic], ${ }^{1}$ and $\mathrm{P}^{[23]}$), ${ }^{2}$ twelve uncials (B, K, A, C, 048, 0166, [0173], K^{c}, Ψ, S, K, L, and P), and two ninuscules (33 and 69), and refers to "about four hundred and seventy-five manuscripts dating from the tenth to the eighteenth centuries . . . enumerated in the lists of Gregory and H. von Soden, ${ }^{3}$ oriefly notes, with respect to the matter of classification, also in obvious dependence on Nestcott and Hort, that "the chief groups that can at present be treated as distinct critical entities are B ff, A 33 , KLPS al. (the 'Antiocian recension')," and adds that the "statenent of Hort ['Introduction,' ?. 171], wich seems to mean that the authorities for the Catholic Epistles stand in order of excellence $\mathrm{E} N 33 \mathrm{CA} \mathrm{P}$, is substantiated (at any rate for the uncials) in che Epistle of James. ${ }^{\prime \prime}$
4. M. -ineli:A, James: t Commentary on the Epistle of James,
rev. by H. Greeven, trans. by M. A. Filliams, and ed. by f. Koestex (Philadelphia: Fortress Press, 1976), pp. 57-61. Pibelius, :ho
${ }^{1}$ No doubt this should read p^{20}. Ropes also identifies the papyrus intended as Oxprhynchus 1171 which is regularly given the sisium p20. The fragmertary manuscript designated ? 20 does, in Eact, contain Jas. 2:19-3:9. \mathbf{Z}^{2} (otherwise designared as Uxyrnynchus 1227) cuntains only :latt. 12:24-26, 31-33.

See B. P. Grenfell and A. S. Hunt, The Ozyrhuncinus Papyri (London, 1898ff.), vol. Q, pp. G-II (for ?. OXF. $1171=920$, and voi. 10 , pp. 12-14 (for P. Oxy. $1227=\mathrm{P} 21$); aiso Metzger, the text of the vety Testament, ?. 249 .
${ }^{2}$ Ropes on'y gives the designation, "Oxyrhynchus 1220," (p. 74). But this is nore commonly identificd by the siglum P^{23}. Sce Greniell and Hunt, The oxprhyechus Papori, vol; 10, pp. 16-18, and Metzrer, The Text of the New restament, p. -49. p-3 contains Jas. i:10-12, i5-i8.

$$
{ }^{3} \text { St. James, p. } 75 . \quad{ }^{4} \text { Itid. , pp. 85-36. }
$$

enumerates an annotated list of four papyri ($\mathrm{P}^{20}, \mathrm{p}^{23}, \mathrm{P}^{54}$, and P^{74}), ten uncials ($B, K, A, C, K, L, P, Y, 0166$, and 0173), and four minuscules (33, 81, 1175, and 1739), ${ }^{1}$ clearly indicates with unquestionable dependence on von Soden, that $\mathrm{P}^{23},{ }^{2} \mathrm{P}^{54},{ }^{3} \mathrm{p}^{74},{ }^{4} \mathrm{~B},{ }^{5} \mathrm{~K},{ }^{6} \mathrm{~A},{ }^{7}$ y, $33,{ }^{8}$ 81, and 1175 represent the "Egyptian" text, while k, L, and P^{9} represent the "Koine."
5. J. T. Gallagher, 'A Study of von Soden's H-Text in the Catholic Epistles," AUSS 8 (1970): 97-119. Gallagher, who employs "a modi-
${ }^{1}$ Dibelius reveals a common prejudice against the byzantine minuscules when he states $: \therefore a \mathrm{he}$ mentions "only a :ew [minuscuies) in the commentary, and never =hose with the Koine text" (James, ?. 58).

2"Both this papyrus fragment and the others listed below [p^{20}, p^{54}, and $\left.\mathrm{P}^{74}\right]$ represen for the gust part the 'Egyptian' text-type" (ibid., p. j3).

3This text "foilows B K C Eor the most part" (ibic., p. j8).
${ }^{4}{ }^{7} 74$ "displays a close kinship to A, although it also contains many special readings" (ibid., p. 58).
${ }^{5}$ "This is undoubtedly the best witness oit the best text-type, viz., the Egyptian text-type: but that does not mean zhat it is infallible. . . . The cases where B as peculiarities in conmon with the valuable Latin menuscript Corbeiensis ($=$ fig) arouse suspicion (e.g., 2:3, 4; 5:20) or at least uncertainty (ci.2:19)" (ibid., p. 57).
$6^{\prime \prime}$ This manuscript is cuite closely retated to 3 and is a very valuable witness, but it manifests mere obvious mistakes than does 3 . In addition, traces of the so-called ' ${ }^{\prime}$ oine' text-type are found ir it (2:3; 2:20)" (ibid., ?. 57).

7". . . Careful consideration must be given those instances vikere, as in 5:3, A agrees with other witnesses of the 'egyptian' text ḑainj: B and K. . . . More problematic, but at the same time more characteristic for A, are the instances wiere Aagrees with a Latin version" (ibid., p. 53).
$8^{\prime \prime}$ This is the most valuable of the minuscules, and is rela di to minuscule 326 (Oxiord). 3oth 33 and \because represent in generai the 'Fgyptian' text, with rortain deviations in the ditection of the 'Koine' text" (ibid., p. 58).

8"p offers the $̈$ öne text very irequent I , althourth it also often follows the Egyptian witnesses (so that von Soden grouped it with the latter)" (ibid., p. 58).
fication of the 'Multiple Reading Method':'1 proposed by F. C. Colwell, ${ }^{2}$ tests von Soden's classification of two important manuscripts of the Epistle of James (viz., P and 1739) and concludes that von Soden was "wrong" in excluding manuscript 1739 Erom his H-text but "correct" in including manuscript p in that rext-group. ${ }^{3}$
6. At this juncture, mention sho:ld be made of the extensive text-critical studies on the Cathollc Epistles being carried out presently at the Institut für neutestanentliche Jutiorschung in Münster, Germany.

It is too early to evaluate that work, but one thing is clear (as Richards points out ${ }^{4}$): Kurt Aland, the director of the Institute, is not especially concerned with the history of the text; his main goal, as a text-critic, is =o get back to the original text. ${ }^{5}$ Eor Aland,
1.von Sujen's h-Text," p. 98.
${ }^{2}$ E. C. Culwe?, 'Method in Locating a Newly-Discnvered Maruscript," and "foth :n Establisting Relationsinips jetween Fevt-T"pes of New Testament Ma.. :ipts," Studies in Mechoduiogy in Eexuaj Criticism of the Yew Testament, Sew Testament Tools and Etudies, O, ed. Jy Bruce M. Meteger (ieiden: E. J. Brill, :969), pp. 26-i4 ani 5́-62, respectively.

3"Therefore, the conclusion must be that von Soden was wroug to exclude 1739 from the $H-t e x t$ of James. At the same time he seems $=0$ have been correct in including P in this group. inile P offers weak attestation to the titext, it is quite certainly part of the H -text group in distinction to the other non-H manuscripts used in this study" ("Von Soien's i-Text," 2p. L06-i).
${ }^{4}$ Classification, ?p. 7-9.
${ }^{5}$ See Kurt Aland, "The Significance of the Papyri for New Testament Research," The Bible in Modern Schoharsinig, ed. by J. Philip Hyatt (Nashville aad New York: Abingion Press. 1965), p. 34 ; and "Die Kionsequenzen der neueren Handschriftentunde für die neutestamentliche Textkritik," Studien zur Überlieter:ng: des Neuen Testaments unci seines Textes, Arbeiten zur neutestamenclichen Textiorschunc, - (Berlin: Walter de Gruycer, 1967), pp. 180-201. This observation should no dotibt be modified by the fact that in 1970 Aland remarked that the text-
pragmatically there are only two text-types: (1) the original text (defined as "the text-form in which the NT writings were officially put into circulation"), ${ }^{1}$ and (2) the Byzantine (designated as the "Majority" text, about 90 per cent of which can be "practicaliy disregarded." $)^{2}$

Statement of Purpose

The time is ripe for a fresh, independent, and thorouih attempt at classifying the Greek manuscripts of the Epistle of James. Tinis is so because:

1. No one has attempted such since von Soden.
2. It is now rather widely recognized that noth von Soden's methcis and inc classifications need considerable correstion. ${ }^{3}$
3. As the result of nore recent analysis, it is now clear that a classificarion uincimay be suitablefor nne section oi tine lew Tostameat (e.g., the Grspeis andor the Eistles of Jaul) may act be so for another section (a.g., the Catholic Epistles), ur that a classizication that may be anyropriate for one book of a given saction íe.g., : Peter,
[^0]II Peter, or Jude) may not be so for another book of that section (e.g., James). ${ }^{1}$
4. New and better methods ot classification have been developed which have nor, as yet, been applied to the Epistle of James.

It is the intention of this study to provide the "Eresh, independent, and thorough" classification of the Greek manuscrints of the Epistle of James called for above. In the process we plan to test the "new and better methods of classification," referred to under item 4, by employing nciv computer tecinniques.
$I_{\text {For exprict }}$ ith respect to the Greck manuserints of the Catiolic Epistles, if the findings of Kubo and Galiagher are sound, then the Epistle of James, as it occurs in MS P, belongs mith von Socien's t-cert, but the First and Second Episties of Peter and the Epistle of jude do not. See "Von Soden's H-̌er," ?p. iOC-7.

CHAPTER I

MATERIALS ind METHODS

Materials

Out of approximately 600^{1} known Greek manuscripts which contain the Catholic Epistles, 86 were chosen for this study. These 86 manuscripts, though representing only 14.33 percent of all the jnown nanuscripts, represent adequately the total number. Previous studies have shown that after a certain point additional mancripts make little or no difference in the overail picture. In other words, all extant manuscripts nond not be examined in order to determine the classification of the unuscript Eradition of a book. ${ }^{2}$ The 86 manuscripts used in this study have been chosen primarily from the mantscripts aiassified by von Soden. Other manuscripts (25 in number) ware selected on the basis of their accessibility in order to ansure adequate representation.

Thougi von Soden's work nas become the brunt of much criticism, it was the first major attempt at classifying the Catholic Epistles,
${ }^{1}$ Kurt Aland, Kurjgeiasste Liste der griechischen Handschriften des Neuen Testaments, Arbeiten iur neutestamentichen textionschunf, vol. I (Berlin: Walter de Gruyter \& Co., 1963).
${ }^{2}$ Cf. Ricbards, Classification, p. 13: McReynolds, "The Claremont Profile Method," pp. 6, 92; anc Kubu, "Tuxtual Relationsinips in jude," Studies in New restament Lansuaye and iext, di. J. K. Elliote (Leiden: E. J. Brill, 1976), pp. 2i6-82.
and, apart from its well-known inaccuracies, ${ }^{1}$ it affords a natural starting point. Any attempt at the classification of the Greek manuscripts of the Catholic Epistles should give due consideration to the work of von Soden. ${ }^{2}$

On pp. 16-ig we list the S6manuscripts collated and classified in this study. The first column gives the Gregory numbers of the manuscripts, the second, their respective dates (according to Aland ${ }^{3}$), the third, $\because o n$ Soden's classification, and the last, the names of those responsible for the collations employed. It will be noted that we are indebted so others (Kenneti ix. Clark, ${ }^{4}$ Kubo, ${ }^{5}$ K. Lake, ${ }^{6}$ and 5. . Scrivener ${ }^{7}$) Eor 28 of the 36 collations used. The remainder of the manuscripts were collared at isast twice and then sarefully compared and corrected.

Metiods

[^1]criticism. Bengel was the Eirst to suggest the theory of textual families, dividing his manuscripts into Asiatic and African clusters. Then Semler, under the influence of his teacher, Bengel, suggested a division into Oriental, Western, and Alexancirian traditions. But the foundational work for modern textual criticism was done by Griesbach, a student of Semler, who produced the Eirst published manuscript classification in 1775-1777, identifying Constantinopolitan and Alexandrian readings.

Westcott and fort developed the "genealogical method" and based it on MS O1 and MS 03. Thereupon, $\because o n$ Soden prociuced a sompreinensive system of manuscript groupings. He advanced a theory of thrae great recensions. Forking genealosically with the manuscript fradition , he identified many late medieval manuscripts oith the Nappa \quad Eext tradition and classifiec a significant numier of manuscripts as distinct from both the Kappa and Beta groups. These Eormed his Iota group.

Von Soci.a's work is important in that it marks a significant change of direction in text-critical studies. Blakely states:

Von Soden's rincle approacin to the atorevioz is based upon the premise that the Catholics and icts were a literary unity before the three sreat recensions took ?iace. Fherefore, it was not necessary for him to determine manuscripe reiationsinps in each epistle or Even in the Catholic corpus. fith oniy minor exceptions, once the manuscripts aad jeen classified any place within the Acts-Catholics, that same zrouping wis considered raiki througiout. Conscquently, the distinctive eext-type readings in the epistles of jude and II Peter--or for that mater, any place in either the Acts or the Catholics-are not necessarily distinctive text-type readings in these epistles. They actually ire nothing other than those readinss in which the majurity of the manuscripts classiried together eisewhere are agreed in these episties. ${ }^{1}$

The search for better methods has continued. Considerable rrog-

Blakeiy, "Manuscript Relationships," pp. 426-27.
ress has been made since Hutton ${ }^{1}$ first proposed his "triple readings" method--Colwel1 ${ }^{2}$ has proposed his "multiple readings" method, and McReynolds ${ }^{3}$ and $:$ iisse ${ }^{4}$ their "profile" method. Xore recently Richards ${ }^{\text {² }}$ has developed a combination of the "quantitative analysis" and "profile" methods. ${ }^{6}$

Richards has outlined three basic approaches employed in modern textual criticism: ${ }^{7}$

1. The attempt to classify aanuscripts "on the basis of a few carefully selected readincs." This is the method used by Aland. Fhile it is true that. iland's purpose is not manuscript classification per se, his scarch Eor the representative mancripts for in apparatus criticus "amounts 0 ciassification of a kinc."
2. The attempt to classif \because manuscripts "on the basis of a proEile of selscred readings, in ainich tiz criteria Eor the seiection of readings cail for a large number of readincs vis-j-vis Aland's method." This is the Clazemont Prozile Yethod.
3. The attempt to EiassiE: fanuscripts "on the jasis of . . . closeress in percontage of asreement with other manuscripts, that is, on the basis oi quantitative anaiYsis."
${ }^{1}$ Edvard A. Button, in itlas of Textual Cricicism (Cambridge: University Press, loll).

2Method in Locating," pp. 27-28.
3"Claremont Profile Ierhod," passim.
4"Claremort Prorile Method," pasim.
5
Classifi \because ation, passim.
'See Richards' discussion of the development in methods of classification since futton. Classificaijon, ?p. iO-25.
${ }^{7}$ Ibid., pp. 24-25.

In this study methods (2) and (3) are combined and employed in a singie process.

The Master Sheet

After the collations had been compared and corrected, each variant and its manuscript support was recorded on a flaster Sheet. 1 Singular readings, i.e., readings where the variant has the support oi only one manuscript, $\because e r e ~ d i s c a r d e d, ?$ as were the readings supported by only two or three manuscripts, nu-movables, and obvious errors of spelling.

There are Eur parts to the Aaster Sineet.

1. Space in minich to incicate (a) tie number of the "anit of variation" (e.s., Unit 5l), and (b) the "reEerence" rinere the variant irvolvad occurs $(\leq .5 .,[J a m e s!2: 17)]^{3}$
2. Space Eor iisting the "readinss" (e.g., Reading i. TR: APO; Reading 2. PARi4; , Bote that the reading of the Rextus Recoptus (TR) ${ }^{\text { }}$ is alwies lie first reading.
3. Space Eor indicating the "nature of the reading," i.e., the nature of the reading as it varies vis-àvis the reading of tie -5 (e.g., an x in box 3 indicates that the preposition JARA is suj-
$1_{\text {See ?. }}$: 0 iur a sample laster Sheet.
${ }^{2}$ See $\because . \quad$ El Eor the statistics on "singuiar readings."
3 All the "uits of variation" cogetner with their supporting manuscripts are listed in detail on pp. 59-131.
${ }^{4}$ Since the computer printer is not equipped to print in Greek type, the Greak is transliterated; and since there are no exact Enylish equivalents for sone letters of the Greek alpiabet, the followinh substitutes are used: the Eipure "S" represents the Greek " 7 ," the EngIish "w" stands Eo: the Grenk "," " the Greek "a" is represented by the En: : ish "ch," and the Greek "j" by the Encislish ":h."
$\bar{j}_{\text {ine }}$ TR reading is that of the oxford 1873 edition.
stituted 1 in the manuscripts indicated [MSS 5104216383424440467 48962392713151845 1883] for the preposition APO, the reading of the TR,and the other manuscripts incicated [TR: MSS 010203020044 0496385159 104 etc.1). ${ }^{2}$
4. Space for indicating the "questionable evidence." ${ }^{3}$

In the discussion which follows, reference will be made to what are called for convenience SOLL readings. The acronym SOLL is to de interpreted as Eollows: $S=$ Singular zeading; $0=$ Omission; $\dot{U}=a n$ Unclear or Unicertifiable reading; ond i indirares that there is a Lacuna in the manuscript at the piace indicated.

Once the basic evicence had been organized jy means of the Master Sheets, it was transiezred to compucer cards for processing.'
${ }^{1}$ The key Eor interpreting the significance of boxes $1-5$ is given on the Saster Sheet: $1=$ Adcition: $2=1$ mission: $\mathfrak{j}=$ Substitution: 4 = Transposition; $\bar{y}=$ Yerb Change; and 5 = Case Change.

2
Tine statistics of the data organized under this heading, :ature of the Readinf, ire zajulated by (a) manuscript (see the tables on pp. 22-23) and (b) "anit of variation" (see the tables un pp. ́a-25). The abbreviations employed are to be uncerstocd as Eoijors: id =Adition: OM = Omission; $S B=$ Substitution; $T R=$ Transposition; $: C=$ Verb Change; and $C C=$ Case Ciange.
${ }^{3}$ The key for interpreting the siz bowes under the heading "Questionable Evidene" : 弓iven on the Master Sheer: $:=$ Su-movades; $2=$ Reading of ac more than $2-3$ manuscripes; 3 = Obvious itacisms; $4=$ Personal prrnouns; and o = Stylistic pateerns.
${ }^{4}$ The programs wicin determined the processing are described in detail in Chapuer III.

MANUSCRIPTS USED IN THIS STUDY

	Gregory Number	Date	Von Soden's	Classification

Manuscripts Used in This Study (cont.)

	Gregory Number	Date	Von Soden's Classification	Collators
24.	323	XI	$I^{\text {b? }}$	Kubo
25.	337	XII	I^{33}	Awoniyi
26.	378	XII	$\mathrm{I}^{\text {c2 }}$	Awoniyi
27.	383	XIII	$I^{\text {c2 }}$	Awoniyi
28.	395	1407	I^{20}	Awoniyi
29.	424	XI	H	Awoniyi
30.	440	XII	I^{52}	Kubo
31.	467	XV	$I^{\text {a }}$	Awoniyi
32.	479	XiII	$\mathrm{K}^{\text {c }}$	Scrivener
33.	483	1295	$K^{\text {c }}$	Scrivener
34.	489	1316	$I^{\text {a }}$	Scrivener
35.	491	XI	$I^{\text {b2 }}$	Awoniyi
36.	522	1515/10	L^{31}	Awoniyi
37.	547	XI	I^{23}	Awoniyi
38.	614	XIII	$\mathrm{i}^{\mathrm{c} 2}$	Kubo
39.	623	1037	$I^{\text {a }}$	Kubo
40.	542	XV	$1^{\text {a3 }}$	Scrivener
41.	643	XIV	--	Scrivener
42.	876	XII	$I^{\text {c2 }}$	Clark
43.	917	XII	$\mathrm{I}^{\text {a }}$	Kubo
44.	920	X	${ }_{1} 93$	Kubo
45.	927	1133	$\mathrm{I}^{\text {a }}$	Awoniyi
46.	959	1331	--	Awoniyi

Manuscripts ised in This Study (cont.)

	Giregory Number	Date	Yon Soden's Classification	Collators
47.	999	XIII	$I^{\text {a }}$	Awoniyi
48.	1022	XIV	--	Clark
49.	1175	XI	4	Awoniyi
50.	1240	XII	--	Awoniyi
51.	1241	XII	--	Awoniy:
52.	1243	XI	--	Awoniyi
53.	1245	XII	I^{01}	Awoniyi
54.	1247	XV	--	Awoniyi
55.	1248	XIV	--	Awoniyi
56.	1249	XIV	--	Awoniyi
57.	1315	XII	--	Awoniyi
58.	1319	XII	I^{33}	Awoniyi
59.	1424	IX/X	--	Awoniyi
60.	:503	1317	--	Awoniyi
61.	1505	1084	--	Awoniyi
62.	1522	XI	$r^{3} 3$	Scrivener
63.	1597	1289	--	Awoniyi
64.	1610	1364	$I^{c 2}$	Awoniyi
65.	1611	XII	$I^{C 1}$	Awoniyi
66.	1735	XI/XII	--	Kubo
67.	1738	XI	$I^{\text {a3 }}$	Awoniyi
68.	1739	X	$I^{\text {b2 }}$	Lake
69.	1799	XII/XIII	--	Clark

Manuscripts Used in This Study (cont.)

	Gregory Number	Date	Von Soden's	Classification

MASTER SHEET

Unit of Variatinn: 51

Reference: 1:17
I. Readings:

1. TR: APO
2. PARA
3.
4.

II. Nature of the Reading:
[■ 2 \because 4— 5 5—
III. Questionable Fyidence:

	KE.Y
	```MSS Neutraljized by SouL: S: Singular: Readings 0: Omission U: Unidentificd L: Lacuna```
II.	Nature of Readins:   1. Addivion   2. Onission   3. Substitatinn   4. Transposition   5. Verb Chame   6. Case Change
III.	Questionable Eridence:
	i. Su-movatles
	2. Rearing oi - -j $\because$ "
	3. Obvious ilackiam
	4. Ouestionable itarism;
	5. Fersonal Sroncuas
	6. Stylistic patrane


:15	koc
01	-
02	1
03	1
020	1
044	1
5	$\cdots$
6	1
38	1
51	1
69	1
104	$1:$
11.7	.
201	1
203	1



The Singulafis


MS	AD	OM	SB	T?	VC	CC	TOT
01	10	26	13	6	0	4	59
02	$1!$	28	11	7	1	2	60
03	8	35	12	7	2	5	59
020	4	11	1	1	?	1	18
044	7	24	14	$\sigma$	i	2	54
049	3	9	1	2	1	1	17
5	11	12	9	6	0	i	39
6	3	11	3	$i$	1	1	20
38	3	10	2	$?$	1	2	20
51	7	7	2	2	1	2	21
69	10	11	4	7	2	2	36
104	6	10	5	$i$	i	2	25
177	3	11	3	1	,	2	$? 1$
201	$j$	11	3	1	?	1	19
203	4	0	$?$	1	$\underline{\square}$	i	17
206	i3	27	14	10	$?$	1	05
209	3		3	1	$?$	2	16
216	5	$\delta$	4	4	?	1	22
223	$?$	7	$?$	2	i	$?$	$=1$
226	$\overline{5}$	i 1	1	$?$	$?$	1	18
$? 63$	4	11	2	1	i	2	21
307	9	14	2	5		1	31
319	4	10	3	$i$	$n$	$?$	20
323	7	14	6	3	;	2	33
337	ミ	ii	3	i		2	21
378	9	: 3	i1	7	?	3	43
383	3	ir	$?$	1	$i$	3	20
385	3		$\bigcirc$	i	i	1	17
424	4	$\bigcirc$	$?$	4	1	1	21
440	0	7	5	4	?	i	23
467	0	14	4	$?$	1	1	26
479	3	12	3	$i$	$?$	1	20
483	0	ó	1	2	1	1	17
489	3	i2	$i$	2		3	22
491	3	4	3	i	?	2	i3
522	12	24	17	i1	$?$	2	66
547	3	8	2	3	$?$	1	17
614	14	$=5$	i6	10	1	4	70
623	14	15	9	7	0	1	44
642	8	11	5	$?$	1	1	28
643	4	9	3	$?$	$i$	1	$? 0$
876	i 1	11	7	4	i	3	37
917	3	12	2	1	$\bigcirc$	1	19
920	2	6	1	1	1	1	14


MS	$A D$	OM	SB	T	VC	CC	TOT
927	3	12	1	2	1	31	22
959	8	9	2	2	$\bigcirc$	31	24
999	5	9	5	1	0	$4 i$	24
1022	4	5	1	4	1	$2 i$	17
1175	12	24	14	7	i	5 i	63
1240	2	8	2	1	1	21	16
1241	12	27	17	9	1	41	70
1243	10	20	8	6	1	2 i	53
1245	4	8	1	4	1	21	? 0
1247	5	10	4	1	0	2	22
1248	4	12	3	1	0	1	21
1249	4	11	2	1	$?$	1 i	19
1315	6	10	4	4	0	1	25
1319	2	10	3	$i$	1	2	19
1424	$?$	9	1	1	1	2	$i 6$
1503	3	12	3	1	0	1	20
1505	i5	26	19	$1 i$	$?$	6	79
1522	i1	25	i8	\%	1	4	67
1597	4	13	3	2	$i$	1 1	24
1610	5	12	5	2	;	2	27
1611	14	22	14	$1 i$	i	31	05
1735	12	17	;1	9	$?$	1	50
1738	3	8	3	i	$i$	2	¢8
1739	14	26	20	8	$!$	31	72
1799	17	26	15	11	$?$	2	06
1827	7	11	4	1	1	5	$? 9$
1829	3	12	$i$	$?$	$\cdots$	1	19
1845	13	14	8	7	$?$	1	43
1854	3	10	i	2	i	11	18
1874	$?$	12	2	i	i	1	19
1876	4	13	3	1	$?$	1 !	22
1888	3	10	3	3	i	1	21
1889	4	8	3	3	$?$	1 1	19
1890	: 4	25	21	10	i	31	74
1891	3	11	1	i	i	2	19
1892	4	13	3	1	$n$	1 i	22
1898	¢	12	$?$	2	:	21	23
2143	$?$	9	3	1	1	2	18
2298	16	13	i3	10	$i$	31	56
2401	6	10	3	2	$?$	3	24
2412	15	26	17	11	$i$	5 i	75
2423	5	9	3	3	0	1 i	21




## CHAPTER II

## TYPES OF VAPTANTS

In the previous chapter we discussed the grounds on winch the manuscripts were selected and some methodological matters. ie now turn to a consideration of the variants used and how they were evaluated.

Almost a! .ects of textual criticism eenter on variation. A variation is one of the possible alternative readings winich are found in a variation unit. ${ }^{1}$ It is a deviation or shange iron the norm. ${ }^{2}$ This norm nay be the Textus Receptus ( $T R$ ), iestcott ind iort, Nestle-Aland, or the text of a particular manuscripe nnose textual content is well known. The norm used in chis study is the Oxtord i37j edition of lite TR.

The use $0:$ i.. TR as the basis of recording divergences is not just a matter ui its availability. In fact, there are other texts, like Nestle-Aland, winci are nore accessible. But the use of the TR has a long inistory. Inceed, it has become the norm and a uniform ground upon tilicin scholars reguiarly base their collations. Therefore manuscripts used in zinis study iave been collated against the $T R$ and the variants have been racurded in accordance with the format of the International Greei Vew Testament Project.

```
\({ }^{1}\) See Colwell, "Method in Classifying," pp. 96-97.
\({ }^{2}\) Ibid., p. 26.
```

For a time the $T R$ was considered to be the absolute zero. Scholars seemed to be concerncd only with those readings which varied from that of the TR. The fallacy of this has been pointed out by many scholars. ${ }^{1}$ Today most scholars compare each manuscript with every other manuscript and the $T R$ is treated like any other manuscript.

## Variant Readings

It is both a common and a superficial assumption that a textual reading that differs in ary way Erom any other reading in the same unit of a text is a variant reading. This is an zersimplification. A variant mu: be meaningful and significant. Eor example, nonsense readings, nu-movables, itacisms, ort:’ographieai dizfarences or even singular readines, especially Ghose anici can je explained grammatically, are not sifnificant reacings.

Colwell has proposed the Eoilowing déinition of a variant: "A variant (or var: int reading) is one oí tie possibie alternative readings ainch are Eund in a variation-unit."' Periaps this is more clearly stated by Eldon $j$ Epp in a discussicn of the Colwell definition: A variant is
that senment of text where our Greek manuscripts present at least two variant Eoms and where, ifear insignificant readings have been excluded, eacin variant form has the support of at least two manuscripts.

For example, we give two examples of a "unit of variation" Erom
${ }^{1}$ For example, see $\because$ ivisse, "The Claremont ?reEile Yctiod." pp. 5960.

2"Method in Classifying," pp. 99-100.
3"Toward the Clarification of the Eerm 'Textual Variant," Studies in New Testament Lammuage and Text, ed. J. K. Elliott (Leiden: E. J. Brill, 1976), p. i57.
the Epistle of James:
Unit 143, verse 2:5 (1) TOU KOSMOU-TR 02020044049 etc.
(2) TW KOS:N-O1 03117512411739 etc.

Unit 174, verse 2:10 (1) T8RSSEI--TR 0103020049 etc.
(2) PL8RWSEI--122 $206522614 \mathrm{i505} \mathrm{ctc}$.
(3) TELESEI--0」: 124117392298
(S) POIBSET--999
(S) T8RS--1175

From these examples, it is clear that Unit $^{\prime} 143$ has two readings: one (Reading [I]) supported by the TR and $\because S S S 02020044049$ etc., and one (Reading [2|) supported by other witnesses, viz., MSS OI 031175 124! 1739 etc.; and Unit 17' has Eive readings: one supported by the TR and :ASS 0103020049 etc., and four supported as Eollows: Reacing (2) by siSS $0220652261 \div 1505$ ecc.; Reajing (3) b $\because 04 \div 1241$ 1739 2298; Singular Reading (S) jy ss 999; and Singular Reacine (इ) by 4S i175. It can be seen at a giance that a variantunit saves is from confusing the various types of readings and puts us on solici ground for classification.

According to Coinsil, the total range of existins variation must be taken as the only adequate basis 0 E conparison. ㅁo him it is relatively meaningless to ask how many times a manuscript differs from the TR. He suggests that "the general rule Eor the reconnition of a total variation-unit is jy noticing those eiements of expression in the Greek text which regulariy exist together." ${ }^{2}$

Further, Coiwell points out that variant readings must be classified so as to make possible the elimination of the insignificant variant readinss Erom the subsequent stages of tite study. The clas-
$1_{\text {"Yethod }}$ in Classifying," pp. 97-03.
${ }^{2}$ Ibid., p. 99.
sification siould be objectively descriptive. At the same time, evaluation must be based on a careful survey of differences. ${ }^{1}$

We have followed Colwell in this sclection and formation of our "units of variation." The value of a variant reading for purposes of classification is net, as expected, of uniform importance. Some units are very questionable, some less questionable, and some are nonquestionable. All units are numbered, except for the singular readings (readings supported by a singla witness). The total number of units of variation in the Epistle of janes is 325 . Because of their "questionable" Rature we have eliminated 380 of these, leaving a total of 145 for the classizication process.

Schol: are not united on the criteria that shouid control the selection of variants. Leo Vaganay has advocated axternal and internal criticism which "all have their part to play, and . . . must give each other mutual support."2 This has been temed "rationaj." or "reasoned" eclecticism.

In contr..st, J. K. Elliott ${ }^{3}$ has supported a "rigorous" or "thorough-goi: $\because$ " or "eonsistent" eclecticism, in which, according to Gordon D. Fee, "intrinsic and transcriptional probabilities ideally are the sole criteria, irrespective of the date and nature of the external evidence which supports a given reading." ${ }^{4}$ While rigorous
${ }^{1}$ Ibid., p. 100.
${ }^{2}$ An Introduction to the Textuai Criticism of the New Testament, trans. by B. V. Miller (Londicn: Sands, 1937), p. 91.
${ }^{3}$ The Greek Text of the Enistles to Timothy and Titus, Studies and Documents, 36 (Salt Lake City: University of utan Press, 1968), p. 10.
""Rigorous or Reasoned E.clecticism--Nhich?" Studios in Norv Testament Languaze and Text, ed. J. K. Elliott (Leiden: E. J. Brill, 1976), p. 175; see also p. 175, n. 7.
eclecticism enphasizes the historical aspect, rational eclecticism "starts with the readings, noting first the various intrinsic and transcriptional possibilities, and where such questions are indecisive, then appeals to the relative value of the witnesses."1 Fee contends that rational eclecticism is the method that is used by most scholars today; that it is "the currently reigning method, ind it appears to be a valid one, for it takes seriously both iriternal questions and the manuscript evidence." ${ }^{2}$

Metzger has surveyed the history of the evaluation of variants for the different editions of the Greek iew Testament. ${ }^{3}$ Be sinows that scholars have tended to select their variants with the purpose of building tie apparatus cricicis for a particular ecicion of the Greak New Testarmat. 3lakeiy has urged that text-critical sanolari should today continue the vaiuable work of expanding such criticai apparatus. Other scholurs, suct as Eldon J. Epp ${ }^{5}$ and Eoward Eshoatgh, Eocus their
 study, like that of Richards, is the classiEica=ion of freek manu-
${ }^{\text {I LEid. }}$ p. 197. ${ }^{2}$ Ibid.
3 The Text of tie iew Testament, ?p. 106-46.
4"'ianuscipi Relationsinips," pp. i-2.
The Theolorical Tendency oi Codex Bezae Cantabriaionsis in Acts. Society for New Pesiament Studies, Monorrapi Saries, j (Cambridge: Cambridge Vniversity Press, 1966), passim.
"Theologicai $\because a r i n a t s i n$ the Festern Text of the Pauline Corpus" (Ph.D. dissertation, Case Nestern Reserve University, 19:5), pp. 4-9.
'Richards' rork was produced at almost the same time as that of Blakely. 3ut Ricinards' work is entireiy on classification, witercas that of Blakely includes sections on both the deveiopment of the critical apparatus and textual relationships.
scripts. Whereas Richards' study was based upon the Johannine Epistles, this one is based upon the Epistle of James.

## The Singular Readings

As indicated above, the singular readings have not been included. ${ }^{1}$ Since these are readings found in only one manuscript, they cannot tell us anything about relationships. Furthermore, most of them may be assumed to be the creation of the scribes, and according to Colwell, in a textual tradition as rich as that of the New Testament, the high probability is that no original readings have survi:cd solely in a singular reading. ${ }^{2}$ Howcver, the singular readings should not de ignored completely. The caution of Epp is appropriate:

The usefulness of singular readings in discerning scribal patterns, purposes, and ciaracteristics, joth in zecent and oider studies, should caution us against the simple or premature e:clusion of singuiar readings Erom ail text-criticai rasks. . . .

## The Questionadle Readings

In this study we regard, as already indicated, nu-movables, itacisms, stylistic patterns, and personai pronouns as questionable readings. The folluwing discussion explains oriefly wive each of these types of readings is not included.

Nu-movailis. The nu-movable is a common phenomenon in the Greek language. However, it does not represent a true variant. Scholars
${ }^{1}$ It should be borne in nind that the singuiar readings in this study are sintular only within the limits of the manuacripts used in this study. The possibility must be ailowed that other manuscripes exist winich may prove them otherwise.

2"Method in Classifying," p. 104.
3"Classification of the Term 'rextmal Variant," p. 161.
such as Kubo ${ }^{1}$ and Eshbaugh ${ }^{2}$ do not even irclude nu-movables in their collations. Richards ${ }^{3}$ has conducted a mathematical study to determine by percentage the contribution they make to the classification of manuscripts and has concluded that their contribution is nighly unstable. For this reason they have not been included in this study.

Itacisms. Itacisms are prevalent in many manuscripts. Two types of itacism nay be distinguished: the sensible itacism, in which the variant reaing still represents a valid reading (e.g., in James 2:14, the reading ECH8 if the $T R$ | is subjunctive; the reading ECHEI in : $\operatorname{IS}$ 1243], indicative), and the nonsense itacism, in which the variant reading represents no Iexical form (e.g., james 3:11, the reading PIKRON [in the TRi is an acseptable speliing; the reading P8KRON (in MS 38] is not).

Stylistic Patysans. These might be called orthographic variants. Two exareples wiil sū̄ice. (I) James 1:17: cī. Papallag3 (TR) wich PARALAGB (MS 263). (2) James j:16: cf. POLLU (TR) with POLU (MS 1319). Like the itacisms, there is no consistenc: of readings between manuscripts; therafore they do not serve as evidence for classification purposes.

Personai pronouns. what is meant here is the interchange of the first person plural pronoun for the second person plural (e.g., 3MEIS
${ }^{1}$ In the personal coilations wilich iubo lent to ne, there are no nu-movables or itacisms.
${ }^{2}$ Theological Variants. pp. 206-7. Estibaugh does not include the following in his collations: (1) nu-movables; (2) interchange of et/ ou, $\iota / \pi$; (3) itacisms: (4) double consonanes for a single consonath and vice versa; and (5) nonsense readings.
${ }^{3}$ Classification, pp. 33-41.
for UMEIS) and vice versa. Because of the possibility itacism (8 for $\mathrm{U})$, they are regarded as questionable readings and therefore are excluded from this study.

## Readings in Trin or Ihred Yanuscripts

There is yet another category of readings which is not really questionable but is not included in the units of variation, namely, those readings which are only supported by two or three manuscripts. In his classification of the manuscripts of the Johannine Epistles, Richards has demonstrated that the elimination of readings supported by only two or three manuscripts has two results: i) it does not affect the rank of manuscript reiationsinips, and 2) it gives a percentage spread that is easier to analyze. ${ }^{1}$

As in the case of the singular readings, exmmination of other manuscripts may provide adiitionai suppurt Eor these readings and raise some of them to the level at winch they zould be aligibie zor inclusion in this process of classification.

The following criteria have been applied in this study: readings to be considered (1) must be supported by four or more manuscript witnesses, and (2) must be non-questinnable.
${ }^{1}$ Classification, pp. 35-37.

## METHODOLOCY AND APPLICATION

## Methodology

The Claremont ?rufile :icthod

Prior to the develomment of the Claremont Profile Yethod, manuscript groups were usually Eormed on the dasis of distinct group readings. Colwali succinctly describes the older method when he says, "a group is not a group unless it has unique elements. Separate existence can be clal: $\quad 7 \because$ Eor groups rith sonc readinss 'of their own.' The newly found manuscript cannot de related to a group withour being related to the singular readines of the group' (underlining ours). ${ }^{1}$

The basic premise uncerlying she Claremont Proiile Yethod is that manuscript classification can only be done accuracely when the total number of variants in any given section of a manuscript is considered. It groups manuscripts not oniy on the jasis of the unique group reaciings but also on the basis of the readines that are siared by other groups of manuscipts. All the readings iwherever there are variants in the text) are used to forr: profiles of readings, and classification is made according to the alibnment that the manuscripts have with these profiles. Thus one of the major qualifications ior group identity is

$1_{1 \text { Method }}$ in Locating a Newly Discovered Sanuscript," ?. 30.

that "the profile of the group must be different from the profile of all other groups."1

Quant itative Analysis
While testing the Claremont Profile Method on the Greek manuscripts of the Johannine Epistles, Ric!ards demonstrated that Ehere is a weakness in that method. YcReynolds and Nisse used as their starting point tic groups previously established by text-cricics, especially those determined by von Soden, with the assumption that the method itsclf has built-in correctives which should offset the biases of those groups. ${ }^{-}$Richards had grave doubts about the validit: of this assumption and es a result decided to employ quantitative Analysis. With the aid of a computer, he comparec sacin manuscript under study with every other manuscript uncer investigation. By this process he formed "tentative zroups" based on a comparison of a maximum numior of variant readinss. He contends that "merely having sume aroun readings winch are supported by at least two-thirds of the rss that arve been bunched together is not enough. Ne must look Eor the comination of MSS that yields the hignest number of group readinss. Obviously the more group readings we have the closer tie relationship will be. This inciudes utilizing as many variant readings in a given $M$ as pos-

[^2]sible" (underlining ours). ${ }^{1}$ He concludes (1) that "the CPM [Claremont Profile Method] is a superior method for classifying Byzantine ISS into groups, in ibut it calls for grouping to be based on all units of variation; the profiles that are formed includt both the shared and the unique readings"; and (2) that it is "much safer to proceed with the formation of groups and their profiles by Eirst Eormins tentative groups througn gunatitative dnalysis, rather than by using the alassiEications of $\because o n$ Soden" (underining ours). 2

Üse of a Computer
Being basicaily persuaded of the jeneral validity of Ricnards' use of Cuantitative Analysis and the Claremont Profile fethois, at sought to appl $\because$ Eiese so the Greek manuscripts oi tie Enistic of james -but in a ner rä. Instead ot enploying a computer oniy to provide the basic perzentazes Eor Quantizative Anaivsis and the Eaxonomidal organization $u$ E those percentazes Eor proiile determination, ge decided to as $\therefore$ inmes $\because$. 3rower 50 design a prugram wiwreb: botii antiods might be combinat and their basic evaluation determined oy a Entutar. He was able to iesian just such a program: and its ippifationt to só Greek manuscriptミ of the Epistle of James and consaquent rasults are set forth below.

But first ine must discuss the program itself.
"'A Critic̣ue of a New Testament Text-Critical Methodolor, ", ?. 564.
${ }^{2}$ Ibid., : 566.
${ }^{3}$ Brower pruvides, in his "preliminary study," "A Method Eor Computerized Classilication of New Testament Januscripts' (Unpublistied paper, Andrews !niversity, haril, 1979). the iundamental eiements of the program.

## a. Coefficients

Brower describes two types of similarity coefficients which may be used as measures of the degree of similarity between manuscripts. The first $\left({ }^{C} u=\right.$ unweighted coefficient, i.e., the unweighted percentage of agreement) maties no assumption of any genealogical relationships between the manuscripts under study. It simply measures their phenetic relationsips. The second $\left({ }_{W}=\right.$ weighted coefficient, i.e., the weighted percan=ヨge of agreament) may make sucin an assumption. It, cherefore, may indicate their cladistic relationsinips.

Since we =re interested particularly, in this study, in the phenetic (and noE the cladistic) relationsinips of the 36 manuscripts selected, we :rill oniy apply the furmer of these two "measuras of similarity." ${ }^{1}$

The ${ }^{C} u$ is caiculated by dividing the total numeer of units where the readinös $\because=$ given pair of manuscripts agree by the total number of units being =:-npared. ${ }^{2}$ However, soLt readings are not inciuded in the calculations. ${ }^{3}$

Leurthermare, ie are not yer clear on how to incerpret tie $\mathrm{C}_{\mathrm{i}}$.
2"Computerized Classification," ?. 2.
$3_{\text {Brower }}$ rejses an interestirs question winen he noserves: "It is agreed that incutae [L] and uncatermined or mavailabie [U] readings should not affect the value of the similarity coefficient. jut, as singuiar [ $S$ ] $\therefore \therefore$ omitced [0] reacings are unique readings in thenselves, it is questionabic whecher these should also be left out oi the calculations" (p. 2).

In mathematical terms, the $C_{i}$ is represented as Eoliows:

$$
C_{u}=\frac{\sum^{D_{R_{a}} R_{b} S_{R_{a}} R_{0}}}{\sum^{S_{R_{a}} R_{b}}}
$$

where $\begin{aligned} & R_{1}=\text { the reading of } M S A \\ & R_{b}^{a}=\text { the reading of } M S 3\end{aligned}$

Since the ${ }^{C}{ }_{u}$ is a straight percentage of agreement measurement, "a high coefficient is indicative of a high agreement between the readings of the respective MSS. ${ }^{1}$
b. Clustering Methocis

Based on the similarity coefficients just described, three clustering methods were employed in this study, namely, Single, Average and Complete Linkage.

Browar describes these as follows:
The basic outline for each of the clustering methods used is essentially the same. Dee besins aith a set of initially defined groups; the number of these groups amounting =o the total number of tiss in the study, and each group, thereiore, containing one MS. (Note: This is one of the major advantages of this method . . . it makes its classifications on the basis of no pre-determined, pre-defined grouping. You =annot, in fact, begin with a iess biased initial groupins than by putting each MS in its own, individual group.) Tiae similarizy coefeicient matrix (whichever one is being used) is then searched for the highest coffeicient, and the two MSS corresponding to this coetficient are ferged into one group. The coefficients between this new group and all zemaining groups sre then recalculated, and then search is again made for the hichest coefficient in this new matrix. Tiis process is repeated untii dil grotps (ali Mss) have been merged into a sincle group.

The three metiods of Singie, iverage and Complete binkage clustering differ in the manner in which the new coetificients are calculated. The procedure for each will je discussed separately.

$$
\begin{aligned}
D_{R_{a}} R_{b} & =0 \text { wien } R_{a} \neq R_{0}^{0} \\
& =1 \text { winen } R_{a}^{a}=R_{b}^{0} \\
S_{R_{a}} R_{b} & =0 \text { when } R_{a} \text { or } R_{b}=\text { soUL } \\
& =1 \text { when } R_{a}^{a} \text { aid } R_{D}^{b} \neq \text { SOUL }
\end{aligned}
$$

". . . function $D$ determines the asrement or disagrement between the readings of each $A S$, while Eunction $S$ determines whether or not either is contains a SOUL reading."

The result of such a calculation $"$ is a number between 0 and 1 , which is to be interpreted as follows: a coefficient of 1 indicates identical readinzs in all units, whereas 0 indicates no common readings; readings in between follow a simpia linear scale" (ibid., p. 3).
$1_{\text {Ibid. }}$

## Single Linkage

When calculating the similarity coefficient between two groups of MSS (each containing any given number of MSS), the value which determines the new value in Single Linkage clustering is the highest coefficient between any pair of :ISS, one taken from one group, and one from the other. For example, two groups will merge at a similarity coefficient level of 90 if the coefficient between any MS in one group and any MS in the other is 90 or above. This is why this method is also referred to as the Nearest Neighbur method, as the value of the new coerficient is equal to the coefficient between the MSS in each group winch are most similar to one another.

Since the merging of two groups is dependent on the degree of similarity between any pair of MSS between the two groups, it is seen that groups tenc to merge very easily, and that the final classification consists primarily of rather broad, strung-out groups having been formed at a relatively high level. Eur zhis reason, it may be concluded that $i f$ twin MSS appear in the same group, it may or ay not indicate tnat they are cioseiy related: on the other inand, siace groups eand to form so easily, if two MSS remain in different groups until a rabatively low lavel, this would indicate that they are in ract significantly different. So put it another way, Singie Linkage ciustering does not tell one when two :ISS belong in tne sane group, but it does tail quite forcefully when they belong in separate zroups. This may seem at first to be a slight distinction, jut it is in actual zact an important one.

Complete Linkage
Complete Linkage ciustering is essentially the converse of Single Linkage. In Complete Linkage ciustering, the cceficient of two groups of MSS is ecquai to the lunest coefficient of the pairs of XSS between bota jroups. Called aiso the Farcliest Naizit bor method, it is based on the degree oi similarity between tile most uniike pair of $\mathbb{A S}$, one in one group, one in the other. To state it another way, in orier Eor two groups to merge at i coefficient level of, for examite go, the cnefficients between all the MSS in one group and all those in the other must be at ieast 90.

In the case of Complete Linkage iustering, then, the final classifications consist of very compact, smaller groups which have formed ar teintively low levels. In contrast with Single Linkage, groups form rather more difitculty with Complece inkage; therefore it may be seen that the fact that wo iss are in different groups may or may not indicate a high dissimilarity, but, since groups are not formed so easily, it is very signiticant if two MSS are in the same group at a relatively aistive ievel. Therefere, Singio and Complete Linkage complement one another quite well, che iomer giving an incication of the uverall pattern, separating the MSS into laroe, general groups, witile the latter gives a look within these groups, showing the detailed relationsinips within and between the various sub-groups.

Average Linkage
Average Linkage calculates its new coefficients by finding the average of all coefficients from all the possible pairs of MSS between the two groups. Thus it offers somershat of a compromise between the extremes of the Single and Complete Linkage methods; however, when the Single and Complete methods are used together, comparing and contrasting the results, Average linkage adds little to the total picture. ${ }^{1}$

## Application

In this study we have employed all three methods and herewith provide both the dendrofrapiic charts and the parallel computer merge calculations wioci have resulted. ${ }^{2}$ HoNever, as will be noted, wi usc as the basis for our interpretation of the data only the Compiate inkage dendrogram and its accompanying merge calculations, 3 ve co this for the following reason. Richards ias rigntly argued:

The quantitative relationsiip between manuscripts has one prominent asset and one serious iiabiifi $\%$. The most raluable aspect of quancitative anainsis is siat it siows the percentage of agreement between any two manuscripes, such as that det:een MSS 97 and i33j. When the two manuscripts Soth rank Eirst to one another out of the total number of manuscripts uncer onsideration, the value oi the percantaje rating is indisputaibie: but the value of the percentage of agreetent becomes less certain when any other number of manuscripts are added and all are compared together. Fins liabiifty nay je demonstrated quite simply.

If manuscripts $A$ and $B$ are ranked first to one another and relate to each other 95 percent of the time, their reiationsing
$I_{\text {Ibid. }}$ pp. $5-8$.
${ }^{2}$ For the three dendrocrams, see pp. 132 ; 145; and 157 ; and for the three parallel merge charts, see po. $133-44$; $146-56$; and 158 6 7 . We have providad the dendrograms, and their accompanying merge charts, of the unweignted Single Linkage and Average Linkage programs Eor those who may wisil to compare them with the unweisited Compiete Linkage dendrogram and merge chart winch form the basis of our analysis and interpretation.
${ }^{3}$ For the unweighted Complete Linkage dendrogram and merge chart on which our interpretation is based, see pp. 157 and $158-67$. The unweighted Similarity Coefficient and Taxuncmical charts are provided on pp. 168-37 and 188-207 for those wito migint wisn to check our analysis
is definite. However, when the third manuscript $C$ is added to $A$ and $B$, which we will sey also relates to A 95 percent of the time, it does not necessarily follow that $C$ also relates to $B$ 95 percent of the time. The places whers $C$ deviates from $A 5$ percent of the time may be completely different from the places where $A$ and $B$ deviate $\bar{f}$ rom one another 5 percent of the time; conceivably, therefore, while $C$ may de in agreement with a 95 percent of the time it might only agree with $B$ oo percent of the time. Graphically, this hypotinetical picture vould appear as follows, assuming there are units of variation, 1-100:

A agrees with $B$ in readings $1-95=95 \%$
A agrees with $C$ in readings $6-100=95 \%$
$B$ agrees with $C$ in readings $6-95=90 \%$
The chance that $B$ and $C$ would not share any of the readings not shared by $A$ and $B$ or $A$ and $C$ is small, but nevertheless it is a possibility. For this reason then it is imperative to check the relationsinips Ero- a second perspective before drawing conclusions. That is, one must see if $B$ and $C$ also agree in the neighborhoud of 95 percent of the time. If all of the combinations of corfarison besecen $A, B, C$ ( $A$ and $B, A$ and $C, B$ and $C$ ) all relatc i.c one another 95 percent of the time, then it may safely be concluded that their percentage relationsnip is reliable Eor purposes $\because$ grouping since, reierring to the hypotheticai diagram atove, it is impossibie that three manuscripts which agree with one another the same high percontaje vould have a significantly differont set of reacinss. On the other hand, if any of the combinatira.; show a smaller or iarger percentage oi agreement, it ; necessary to aliow zor the marsin of possible differen: ' ${ }^{\text {LTustrated above. Eurthermore, this check is less }}$ valiv .. to the lower percentages. This means that the lower the percentages of asrecment tie greater sill be the possibility for a different conifguration of readings.i

Richards sought to nande ais particuiar problem by the use of "a modified numerical taxonomical schome."' It is precisaly the problem that Richards recognizes and seeks to handle with his taxonomical procedures that is adequately dealt vith in the Complete Linkage clustering method.

Before we turn to our interpretation of the data as presented
by the computer in the unweignted coefficient and complete linkage
and interpretation.
${ }^{1}$ Classification, pp. 56-57.
${ }^{2}$ Ibid., pp. 57-69.
dendrogram and its accompanying merge analyses, we need to say something about the interpretation of the unweighted coefficient dendrograms.

Since these unweighted coefficients are simple "percentages of agreement," the closer to the 100 -percent line the groups come zugether the more similar tiney are."

When evaluatiag the Single Iinkage dendrogram, it is important to look for "a long horizontal distance jetween the points where two groups form and where they meet. This incicates a higher degree of dissimilarity . . . and thus a good dividing iine between groups."I And when interpreting the Complete inkase dendrogram notice snould be taken when "Einis horizontal ine is short and relatively far to the left." ${ }^{2}$ This indicates "a higher degree of similarity Eius indicaring that the YSS in question jeions in the same group." ${ }^{3}$ Thus it is necessary to ione Eor long horizontai dividers in the Single inanage dendrogram and shor horizontai ties in fla Compiete Linkage dendrugram. Of course, in reading the Average Linkage cendrogram it inil be important to Look Eor both reiativeiy iong horizontal dividers and short horizontal $i$ ies.
$1_{\text {Brower, }}$ "Computerized ClassiEication," ?. 3. ile adds, "It should be pointed out that rinen comparing two groups the relevant distance is between the point ahere the sroups form and where they merge, not between the merie point and the left marain. That point where a group jecomes a group is the lowest point at which all the groups (all the $: 1 S S$ ) witich comprise that group have merged."

$$
\begin{aligned}
& 2^{2} \text { Ibid., p. } 0 \\
& { }^{3} \text { Ibid. }
\end{aligned}
$$

## Interpretation

If the unweighted Complete Linkage dendrogram is interpreted together with its accompanying merge chart, it is clear that the first major percentage-of-similarity break occurs between the point at which Group $52^{1}$ merges with Group 2 (at $59.55 \%$ ) to form the major Group 2 and the point at which group 37 ( $=$ Group 39 in the Single and Average Linkage dendrograms) merges with Group 7 (at $41.55 \%$ ) to form the major Group 7 , a break of some 18.01 -percent. If the line of division is drawn at this point, it is also clear that the 86 manuscripts of the Epistle of James Eall into three major groups.

If we set aside, for the monent, Group 37 , a group witich seems to have a quite independent relationsinip Erom the remainder of the manuscripts, ${ }^{2}$ we are IeEt with some 77 manuscripts that appear to fall into two major groups, namely, Group 2 , which forms as a major group
 other major group at 50.7 -percent $n$ simirinane simiarity.

Group 2
Group 2, which contains 10 manuscripts (WSS 01031175134302 17350441241 i 739 2298), consists of two distinct subgroups wint ch we will designate Eor convenience Group $2^{a}$ (consisting of MSS 01031175
$1_{\text {Every manuscript has its own "sroup number" and erery cluster }}$ of manuscripts takes its "group number" from the number of the first manuscript in that eluster as indicated on the unweigited Complete Linkage dendrogram. As a result, the tiree major clusters are identified by the number of the Eirst manuscript in tiose clusters, name i $\because$, Group 2, Group 7, and Group 37. For the appropriate dendrusram, see p.
${ }^{2}$ Althougli it emerges as a group at a ratice high percentage point ( $73.76 \%$ ), it does not marge with the remainder of the manuscripts until a comparably low percentage point ( $39.58 \%$ ).

1243021735044 ), which emerges as a subgroup at the 65.49 percentage point, and Group $2^{\text {b }}$ (consisting of MSS 12411739 2293), which emerges as a subgroup at the 77.46 percentage point. Group $2^{\text {a }}$, in turn, consists of two identifiable groups, Group $2^{\text {aa }}$ (consisting of MSS 0103 1175 1243), which emerges as a subgroup at the 70.07 percentage point, and Group $2^{\text {ab }}$ (consisting of MSS 02 1735. 044), which emerges as a subgroup at the 75.56 percentage point.

Since the majority of the manuscripts in Grap 2 are usuaily recognized as Alewancian witncases in other sections of the New Testament, it is possiole that the manuscripts mich make up this group should be so designated.

Of the 10 manuscripes of Group 2, von Soden lisis 6 (MSS 0103 117502044 1739), ail of winch (with the single exception o $\because \because \mathrm{X}$ i739) he identifies as Egyptian (H). He designates US 1739 as ?alestinian ( $\mathrm{I}^{\text {b2 }}$ ). However, Gallagher has argued that yon Sojen erred in identifying :S 1739 as Paiestinian in James. He siouid have identizied it as Egyptian. ${ }^{1}$ Our study would seem to support Gailagher's contention. Furthermore, joth Kubo ${ }^{2}$ and Richards ${ }^{3}$ have concluded that YS 1739 presents an Alexandyian (or Egyptian) text in jude and I, II, and III John, respectively.

Again, of the 10 manuscripts of Group 2, Kubo lists 5 GSS 01 0302044 1739), ail of which he identifies as Alwandrian in Jude,
$1_{\text {"Von Soden's }}$ H-Text," pp. 106-7.
2"Textual Relationsinips in Judc," pp. 276-82.
${ }^{3}$ Classjfication, pp. 141, 197.
${ }^{4}$ "Textual Relationsinips in Jude," p. 280. Kubo adds, "In summary, $B$, $A$, and 33 are the strongest members of the Alexandrian group,
and Richards lists 8 (MSS 010311751245020441241 1739) all of which (with but one exception, namely, MS 1175 which he categorizes as $B^{6}$ ) he identifies as Alexandrian in $I, I I$, and III John. ${ }^{1}$

## Group 7

Group 7, which contains 67 manuscripts, consists of eleven distinguishable subgroups which we will designate, again for convenience, Group 7a (consisting of MSS 049185492038569171874124014242143 ), which emerges at tike 90.53 percentage point, Group $\boldsymbol{j}^{\text {b }}$ (consisting of MSS 1773371738253209020203043 ), wich emerges at the 38.73 percentage point, Group $7^{c}$ (consisting of ASS 381319319 iS9i 424 1888 383), which emerges at the 39.51 percentage point, Gruy $7^{j}$ (consisting of MS 491 and $T R$ ), wiich exerges at the $91 . \sigma_{1}$ percentage point, and Group $7^{e}$ (consisting of MSS 104 1998), winch emerges at the 35.71 percentage point.

At this juncture $\sim$ e shouid note $E$ hat Group $7^{b}$ merges with Group $7^{\text {a }}$ at the 87.41 percentage point, Group $:^{-c}$ merges witit Grouns iand $^{-3}$ and $7^{\text {b }}$ at the 86.67 percentage point, Group $7^{\text {d }}$ merges with Groups $i^{2}, i^{b}$, and $7^{\text {c }}$ at the 85.31 percentage ?oint, and Group merges with Groups $7^{\mathrm{a}}, 7^{\mathrm{b}}, 7^{\mathrm{c}}$, and $7^{\mathrm{d}}$ at the 33.33 percentage point to form a sisnificant group conplex: $7^{\text {a-e }}$.

Since a significant number of the manuscripts in this complex have been designated, in other sections of the New Testament. Byzantine, it is possijle that ail of these should be similarly assigned for the Epistle of James.
followed by 623 and 5 . Related weakly to these manuscripts in desconding order are (1) Y and 1611: (2) K ; (3) $\mathrm{C}, 1730$, 323 : (4) $\mathrm{p}^{{ }^{\prime-} .}$."
${ }^{l_{\text {Classification }}}$ Pp. $140-41,196-98$.

Of the 29 manuscripts involved, von Soden lists 23 (MSS 049920 $\begin{array}{lllllllllllllllllll}385 & 6 & 917 & 1874 & 2143 & 177 & 1738 & 263 & 209 & 020 & 203 & 38 & 1319 & 319 & 1891 & 424 & 383\end{array}$ 4911041898 337), three of which (MSS 6424 104) he identifies as Egyptian (H), two (YSS 049 O20) as Koine (K), and the remainder (YSS $92038591718742143177337173826312092033313193191891 \quad 383$ 491 1898) as Palestinian (I) for the Catholic Epistles in general. OE these 29 manuscripts, Kubo ${ }^{1}$ lists 5 (MSS 920 917 1874 020 319), all of which he designates as Byzantine in Jude and adds, "The large number of manuscripts classified under I by von Soden cannot be distinguished Erom the manuscripts of tie $X$ ! = Byantinel text." And of these same 29 manuscripts, Richards ${ }^{2}$ lists 20 (ISS 0491854
 1888 1898), $\because .$. (ij 6) of wnich he jdentifies as Aiaxandrian in $I, ~ I I$, and III John, one (XS 1898) as "mized" in I John and $\mathrm{XN}^{\mathrm{N}}$ in II and III John, ${ }^{3}$ two (MSS 917 i874) as "mixed" in I Join, $X^{\prime \prime}$ in II Jonn, and Byzantine in III john, one ( AS ós 3 ) as $M^{W}$ in 1 jehn and Byzantine in II and III John, one (iS 424) as $\mathfrak{S}^{N}$ in II Joinn and Byzantine in $I$ and III Jonn, one (:IS 2143) as if in II Jonn and Byantine in $I$ and II John, and the remainder (GSS 049 1854 920 $124014241771738020 \quad 38$ 13193191891 1888) as Byzantine in all circe epistlos.
$1_{\text {"Textuai Selationsinips in Jude," p. } 280 .}$
${ }^{2}$ Classification, ?p. 156-59, 178, 196-98.
${ }^{3}$ With respect to the use 0 i his term "nixed" and his siglum $M^{W}$, Richards axplains: "The manusceipts in tie $\because$ group may be ciaracterized as mixed in two ways: (i) They share group readinss (a) with A which are not found in $B$; (b) which belong to some of the groups in both A and B; (c) with 5 wilich are not in A. (2) They have considerably more readings against the $T R$ than the $B$ manuscripts, but not as many as the A manuscripts, and cten these non-TE readines are seattered and form no pattern mong themselves. Here and there a non-TR

Group ${ }^{\text {F }}$ (consisting of MSS $5122310221245 \quad 226 \quad 483 \quad 9591889$ 2423182954748992715979992401 1610) emerges as a group at the . 83.30 percentage point and merges with the Group $7^{\text {a-e }}$ complex at the 81.25 percentage point. Since the majority of these are identified as Byzantine in other sections of the New Testament it is probabli: that they should be so assigned for the Epistle of James.

Of the 17 manuscripes of Group $7^{f}$, von Soden lists 11 (MSS 31 $22312452264831829547489927 \quad 999$ 1610), three (MSS 51223483 ) of which he designates as $K$, and the remainder as Palestinian ( $I$ ) in the Catholic Epistles in general. OE these kubo ${ }^{1}$ lists 6 (MSS 2231022 4832423489 2 401 ), all of which he identifics as Byzantine Eor Jude, and Richards ${ }^{2}$ lises 16 (all except MS 51), one (MS 2401) oe whicil he identifies as "mixcd" in I John and Byzantine in II and III Jonn, one (MS 959) as $M^{N}$ in III John and Eyzantine in I and II John, and one (YS 999) as "mixed" in I john, $\mathbb{A}^{\mathrm{w}}$ in III John, and B:zantine in II John. The remainder (MSS 223 1022 1245 226 $453188924231529 \begin{array}{llllll} & 247 & 439 & 027\end{array}$ 1597 1610) he identifies as Byzantine in all three epistles. Again, Kubo's observation that a "large number of the manuscripts classified under I by von Soden cannot be distinguished from the manuscripts of the $K$ text ${ }^{[3}$ is apropos.
reading appears, but not with any irequency at a given reading in the M manuscripts.
"When this second characteristic is duminant in a a manuscript it is not possible to speak of group readings as such. For Ehis reason we have formed a Mised-wild group ( $\mathrm{A}^{(\mathrm{V}}$ ) winch is not distinguished by its Eow group readings: rather, its manuscripts have many scatered $A$ and $B$ readings" (ibiu., ?. 176).
$l_{\text {"Textual Relationslips in }}$ Jude," p. 250.
${ }^{2}$ Classification, pp. 156-59, 178, 196-98.
${ }^{3}$ "Textual Relationships in Jude," p. 280.

Group $7^{\text {g }}$ (consisting of but one manuscript, namely, MS 1827) merges with the group complex $7^{a-f}$ at the 80.42 percentage point. It is identified by von Soden as Palestinian ( $\mathrm{I}^{\text {a2 }}$ ) for the Catholic Epistles in general. Richards, ${ }^{1}$ however, designates it as "mixed" in I John and as Byzantine in II and III John. Our calculations would indicate that it is closely related (at the 80.42 percentage point) to a significant number of probable Byzantine manuscripts.

Group $7^{\text {h }}$ (consisting basically of MSS 1243150318921249201
479) develops as a very closely related unit at the 07.34 percentaje point and omerge maily as a group with the addition of $M S 1875$ at the 95.17 percentage Oint, iS 1247 at the 92.96 percentage point, and MS 467 at the 33.33 percentage point. Group $7^{\mathrm{h}}$ merges with the Group $7^{\text {a-g }}$ complex at the 70.02 percentage point.

The manuscripts which make up Group $7^{\text {h }}$ are provably to be designated as Byzantine. Of the 9 manuscripts oi this group von Soden lists two (MSS 201479 , both of which he identifies as Koine (K) En the Catnolic Epistles. Kubo ${ }^{2}$ lists the same two manuscripts and designates both of them as Byzantine in Juce. Richards ${ }^{3}$ iists if of the ganuscripts (namely, MSS 1243201479 1876) and identifies all four as Byzantine in all three Johannine epistles.

Group 25 ( $=$ Group $7^{i}$ ) (consisting oi MS 323) merges with the Group $7^{\text {a-h }}$ complex at the 72.73 percentage point. Yon Soden designates it Palestinian ( $\mathrm{I}^{\text {b2 }}$ ) for the Catholic Epistles in gencral. But both

[^3]Kubo ${ }^{1}$ and Richards ${ }^{2}$ identify it as Alexandrian in Jude and $I, I I$, and III John, respectively, although Kubo does note that it is a weak representative of that text-type. ${ }^{3}$ Our analysis suggests that MS 323 is more closely related to those manuscripts which represent the Byzantine text traditions in other sections of the New Testament than it is to those manuscripts which witness to the Alexandrian tex: traditions. However we recognize that there is a considerable percentage-gap between the point $2 t$ winch the Group $7^{\text {a-h }}$ complex merges (at the 79.02 percentage faint) and the point at which 45323 merges with that complex (a- 're 72.73 yrecentage point).

Gr. $40\left(=\right.$ Group $\left._{7}^{j}\right)$ (consisting of MSS 6231845 j) emerges
as a clos zelated group at the 94.41 percentage point and merges with the $G: \quad-a-i$ comple only at the 54.79 percencage point. Thile von Soden identilic sll threc manuscripts as ?alestinian (I) in the Catholic Epistles, Zubo ${ }^{4}$ and Richards icicntify joti YS 523 and YS 5 as Alexandrian in jude and $I$, IT, and III Jonn, respectively. In ad-
 in II and III Join, ${ }^{5}$ Again our evaluation of the evidence would suggest that all three manuscripts (MSS 623 1845 j) are more closcly related to those manuscripts which represent the Byzantine coxt-type than they are to those that witness to the Alexandrian. Sut we also recog-
${ }^{1}$ "Textual Se!ationships in Jude," p. 280.
${ }^{2}$ Classification, pp. i4L, 196 .
3"Textual Relationsinips in Jude," p. 280.
${ }^{4}$ Ibid., p. 230 .
${ }^{5}$ Classification, pp. 141, 196.
${ }^{6}$ Kubo does not list MS 1345.
nize the significant percentage-gay between the point at which the Group $7^{a-h}$ complex merges (at the 79.02 percentage point) and the point at which Group 40 merges with that complex (at the 64.79 percentage point).

Group $19\left(=\right.$ Group $^{\mathrm{k}}$ ) (consisting of MSS 216440131530764269378 876) emerges as a group at the 72.92 percentage point and merges with the Group $7^{a-j}$ complex at the 59.71 percentage point. of these 3 maniscripts, von Soden lists 7 (MSS 21644030764269378 876), all of which he identifies as Palestinian (I) in the Catholic Epistles in general, Kubo ${ }^{1}$ lists 5 (MSS 21644064269 876), all of which he designates Byzantine, and Richards ${ }^{2}$ !ists 6 (ISS 216 4401315 ó42 69 376), one of winici ( 15 (69) he designates as $i^{W}$ in ail three epistles, one (MS 642) he Einds "rixed" in I jon and Ale:andrian in II and III John, one (MS 876) ne identifies as "mized" in I Jonn, $A^{N}$ in II john, and
 the Byzantine text-type.

Our analysis suscests that the manuscripts of Group 19 are more closely related to the Byzancine witnesses. Once again, however, we must note the important percentage-sap between the point at winch the Grouf $7^{\text {a-h }}$ complex emerges (at the 79.02 percentage point) and the point at which Group 19 merges with tiat complex (at the 39.71 percentage point).

Group 37
We must now return to Group 37. It consists of 9 manuscripts
$1_{\text {"Textual Relationships in Jude," pp. 279-80. }}$
${ }^{2}$ Classification, pp. 196, 197.
(MSS 52217992061522189061424121611 1505) which emerge as a group at the rather high percentage point ( $73.76 \%$ ) but do not merge with the remainder of the manuscripts until a comparatively low percentage point (39.58\%). These 9 manuscripts fall into two distinct subgroups wiicin may be conveniently designated Group $37^{\text {a }}$ (consisting of ASS 5221799 2061522 1890), which emerges as a suberoup at the 78.57 percentage point, and Group $37^{\mathrm{b}}$ (consisting of :ISS 61424121611 1505), wich emerges as a subgroup at the 33.33 percentage point. Group $37^{\text {a }}$, in turn, consists of two identifiable clusters, Group $37^{\text {aa }}$ (consistine of MSS 522 17g9 206), winch emerges ar a subgroup :t the 92.0 perceatage point, and Group $37^{\text {aj }}$ (consisting of :ISS 1522 1800), nicin amerzes as a subgroup at the 94.29 percentage point.
 1611), all of which he identifies as Palestinian (I) for the Catnolic
 he identifies as Aiexandrian, two (aSS $\because, 00$ 206) as Byzantine, anci one (MS 2412) as not jelonging to either (or any) sroup, anc Riciards
 of which he designates as Alexandrian in all three epistles. one (: S 206) as Alexandrian in I John and byzantine in II and III John, and one (MS 1799) as Alexandrian in I John, Byantine in II jonn, and $\because^{*}$ in III John.?

Our analysis would suggest that in the Epistle of James this

1"Textual Relationsinips in jude," p. 280. Kubo remarks: "!anuscript 2412 is a member of neither this the Alexandiand nor the first [the Byzantine] group." "2412 does not seem to tave any real cluse relationsiif to any sroup."
${ }^{2}$ Classification. pp. $140,196-98$.
group is not related directly to either the representatives of the Alexandrian text-type or the witnesses of the Byzantine text-type. For James it appears to cluster as an independent category. This group is deserving of separate and special consideration in the future,

## CONCLUSIONS

In this study we set out primarily to determine the phenetic relationships of 86 Greek manuscripts of the Epistle of James and only secondarily to propose their text-type relationships.

To accomplish this we have combined the Ouantitative Analysis and Claremont Profile me:hcds, as developed by McReynolds, Nisse, and Richards into a new and single method--a method we have chosen to cail Cluster Analysis. 3y means of a computer se ave applied this method to the raw data of our collations with the following results.

The 86 manuscripts studied fall into three major clusters:
(A) Group 2, wich consists of 10 manuscripes (MSS $0102030441 i j$ 12411243173517392298 ) and whicn may be conveniently divided into two subgroups--Group $2^{\text {a }}$ (ISS 01020304411751243 1735) and Group $2^{b}$ (MSS 124117392298 ).

Since the majority of the manuscripts in Group 2 are usually identified as Alexandrian witnesses in other sections of the New Testamerr, it is possible that the manuscripts that make up this group should be so designated. We propose that the manuscripts of Group $2^{a}$ be tentatively designated $A^{1}$ and those of Group $2^{b}, A^{2} .1$
(B) Group i, which contains 67 manuscripes that may be conveniently divided into 11 subgroups-Group $7^{a}$ (ASS $049 \quad 6 \quad 385$ 917 92012401424
${ }^{1}$ See the chart of Classifications on pp. 55-58 where we have provided our tentative text-type designations and those of von Soden (Catholics), Kubo (Jude), and Richards (I, II, and III John) for convenient comparison.

18541874 2143); Group $7^{b}$ (MSS 020177203203263337643 1738); Group $7{ }^{c}$ (MSS 3831942438313191888 1891) ; Group $7^{\text {d }}$ ([TR], MS 491); Group $7^{e}$ (MSS 104 1898); Group $7^{f}$ (MSS $51223226483489547 \quad 927 \quad 95999910221245$ 15971610132918892401 2423); Group $7^{8}$ (MS 1827); Group $7^{\text {h }}$ (MSS 201 46747912471248124915031876 1892); Group $7^{i}$ (MS 323); Group $7^{j}$ (MSS 5623 1845); and Group $7^{k}$ (MSS 69216307378440642876 1315).

Since a significant number of these manuscripts have been identified as Byzantine in text-type in other sections of the New Testament, we tentatively assign the majority of them to that text-type category. However, it is clear that while subgroups $7^{i-k}$ are more closely related to those manuscripts that are usually identified as Byzantine, they aiso have adistinct orientation to those manuscripts which are frequently identified as Alexandrian. We, therefore, propose that the manuscripts of Group $7^{\text {a-e }}$ be tentatively designated $B^{1}$; those of Group $i^{f}, B^{2}$; that of Group $7^{g}, B^{3}$; and those of Group $7^{h}, B^{4}$. Since the manuscripts of Groups $i^{i-k}$ have a marked orientation towards those manuscripts which are usually designated Alexandrian, we further porpose that MS 323 of Group $7^{1}$ be tentatively designated $B / A^{l}$; those of Group $7^{j}, 3 / a^{2}$; and those of Group $7^{k}, B / A^{3}$.
(C) Group 37, which consists of 9 manuscripes (MSS 206 j22 614 15051522161117991890 2412) which easily divide into two distinct subgroups--Group $37^{\text {a }}$ (MSS 2065221522 1799 1890) and Group $37^{\text {b }}$ (MSS 61415051611 2412). Since our Cluster Analysis indicates that this major cluster is not closely related to either of the A (Group 2) or B (Group 7) clusters, it should be given an independent sigium. Ne therefore propose that the manuscripts of Group $37^{a}$ be designated $C^{1}$ and those of Group $37^{b}, C^{2}$. As already stated, this Group (37) deserves separate and special consideration in the future.

Now that we have accomplished our purposes, it is clear that a program that will determine, by means of a computer, the identifying features of each cluster needs to be designed. When that is perfected, future classification of Greek manuscripes should be greatly facilitated.

## CLASSIFICATIONS

	ary	von Soden Catholics	Kubo   Jude	Ricil 1 Jn	$\begin{aligned} & \text { ds } \\ & \underline{Z} \mathrm{Jn} \end{aligned}$	$3 \mathrm{Jn}$	This Study James
1	01	H	A	$A^{2}$	$A^{2}$	$A^{2}$	$A^{1}$
2	02	H	A	$A^{2}$	$A^{2}$	$A^{2}$	$A^{1}$
3	03	H	A	$A^{2}$	$A^{2}$	$\mathrm{A}^{2}$	$A^{1}$
4	020	$\because$	B	$3^{6}$	$3^{6}$	$3^{6}$	$B^{1}$
$j$	044	:	A	$A^{2}$	$\mathrm{i}^{2}$	$\mathrm{A}^{2}$	$\therefore{ }^{1}$
6	049	K	-	$3^{6}$	$3^{6}$	$3^{6}$	$B^{1}$
7	5	$I^{\text {a }}$	A	$A^{3}$	$A^{3}$	$i^{3}$	$B / A^{2}$
8	6	\%	-	$A^{2}$	$A^{2}$	$A^{2}$	$B^{1}$
9	38	$I^{\text {a }}$	-	$\mathrm{B}^{\text {j }}$	$3^{7}$	$3^{7}$	$3^{1}$
10	51	$k^{\text {c }}$	-	-	-	-	$B^{2}$
11	69	$i^{\text {a }}$	B	$M^{\text {N }}$	$9^{\text {ix }}$	$9^{W}$	$B / A^{3}$
12	104	4	-	-	-	-	$B^{1}$
13	177	$I^{33}$	-	$\mathrm{B}^{3}$	$3^{3}$	$3^{3}$	$\mathrm{B}^{1}$
14	201	$i^{r}$	B	$3^{2}$	$B^{2}$	$3^{2}$	$\mathrm{B}^{\text {4 }}$
15	203	$I^{c 2}$	-	-	-	-	$B^{1}$
16	206	$I^{\text {bl }}$	3	$A^{1}$	B	B	${ }^{1}$
17	209	$L^{\text {a3 }}$	-	-	-	-	$B^{1}$
18	216	$i^{\text {b2 }}$	B	$B^{4}$	$\mathrm{B}^{4}$	$3^{4}$	$B / A^{3}$
19	223	$z^{\text {c }}$	B	$B^{3}$	$B^{3}$	$\mathrm{B}^{3}$	$B^{2}$
20	226	$I^{\text {a3 }}$	-	$\mathrm{B}^{2}$	$\mathrm{B}^{2}$	$\mathrm{B}^{2}$	$\mathrm{B}^{2}$
21	263	$\mathrm{I}^{\text {a }}$	-	-	-	-	$B^{1}$


Gregory   Number		von Suden Catholics	$\begin{aligned} & \text { Kubo } \\ & \text { Jude } \end{aligned}$	Richa 1 Jn	$\begin{array}{r} \hline \mathrm{ds} \\ 2 \mathrm{Jn} \end{array}$	3 Jn	This Study James
22	307	$\mathrm{I}^{\text {a } 1}$	-	-	-	-	$B / A^{3}$
23	319	$I^{\text {a3 }}$	B	$\mathrm{B}^{1}$	$B^{1}$	$B^{1}$	$B^{1}$
24	323	$I^{\text {b2 }}$	A	$a^{3}$	$A^{3}$	$A^{3}$	$B / A^{1}$
25	337	$I^{\text {a }}$	-	-	-	-	$B^{1}$
26	378	$I^{\text {c2 }}$	-	-	-	-	$B / A^{3}$
27	383	$I^{\text {c2 }}$	-	-	-	-	$\mathrm{B}^{1}$
28	385	$\mathrm{I}^{\text {c2 }}$	-	-	-	-	$B^{1}$
29	424	H	-	$B^{6}$	$\mathrm{M}^{\text {N }}$	$B^{6}$	$\mathrm{B}^{1}$
30	440	-	B	$B^{4}$	$B^{4}$	$3^{4}$	$B / A^{3}$
31	467	$i^{\text {a }}$	-	-	-	-	$B^{4}$
32	479	$\mathrm{K}^{\mathrm{c}}$	B	$3^{1}$	$B^{1}$	$3^{1}$	$\mathrm{B}^{4}$
33	483	$z^{c}$	3	$3^{1}$	$B^{1}$	$3^{1}$	$\mathrm{B}^{2}$
34	489	$I^{a 2}$	3	$3^{5}$	$3^{5}$	$3^{5}$	$\mathrm{B}^{2}$
35	491	$I^{\text {b2 }}$	-	-	-	-	$3^{1}$
36	322	$I^{\text {bl }}$	-	-	-	-	$C^{1}$
37	547	$L^{33}$	-	$3^{\text {tr }}$	$3^{\text {tr }}$	$3^{\text {tr }}$	$B^{2}$
38	614	$\mathrm{I}^{\mathrm{c} 2}$	-	$A^{1}$	$A^{1}$	$A^{1}$	$\mathrm{C}^{2}$
39	623	$\mathrm{I}^{\text {a2 }}$	A	$t^{3}$	$A^{3}$	$t^{3}$	$\mathrm{B} / \mathrm{A}^{2}$
40	642	$\mathrm{I}^{33}$	B	$M^{2}$	$4^{3}$	$A^{3}$	$B / A^{3}$
41	643	-	-	$\mathrm{M}^{\text {N }}$	B	B	$B^{1}$
42	876	$I^{C 2}$	B	$\mathrm{m}^{2}$	$\mathrm{M}^{\text {W/ }}$	$A^{1}$	$3 / A^{3}$
43	917	$I^{\text {al }}$	B	$M^{1}$	$\mathrm{M}^{\text {N }}$	B	$B^{1}$
44	920	$I^{33}$	3	$B^{5}$	$B^{5}$	$3^{5}$	$3^{1}$
45	927	$I^{32}$	-	$B^{5}$	$B^{5}$	$B^{5}$	$B^{2}$
46	959	-	-	$B^{2}$	$B^{2}$	$9^{\text {s }}$	$\mathrm{B}^{2}$


Gregory Number		von Soden Catholics	Kubo Jude	Richa 1 Jn	$\begin{aligned} & 1 \mathrm{~s} \\ & 2 \mathrm{Jn} \end{aligned}$	$3 \mathrm{Jn}$	This Study James
47	999	$I^{33}$	-	$\mathrm{M}^{2}$	B	$M^{W}$	$B^{2}$
48	1022	-	B	$B^{4}$	$B^{4}$	$B^{4}$	$B^{2}$
49	1175	H	-	$B^{6}$	$B^{6}$	$B^{6}$	$A^{1}$
50	1240	-	-	$B^{t r}$	$B^{t r}$	$B^{t r}$	$\mathrm{P}^{1}$
51	1241	-	-	$A^{3}$	-	-	$d^{2}$
52	1243	-	-	$A^{3}$	$A^{3}$	$A^{3}$	$A^{1}$
53	1245	$\mathrm{I}^{\mathrm{Cl}}$	-	$B^{4}$	$B^{4}$	$B^{4}$	$\mathrm{B}^{2}$
54	1247	-	-	-	-	-	$3^{4}$
55	1248	-	-	$B^{2}$	$\mathrm{B}^{2}$	$3^{2}$	$B^{4}$
56	1240	-	-	-	-	-	$\mathrm{B}^{4}$
57	1315	-	-	$3^{4}$	$3^{4}$	$3^{4}$	$B / A^{3}$
58	1319	$I^{33}$	-	$B^{7}$	$3^{7}$	$3^{7}$	$B^{1}$
59	1424	-	-	$3^{7}$	$3^{7}$	$3^{7}$	$3^{1}$
60	1503	-	-	-	-	-	$3^{4}$
61	1505	-	-	-	-	-	$c^{2}$
62	1522	$\Psi^{\text {a3 }}$	B	$\mathrm{H}^{\mathrm{W}}$	3	$M^{W}$	$C^{1}$
63	1597	-	-	$B^{3}$	-	-	$3^{2}$
64	161.0	$L^{\text {c2 }}$	-	$\mathrm{B}^{4}$	$3^{\text { }}$	$3^{4}$	$3^{2}$
65	1611	$I^{\subset l}$	A	$A^{1}$	$A^{1}$	$A^{1}$	$\mathrm{c}^{2}$
66	1735	-	-	-	-	-	$A^{1}$
67	1738	$I^{\text {a }}$	-	$B^{4}$	$3^{4}$	$3^{4}$	$B^{1}$
68	1739	$i^{b 2}$	A	$A^{3}$	$A^{3}$	$A^{3}$	$A^{2}$
69	1799	-	B	$A^{1}$	B	$x^{\text {iN }}$	$C^{1}$
70	1827	$\sum^{32}$	-	$\mathrm{M}^{2}$	$B$	B	$B^{3}$
71	1829	$I^{\text {al }}$	-	$B^{1}$	$B^{1}$	$B^{1}$	$B^{2}$


Gregory Number		von Soden Catholics	Kubo Jude	Riclia 1 Jn	$\begin{aligned} & 1 \mathrm{~s} \\ & 2 \mathrm{Jn} \end{aligned}$	3 Jn	This Study James
72	1845	$\mathrm{I}^{\text {a }}$	-	$M^{W}$	$A^{3}$	$A^{3}$	$B / A^{2}$
73	1854	-	-	$B^{\text {tr }}$	$B^{t r}$	$B^{t r}$	$B^{1}$
74	1874	$I^{\text {al }}$	B	$\mathrm{M}^{1}$	$M^{\text {w }}$	B	$B^{1}$
75	1876	-	-	$\mathrm{B}^{2}$	$\mathrm{B}^{2}$	$\mathrm{B}^{2}$	$B^{4}$
76	1888	-	-	$B^{6}$	$B^{6}$	$B^{6}$	$B^{1}$
77	1889	-	-	$\mathrm{B}^{2}$	$\mathrm{B}^{2}$	$\mathrm{B}^{2}$	$B^{2}$
78	1890	-	-	-	-	-	$\mathrm{Cl}^{1}$
79	1891	$I^{\text {bl }}$	-	$B^{1}$	$\mathrm{B}^{1}$	$B^{1}$	$B^{1}$
80	1892	-	-	-	-	-	$B^{4}$
81	1893	$\mathrm{I}^{\text {a }}$	-	$x^{1}$	$M^{*}$	$\underbrace{\text { N }}$	$B^{1}$
82	2143	$I^{\text {a }}$	-	$B^{6}$	$B^{6}$	$\mathrm{M}^{\text {N }}$	$B^{1}$
83	2298	$I^{\text {b2 }}$	-	-	-	-	$A^{2}$
84	2401	-	B	$M^{2}$	B	B	$B^{2}$
85	2412	-	A	$A^{1}$	$A^{1}$	$A^{1}$	$C^{2}$
86	2423	-	( $\mathrm{M}^{\text {N }}$ )	$B^{3}$	$5^{3}$	$B^{3}$	$B^{2}$

## UNITS OF VARIATION AND THEIR SUPPORT

1 JAMES 1:1

(1)	THEOU	KAI						79/	94.0\%
	TR	01	02	03	020	044	049	5	6
	38	51	69	104	177	201	203	209	215
	223	226	263	307	319	323	337	383	424
	440	467	479	483	489	491	547	623	64 ?
	643	876	917	920	927	959	999	1022	1175
	1240	1241	1243	1245	1247	1248	1315	1319	1424
	1503	1505	1522	1597	1610	1611	1735	1738	1739
	1827	1829	1845	1854	1874	1876	1888	1825	189,
	189 i	1892	1898	2143	2298	2401	2423		
(2)	THEO:	- \% 2 ?	S KAI					$5 /$	6.0\%
	205	522	614	1799	2412				
(S)	375:	THEOU	KAI	TROS					
(L)	305	$12!9$							

7 …...

(1) | UMRN |  |  |  |  |  | $80 /$ | 94.18 |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TR | 01 | 02 | $n 3$ | 020 | 044 | 049 | 5 | 6 |
| 38 | 51 | 69 | 104 | 177 | 201 | 203 | 209 | 216 |
| 223 | 226 | 263 | 307 | 319 | 323 | 337 | 378 | 383 |
| 424 | 440 | 467 | 479 | 483 | 489 | 491 | 547 | 623 |
| 642 | 643 | 876 | 917 | $92 n$ | 927 | 959 | 999 | 1022 |
| 1175 | 1240 | $i 241$ | 1243 | 1245 | 1247 | 1248 | 1315 | 1319 |
| 1424 | 1503 | 1505 | 1522 | 1597 | 1610 | 1611 | 1735 | 1738 |
| 1739 | 1827 | 1829 | 1845 | 1854 | 1874 | 1876 | 1888 | 1889 |
| $189 n$ | 1891 | 1892 | $i 898$ | 2143 | 2298 | 2401 | 2423 |  |

(2)	$0 M$				512	$5 /$	$5.9 \%$

(L) $385 \quad 1249$

```
Units of Variation and Their Support (Cont.)
```

10 JAMES $1: 5$
(1) M8

M8							$40 / 47.1 \%$	
TR	01	02	03	020	044	5	104	206
209	216	323	440	483	489	491	522	614
623	917	927	1175	1241	1243	1315	1505	1522
1611	1735	1739	1799	1827	1829	1845	1874	1890
1898	2143	2298	2412					

(2) OUK |  |  |  |  |  | $45 ;$ | $52.9 \%$ |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 049 | 6 | 38 | 51 | 69 | 177 | 201 | 203 | 223 |
| 226 | 253 | 307 | 319 | 337 | 378 | 383 | 424 | 467 |
| 479 | 547 | 642 | 643 | 876 | 920 | 959 | 999 | 1022 |
| 1240 | 1245 | 1247 | 1248 | 1319 | 1424 | 1503 | 1597 | 1010 |
| 1738 | 1854 | 1876 | 1888 | 1889 | 1891 | 1892 | 2401 | 2423 |

(1) $385 \quad 1249$

20 JAMES 1:7

(1)	0							79/	2.9\%
	TR	01	22	23	222	? 24	049	5	6
	38	51	69	104	177	201	203	206	229
	216	223	226	263	307	319	323	337	378
	383	424	440	467	479	483	439	491	522
	547	623	642	643	876	917	920	927	959
	999	1022	1175	1240	1241	1243	1245	; 247	1248
	1319	1424	1503	1522	1597	1610	1735	1738	1739
	1827	1829	1845	1854	1374	1376	1888	1889	1890
	1891	1892	1898	2143	2298	2401	2423		
(2)	OM							61	7. $1 \%$
	614	1315	1505	ió11	1799	2412			
(L)	385	1249							

Units of Variation and Their Support (Cont.)

21 JAMES ${ }^{1}: 7$


30 JAMES i:ii

(1) | AUTOU(1) |  |  |  |  | $78 / 91.8 \%$ |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $T R$ | 01 | 02 | 03 | $n 20$ | 044 | 049 | 5 | 6 |
| 38 | 51 | 69 | 104 | 177 | 201 | 203 | 209 | 216 |
| 223 | 226 | 263 | 307 | 319 | 323 | 337 | 378 | 383 |
| 424 | 440 | 467 | 479 | 483 | 489 | 491 | 547 | 023 |
| 62,2 | 643 | 876 | 917 | 920 | 927 | 959 | 999 | 1022 |
| 1175 | 1240 | 1241 | 1243 | 1245 | 1247 | 1248 | 1315 | 1319 |
| 1424 | 1503 | $i 522$ | 1597 | 1510 | 1735 | 1738 | 1739 | 1027 |
| 1829 | 1845 | 1854 | 1874 | 1876 | 1883 | 1839 | 1890 | 1801 |
| 1892 | 1898 | 2143 | 2298 | 2401 | 2423 |  |  |  |

$\begin{array}{llllllllll}\text { (2) } & 0 M & & & & & & 7 \% \\ 206 & 522 & 614 & i 505 & 1611 & 1799 & 2412 & & 8.2 \%\end{array}$
(L) $385 \quad 1249$

Units of Variation and Their Support (Cont.)

35 JAMES 1:12

(1)	0 K	Ios						73/	83.9\%
	TR	020	049	5	6	38	51	69	104
	177	201	203	209	216	223	226	307	319
	337	378	383	385	424	440	467	479	483
	489	491	522	614	623	542	643	876	917
	920	927	959	999	1222	1240	1243	12.45	1247
	1248	1249	:315	1319	1424	1503	$15 \cap 5$	1522	1597
	1610	1611	1738	1799	1827	1845	i854	1874	1876
	1888	1889	1890	1891	1892	1898	2145	2401	2412
	2423								
(2)	0 T 4	OS						7\%	3.0\%
	323	547	1175	1241	1735	1739	2298		
(3)	KURI							21	2.3\%
	263	1829							
(4)	כM							5!	5.7\%
	21	02	23	044	226				

41 JAMES : : 13

(1)	Tou							61	5.9\%
	TP	51	223	1222	1245	1315			
(2)	OM							81!	93.19
	$\bigcirc 1$	22	23	ก20	044	? 49	5	6	38
	69	104	177	221	203	206	209	216	326
	263	307	319	323	337	378	383	385	424
	440	$40 \%$	479	483	489	49 i	522	547	514
	623	642	643	876	017	习20	327	959	399
	1175	1240	1241	1243	1247	1248	1240	1319	1424
	1503	1525	:522	1597	1610	i5:1	:735	1738	1739
	1799	1827	1829	1845	1854	1874	:370	$i 888$	1889
	1890	1891	1892	1898	2143	2290	2401	2412	2423

## Units of Variation and Their Support (Cont.)

51 JAMES 1:17

(1) | APO |  |  |  |  |  | $74 /$ | $85.1 \%$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $T R$ | 01 | 02 | 03 | 020 | 044 | 049 | 6 | 38 |
| 51 | 69 | 177 | 201 | 203 | 206 | 209 | 223 | 226 |
| 263 | 307 | 319 | 323 | 337 | 378 | 385 | 479 | 483 |
| 491 | 522 | 547 | 614 | 642 | 643 | 876 | 917 | 920 |
| 959 | 099 | 1022 | 1175 | 1240 | 1241 | 1243 | 1245 | 1247 |
| 1248 | 1249 | 1319 | 1424 | 1503 | 1505 | 1522 | 1597 | 1610 |
| 1611 | 1735 | 1738 | 1739 | 1799 | 1827 | 1829 | 1854 | 1874 |
| 1876 | 1889 | 1890 | 1891 | 1892 | 1898 | 2143 | 2298 | 2401 |
| 2412 | 2423 |  |  |  |  |  |  |  |

 $927 \quad 13 i 5 \quad 1845 \quad 1888$

52 JAMES 1:17


```
Units of Variation and Their Support (Cont.)
```

```
54 JAMES 1:17
(1) APOSKIASMA
\begin{tabular}{rrrrrrrrr}
\(T R\) & 02 & 020 & 044 & 049 & 5 & 6 & 38 & 51 \\
69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 \\
226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 \\
623 & 642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 \\
1022 & 1175 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 \\
1315 & 1319 & 1424 & 1503 & 1522 & 1597 & 1610 & 1611 & 1735 \\
1738 & 1739 & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 \\
1888 & 1889 & 1890 & 1891 & 1892 & 1898 & 2143 & 2298 & 2401
\end{tabular} 2423
(2) APOSKIASMATSS
\(\begin{array}{lllll}01 & 03 & 614 & 1505 & 2412\end{array}\)
```

```
58 JAMES - ! !
```

58 JAMES - ! !
(1)

$E$	-WEIS
T	-1
30	


216	223	263	307	319	323	337	378	383


385	424	440	467	479	480	$49 i$	522	547


614	523	642	643	875	917	920	927	999


1022	1175	$124 n$	$i 241$	1243	1245	$i 247$	1248	$i 249$


| 1319 | 1424 | 1503 | 1505 | $i 522$ | $i 597$ | $i 6 i 1$ | 1735 | 1738 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 1799 | 1827 | $i 829$ | $i 845$ | 1854 | 1874 | 1876 | 1888 | 1889 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllll}1890 & 1891 & 1892 & 2143 & 2401 & 2412 & 2423\end{array}$

(2) +GAR $5 / 6.0 \%$ $\begin{array}{lllll}226 & 433 & 959 & 1610 & 2298\end{array}$
(S) 1315: + CAAR 0 THEOS
(S) 1898: fuTOE GAR BOUL.BTHETS
(U) 1739

```

Units of Variation and Their Support (Cont.)

60 JAMES \(1: 18\)
(1) \begin{tabular}{rrrrrrrrr}
\multicolumn{9}{c}{\(A P E K J 8 S E N\)} \\
\(T R\) & 01 & 02 & 03 & 020 & 044 & 049 & 5 & 6 \\
38 & 51 & 69 & 104 & 177 & 201 & 203 & 209 & 216 \\
223 & 226 & 263 & 307 & 319 & 323 & 337 & 383 & 385 \\
424 & 440 & 467 & 479 & 483 & 489 & 491 & 547 & 623 \\
642 & 643 & 917 & 920 & 927 & 959 & 999 & 1022 & 1175 \\
1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
1424 & 1503 & 1597 & 1610 & 1611 & 1735 & 1738 & 1739 & 1827 \\
1829 & 1845 & 1854 & 1874 & 1876 & 1838 & 1889 & 1891 & 1892 \\
1898 & 2143 & 2298 & 2401 & 2423 & & & &
\end{tabular}
\(\begin{array}{llllllllll}\text { (2) EPOISSEN } \\ 206 & 378 & 522 & 614 & 376 & 1505 & 1522 & 1799 & 1890 \\ 2412 & & & & & & & & & \\ 240\end{array}\)

61 JAMES 1:18

(2)
\begin{tabular}{lllllllll}
En: \\
01 & 22 & 244 & 1022 & 1175 & 1241 & 1245 & 1739 & \(11.5 \%\) \\
1827
\end{tabular} 2235

Units of Variation and Theis Support (Cont.)

74 JAMES 1:20
(1) OU KATERGAZETAI

79 JARSS : .
(1) \(D E\)
\begin{tabular}{rrrrrrrrr}
DE & & & & & & & \(83 /\) & \(95.4 \sigma\) \\
\(T R\) & 01 & 02 & 03 & 020 & 044 & 049 & 5 & 6 \\
38 & 51 & 69 & 104 & 177 & 201 & 203 & 206 & 209 \\
216 & 223 & 226 & 263 & 307 & 319 & 323 & 337 & 375 \\
383 & 385 & 424 & 440 & 467 & 479 & 483 & 491 & 547 \\
614 & 623 & 642 & 643 & 876 & 917 & 920 & 959 & 999 \\
1022 & 1175 & 1240 & \(i 241\) & 1245 & 1247 & 1248 & 1249 & 1515 \\
1319 & 1424 & 1503 & 1505 & 1522 & 1597 & 1510 & 1611 & 1735 \\
1738 & 1739 & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1376 \\
1888 & 1889 & 1890 & 1891 & 1892 & 1898 & 2143 & 2298 & 2401
\end{tabular} \(2412 \quad 2423\)
(2) \(O M\)

4/ 4.6\%

\section*{Units of Variation and Their Support (Cont.)}

80 JAMES 1:22
\begin{tabular}{lrrrrrrrr}
(1) LOGOU & & & & & & & \(75 / 86.2 \%\) \\
TR & 01 & 02 & 03 & 020 & 044 & 049 & 5 & 6 \\
38 & 51 & 69 & 104 & 177 & 201 & 203 & 206 & 209 \\
216 & 223 & 226 & 263 & 307 & 319 & 323 & 337 & 385 \\
424 & 440 & 479 & 483 & 489 & 491 & 522 & 547 & 614 \\
623 & 642 & 643 & 876 & 917 & 920 & 1022 & 1175 & 1240 \\
1241 & 1243 & 1245 & 1248 & 1249 & 1315 & 1319 & 1424 & 1503 \\
1597 & 1610 & 1611 & 1735 & 1738 & 1739 & 1799 & 1829 & 1845 \\
1854 & 1874 & 1876 & 1888 & 1891 & 1892 & 1898 & 2143 & 2298 \\
2401 & 2412 & 2423 & & & & & & \\
(2) NOMOU & & & & & & & \(7 /\) & \(8.0 \%\) \\
& 378 & 467 & 1247 & 1522 & 1827 & 1889 & 1890 & \\
(3) LOGUN & & & & & & & \(5 /\) & \(5.7 \%\) \\
& \(38 j\) & 927 & 959 & 999 & 1505 & & & \\
& & & & & & & &
\end{tabular}

81 JAMES 1:22
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(1)} & MONON & AK? & TAI & & & & & \(78 /\) & 39.7\% \\
\hline & TR & 01 & 02 & 020 & 044 & 049 & 5 & 6 & 38 \\
\hline & 51 & 69 & 104 & 177 & 201 & 203 & 229 & 216 & 223 \\
\hline & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
\hline & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 547 & 623 \\
\hline & 642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 & 1022 \\
\hline & 1175 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 \\
\hline & 1319 & 1424 & 1503 & 1522 & 1597 & 1610 & 1735 & 1738 & 1739 \\
\hline & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1891 \\
\hline & 1892 & 1898 & 2143 & 2298 & 2401 & 2423 & & & \\
\hline \multirow[t]{2}{*}{(2)} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{AKROATAL MONON}} & & & & & \(9{ }^{9}\) & 10.3\% \\
\hline & & & & 614 & 1505 & 1611 & 1799 & 1890 & 2412 \\
\hline
\end{tabular}
```

Units of Variation and Their Support (Cont..)

```

82 JAMES 1:23
(1) \begin{tabular}{rrrrrrrrr}
OTI & & & & & & \(82 /\) & \(94.3 \%\) \\
TR & 01 & 03 & 020 & 044 & 049 & 5 & 6 & 38 \\
51 & 69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 \\
223 & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 \\
547 & 614 & 623 & 642 & 643 & 876 & 917 & 920 & 927 \\
959 & 999 & 1022 & 1175 & 1240 & 1245 & 1247 & 1248 & 1249 \\
1315 & 1319 & 1424 & 1503 & 1505 & 1522 & 1597 & 1610 & 1611 \\
1738 & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 \\
1889 & 1890 & 1891 & 1892 & 1898 & 2143 & 2298 & 2401 & 2412 \\
2423 & & & & & & & &
\end{tabular}
(2) \(O M\) 5/ 5.7\%

84 J.PES 1:23

(2) NO: \(\mathrm{N}: 18 / 20.9 \%\)
\(\begin{array}{llllllllll}104 & 201 & 209 & 216 & 378 & 467 & 479 & 1247 & 1248\end{array}\) \(\begin{array}{lllllllllllllllll}1249 & 1503 & 1829 & 1876 & 1889 & 1890 & 1892 & 2401 & 2423\end{array}\)
(S) 385: LOGOS
```

Units of Variation and Their Support (Cont.)

```

90 JAMES 1:24
(1) GAR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(2)} & \multicolumn{5}{|l|}{DE} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{5/ 5.7\%}} \\
\hline & 378 & 614 & 1505 & 1611 & 2412 & & \\
\hline \multirow[t]{2}{*}{(3)} & OM & & & & & \multirow[t]{2}{*}{31} & \(3.4 \%\) \\
\hline & \(2^{n}\) & & \(\cdots 9\) & & & & \\
\hline
\end{tabular}

96 JAMES i:25
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(1)} & \multicolumn{2}{|l|}{OUTOS(1)} & & & & & & \multicolumn{2}{|l|}{77/ 88.5\%} \\
\hline & TP & 020 & 044 & 049 & 5 & 6 & 38 & 51 & 69 \\
\hline & 104 & 177 & 201 & 203 & 206 & 2 29 & 216 & 223 & 226 \\
\hline & 263 & 307 & 319 & 337 & 378 & 383 & 385 & 424 & 440 \\
\hline & 467 & 479 & 483 & 489 & 491 & 522 & 547 & 614 & 623 \\
\hline & 642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 & 1222 \\
\hline & 1240 & 1245 & 1247 & 1248 & 1249 & i315 & 1319 & 1424 & 1503 \\
\hline & 1505 & 1522 & 1597 & 1610 & 1517 & 1738 & 1799 & 1827 & 1829 \\
\hline & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1890 & 1891 & 1892 \\
\hline & 1898 & 2143 & 2401 & 2412 & 2423 & & & & \\
\hline \multirow[t]{3}{*}{(2)} & OM & & & & & & & 10/ & 11.58 \\
\hline & 01 & 02 & 03 & 323 & 1175 & 1241 & 1243 & 1735 & 1739 \\
\hline & 2298 & & & & & & & & \\
\hline
\end{tabular}

\section*{Units of Variation and Their Support (Cont.)}

100 JAMES 1:26
(1) EI TIS \begin{tabular}{rrrrrrrrr}
TR & 01 & 02 & 03 & 020 & 044 & 049 & 5 & 6 \\
38 & 51 & 104 & 177 & 201 & 203 & 206 & 209 & 216 \\
223 & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
385 & 424 & 440 & 479 & 483 & 489 & 491 & 522 & 547 \\
623 & 642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 \\
1022 & 1240 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 & 1424 \\
1503 & 1505 & 1522 & 1597 & 1610 & 1611 & 1735 & 1738 & 1799 \\
1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1890 \\
1891 & 1092 & 1898 & 2143 & 2401 & 2423 & & &
\end{tabular}
(2) EI !L TTS 7/ 8.2\% \(\begin{array}{lllllll}69 & 467 & i 175 & 1241 & 1243 & 1739 & 2298\end{array}\)
(S) 614:
(S) 2412: II

105 JAISS \(:\) :26
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|l|}{SINAI SN UMIN} & & & & & 66. & 75.9\% \\
\hline & T? & 020 & 049 & 5 & 6 & 38 & 69 & 104 & 177 \\
\hline & 201 & 2n3 & 206 & 229 & 216 & 226 & 263 & 307 & 319 \\
\hline & 337 & 378 & 383 & 385 & 424 & 442 & 467 & 479 & 483 \\
\hline & 489 & 401 & 522 & 547 & 523 & 542 & 643 & 317 & 920 \\
\hline & 927 & 959 & 999 & 1240 & 1247 & 1248 & 1249 & i315 & 1319 \\
\hline & 1424 & i-n & 1522 & 1597 & 1610 & ; 738 & 1799 & ;829 & 1845 \\
\hline & 1854 & 1874 & 1876 & 1888 & 1889 & 1891 & 1892 & i898 & 2143 \\
\hline & 2298 & 2401 & 2423 & & & & & & \\
\hline \multirow[t]{2}{*}{(2)} & \multicolumn{3}{|l|}{en umin eivai} & & & & & 4/ & 4.6\% \\
\hline & 51 & 223 & 1022 & 1245 & & & & & \\
\hline \multirow[t]{3}{*}{(3)} & einai & & & & & & & 17/ & 19.5\% \\
\hline & 01 & \(\bigcirc 2\) & 03 & 044 & 323 & 614 & 876 & 1175 & 1241 \\
\hline & 1243 & 1505 & 1611 & 1735 & 1739 & i827 & 1890 & 2412 & \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)

106 JAMES 1:26
(1) AUTOU(1)
\begin{tabular}{rrrrrrrrr}
\multicolumn{8}{c}{ AUTOU(1) } & \\
TR & 01 & 02 & 020 & 044 & 049 & 5 & 6 & 38 \\
51 & 69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 \\
223 & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 \\
547 & 623 & 642 & 643 & 917 & 920 & 927 & 959 & 999 \\
1022 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 \\
1319 & 1424 & 1503 & 1597 & 1610 & 1735 & 1738 & 1739 & 1799 \\
1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1890 & 1891 \\
1892 & 1898 & 2143 & 2298 & 2401 & 2423 & & &
\end{tabular}
(2) EAUTOU \(\begin{array}{lllllllll}03 & 614 & 876 & 1175 & 1505 & 1522 & 1611 & 1827 & 2412\end{array}\)

107 JAFES 1:26
(1) AUTDU(2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{AUTOU(2)} \\
\hline TR & 01 & 02 & 020 & \(\bigcirc 44\) & 049 & 5 & 6 & 38 \\
\hline 51 & 69 & 104 & 177 & 201 & 203 & \(2!6\) & 209 & 216 \\
\hline 223 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
\hline 424 & 440 & 467 & 479 & 483 & 491 & 522 & 547 & 614 \\
\hline \(\ldots\) & 611? & 643 & 875 & 0.17 & 920 & 959 & 999 & 1022 \\
\hline \(1:\) & & :243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
\hline 1424 & 1503 & 1522 & 1597 & 1010 & 1735 & 1738 & 1739 & 1799 \\
\hline 1829 & 1845 & 1854 & 1074 & 1876 & 1888 & 1889 & 1890 & 189 \\
\hline 1892 & 1898 & 2143 & 2298 & 2401 & 241 & 242 & & \\
\hline
\end{tabular}
(2) EAMTOU 5/ 6.0\% \(\begin{array}{lllll}03 & 489 & 927 & 1505 & 1327\end{array}\)
(S) 1611: 0M
(0) \(226 \quad 1240\)
```

Units of Variation and Their Support (Cont.)

```
108 JAMES 1:27
 (1) TW 19/22.1\%
\begin{tabular}{rrrrrrrrr}
\(T R\) & 02 & 03 & 044 & 206 & 491 & 522 & 614 & 876 \\
1240 & 1241 & 1243 & 1505 & 1611 & 1735 & 1739 & 1799 & 2298
\end{tabular}
 2412
(2) \(O M\)
\begin{tabular}{rrrrrrrrr}
\(0 M\) & & & & & 38 & 51 & 69 & 104 \\
91 & 020 & 049 & 5 & 6 & 38 & 62 \\
177 & 201 & 203 & 209 & 216 & 223 & 226 & 263 & 307 \\
319 & 323 & 337 & 378 & 383 & 385 & 424 & 440 & 467 \\
479 & 483 & 489 & 547 & 623 & 642 & 643 & 917 & 920 \\
927 & 959 & 999 & 1022 & 1175 & 1245 & 1247 & 1248 & 1249 \\
1315 & 1319 & 1424 & 1503 & 1522 & 1597 & 1610 & 1738 & 1827 \\
1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1891 & 1892 \\
1898 & 2143 & 2401 & 2423 & & & & &
\end{tabular}
(U) 1890

112 JAMES : :27
(1) ASE iLu: EAJTON TBRETN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \\
\hline T9 & 01 & 33 & 222 & 049 & 5 & 0 & 38 & 5 \\
\hline 69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 23 \\
\hline 226 & 263 & 307 & 319 & 323 & 337 & \(37 \%\) & 383 & 85 \\
\hline 424 & 446 & 467 & 479 & 483 & 439 & 491 & 522 & 347 \\
\hline 623 & 642 & 543 & 375 & 917 & 920 & 927 & 959 & 99 \\
\hline 1022 & 13.5 & 124n & 1241 & 1243 & 1245 & 12.47 & 1248 & 1249 \\
\hline 1315 & 1319 & 142.4 & 1503 & 1522 & 1597 & 1017 & :735 & 738 \\
\hline 1739 & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 888 \\
\hline 1889 & 1890 & 1891 & 89,2 & 1898 & 214 & 22 & 4 & 2423 \\
\hline
\end{tabular}
(2) ASPILOUS EAUTOUS 28PETTE \(614 \quad 1505 \quad 1611 \quad 2412\)
(S) 02: ASPILON SEAUTON :8REIN
(0) 044

Units of Variation and Their Support (Cont.)

117 JAMES 2:1

(2) T8S DOX8S TDJ...CHRISTO: 9/ \(10.3^{\circ}\) \(\begin{array}{lllllllll}206 & 522 & 614 & i 505 & 1522 & 1611 & 1799 & 1890 & 2412\end{array}\)
```

120 JAME: `:2

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{N} & & & & & & & \multicolumn{2}{|l|}{78/89.7\%} \\
\hline & 02 & 020 & 049 & 5 & 6 & 38 & 51 & 69 \\
\hline 1 (i.). & 7 & 201 & 203 & 206 & 209 & 216 & 223 & 226 \\
\hline 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 \\
\hline 440 & 467 & 479 & 483 & 489 & 491 & 547 & 614 & 623 \\
\hline 642 & 643 & 876 & 917 & 920 & 927 & 359 & 999 & in2? \\
\hline 1240 & 1241 & 1243 & i245 & 1247 & 1248 & i249 & 1315 & i319 \\
\hline 1424 & 1503 & 1597 & 1010 & 1611 & 1735 & 1738 & 1739 & 1827 \\
\hline 1829 & 1845 & 1854 & :874 & \(i 875\) & 1888 & 1889 & 1891 & i892 \\
\hline 1898 & 2143 & 2298 & 2401 & 2412 & 2423 & & & \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)

122 JAMES 2:3
(1) K EAT EPIBLEPS8TE
(2) EPIBLESSUTE DE 15/17.4\% \(\begin{array}{llllllllll}03 & 044 & 206 & 522 & 014 & 1175 & 1241 & 1243 & 1505\end{array}\) \(1611 \quad 1739 \quad 1799 \quad 1890 \quad 2298 \quad 2412\)
(S) 1522: ᄃP:ZLEPS8TE :巨

125 JAMES 2:3
(1) ESTHETA I I N LAMDRAN

Units of Variation and Their Support (Cont.)

127 JAMES 2:3
(1) AUTW \begin{tabular}{crrrrrrrr}
TR & 020 & 049 & 5 & 6 & 38 & 51 & 69 & 104 \\
177 & 201 & 203 & 209 & 216 & 223 & 226 & 263 & 307 \\
319 & 323 & 337 & 378 & 383 & 385 & 424 & 440 & 467 \\
479 & 483 & 489 & 491 & 547 & 623 & 642 & 876 & 917 \\
920 & 927 & 959 & 999 & 1022 & 1240 & 1241 & 1245 & 1247 \\
1248 & 1249 & 1315 & 1319 & 1424 & 1503 & 1597 & 1610 & 1735 \\
1738 & 1739 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 \\
1889 & 1891 & 1892 & 1898 & 2143 & 2298 & 2401 & 2423 &
\end{tabular}
(2) \(O M\)
\begin{tabular}{rrrrrrrrr}
01 & 02 & 03 & 044 & 206 & 522 & 614 & 643 & 1175 \\
1243 & 1505 & 1522 & 1611 & 1799 & 1890 & 2412 & &
\end{tabular}

130 JAMES 2:3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(1)} & EKEI & 8 KA & & & & & & 81/ & 93.19 \\
\hline & TP & 01 & 32 & \(\bigcirc 20\) & \(\bigcirc 44\) & 049 & 5 & 6 & 38 \\
\hline & 51 & 69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 \\
\hline & 223 & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
\hline & 385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 \\
\hline & 547 & 614 & 623 & 642 & 643 & 876 & 917 & 320 & 927 \\
\hline & 959 & 999 & 1222 & 1240 & 1245 & 1247 & 1248 & 1249 & 1315 \\
\hline & 1319 & 1424 & \(i 503\) & 1595 & i522 & 1597 & 1610 & 1611 & 1735 \\
\hline & 1738 & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 \\
\hline & 1889 & 1890 & 1891 & 1892 & 1898 & 2143 & 2401 & 2412 & 2423 \\
\hline \multirow[t]{2}{*}{(2)} & 8 KA & THOU & EI & & & & & 61 & 6.9\% \\
\hline & 03 & 1175 & \(12^{41}\) & 1243 & 1739 & 2298 & & & \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)

132 JAMES 2:3
(1) \(\mathrm{KDE}(2)\)
\begin{tabular}{crrrrrrrr}
HDE (2) & & & & & \multicolumn{2}{c}{\(71 / 81.6 \%\)} \\
\(T R\) & 01 & 020 & 049 & 5 & 6 & 38 & 51 & 69 \\
104 & 177 & 201 & 203 & 209 & 216 & 223 & 226 & 263 \\
307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 & 440 \\
467 & 479 & 483 & 489 & 491 & 547 & 623 & 642 & 643 \\
876 & 917 & 920 & 927 & 959 & 999 & 1022 & 1240 & 1245 \\
1247 & 1248 & 1249 & 1315 & \(i 319\) & 1424 & 1503 & 1505 & 1597 \\
1610 & 1735 & 1738 & 1827 & \(: 829\) & 1845 & 1854 & 1874 & 1876 \\
1888 & 1889 & 1891 & 1892 & 1898 & 2143 & 2401 & 2423 & \\
& & & & & & & & \\
\(O M\) & & & & & & & \(18 / 48\) \\
02 & 03 & 044 & 206 & 522 & 614 & 1175 & 1241 & 1243 \\
1522 & 1611 & 1739 & 1709 & 1890 & 2298 & 2412 & &
\end{tabular}

134 JAMES 2:3
(1) :IPO
\begin{tabular}{rrrrrrrrr}
UPO & & & & & & & \(69 /\) & \(80.2 \%\) \\
\(T R\) & 01 & 02 & \(n 3\) & 020 & 049 & 5 & 6 & 38 \\
51 & 69 & 104 & 177 & 201 & 203 & 209 & 216 & 223 \\
226 & 263 & 307 & 319 & 337 & 378 & 283 & 385 & 424 \\
440 & 467 & 479 & 483 & 489 & 491 & 547 & 623 & 643 \\
876 & 917 & 920 & 927 & 959 & 1022 & 1241 & 1243 & 1245 \\
1247 & 1248 & 1249 & 1315 & 1319 & 1424 & 1503 & 1597 & 1735 \\
1738 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 \\
1891 & 1892 & 1898 & 2143 & 2298 & 2423 & & &
\end{tabular}
(2) \(\operatorname{SPI}\)

17/ 19.8\%
\(\begin{array}{lllllllll}044 & 206 & 323 & 522 & 614 & 642 & 999 & 1175 & 1240\end{array}\) \(\begin{array}{llllllll}1505 & 15222 & 1610 & 1011 & 1739 & 1799 & 1890 & 2412\end{array}\)
(0) 2401

Units of Variation and Their Support (Cont.)

135 JAMES 2:4
(1) KAI (1)

140 JAVES 2:5
(1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{ADELPHOI MOU ASAD8TOI} & \multicolumn{2}{|l|}{76/ 92. 5 \%} \\
\hline T3 & \(\cdots 1\) & \(\bigcirc 2\) & 03 & 020 & 044 & 049 & 5 & 6 \\
\hline 51 & 69 & 104 & 177 & 201 & 203 & 209 & 216 & 223 \\
\hline 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
\hline 424 & 440 & 467 & 479 & 483 & 489 & 491 & 547 & 623 \\
\hline 642 & 643 & 876 & 917 & 920 & 927 & \(9 シ 9\) & 999 & in22 \\
\hline 1175 & \(1:\) & 1241 & 1245 & 1247 & 1248 & 1249 & 1315 & i319 \\
\hline 1424 & 1503 & 1597 & 1510 & 1735 & 1738 & 1739 & 1827 & 1829 \\
\hline 1845 & :854 & 1874 & 1876 & 1888 & 1889 & 1891 & ;892 & 1898 \\
\hline 2143 & 2298 & 2401 & 2423 & & & & & \\
\hline
\end{tabular}
(2) MDU ADELPMOI AGAP8TOI 8/ 9.5\% \(\begin{array}{llllllll}522 & 614 & 1243 & 1505 & 1611 & 1799 & 1890 & 2412\end{array}\)
(S) 38: AG4P8TOI KOU ADELPHOI
(S) 206: NOU AGAP8NOI ADELPCDI
(S) 1522: MOU ADELPHOI OI AGAPOTOI

Units of Variation and Their Support (Cont.)
:43 JAMES 2:5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{(1)} & TOU & KOSMOU & & & & & & 81/ & 93.1\% \\
\hline & TR & 02 & 020 & 044 & 049 & 5 & 6 & 38 & 51 \\
\hline & 69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 \\
\hline & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
\hline & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 \\
\hline & 614 & 623 & 642 & 643 & 876 & 917 & 920 & 927 & 959 \\
\hline & 999 & 1022 & 1240 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 \\
\hline & 1319 & 1424 & 1503 & 1505 & 1522 & 1597 & 1610 & i611 & 1735 \\
\hline & 1738 & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 \\
\hline & 1889 & 1890 & 1891 & 1892 & 1898 & 2143 & 2401 & 2412 & 2423 \\
\hline (2) & \multicolumn{2}{|l|}{TW KכSM} & & & & & & 61 & 6.9\% \\
\hline & 01 & 03 & 1175 & 1241 & 1739 & 2298 & & & \\
\hline
\end{tabular}

144 JAMES 2:5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & TouT & & & & & & & \multirow[t]{2}{*}{\(4 /\)} & \multirow[t]{2}{*}{4.6\%} \\
\hline & TR & 491 & 614 & 1247 & & & & & \\
\hline \multirow[t]{11}{*}{(2)} & OM & & & & & & & 83/ & 95.40 \\
\hline & 01 & 22 & 23 & 020 & 044 & 249 & 5 & 6 & 38 \\
\hline & 51 & 69 & 104 & 177 & 201 & 223 & 206 & \(2 \times 9\) & 210 \\
\hline & 223 & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
\hline & 385 & 424 & 440 & 467 & 479 & 483 & 489 & 522 & 547 \\
\hline & 623 & 642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 \\
\hline & 1022 & 1175 & 1240 & 1241 & 1243 & 1245 & 1248 & 1249 & 1315 \\
\hline & 1319 & 1424 & 1503 & 1505 & 1522 & 1597 & 1610 & 1611 & 1735 \\
\hline & 1738 & 1739 & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 \\
\hline & 1888 & 1889 & 1890 & i891 & 1892 & 1898 & 2143 & 2298 & 2401 \\
\hline & 2412 & 2423 & & & & & & & \\
\hline
\end{tabular}
```

Units of Variation and Their Support (Cont.)

```

151 JAMES 2:6
(1) OUCH \begin{tabular}{rrrrrrrrr}
OU & & & & & & \(76 /\) & \(87.4 \%\) \\
\(T R\) & 01 & \(n 3\) & 020 & 049 & 5 & 6 & 38 & 51 \\
69 & 104 & 177 & 201 & 203 & 209 & 216 & 223 & 226 \\
263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 \\
440 & 467 & 479 & 483 & 489 & 491 & 547 & 614 & 623 \\
642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 & 1022 \\
1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
1424 & 1503 & 1597 & 1610 & 1738 & 1739 & 1799 & 1827 & 1829 \\
1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1891 & 1892 & 1898 \\
2143 & 2298 & 2401 & 2423 & & & & &
\end{tabular}
\(\begin{array}{ccccccccc}\text { (2) OUCHI } & & & & & 11 / & 12.6 \% \\ 02 & 044 \\ 1890 & 2412\end{array}\)

153 JANTS 2:7
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & OKK & & & & & & & \(75 /\) & 86.2\% \\
\hline & TR & 01 & 73 & 020 & \(\bigcirc 49\) & 5 & 6 & 38 & 51 \\
\hline & 69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 \\
\hline & \(\because\) & 307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 \\
\hline & \(\because\) & 467 & 479 & 483 & 489 & 491 & 547 & 023 & 642 \\
\hline & 643 & 076 & 917 & 920 & 027 & 959 & 990 & i 222 & 1175 \\
\hline & 1240 & 1241 & i243 & 1245 & 1247 & 1248 & 1240 & 1315 & 1319 \\
\hline & 1424 & 1503 & 1597 & 1010 & 1738 & 1739 & id27 & 1829 & 1845 \\
\hline & 1854 & 1874 & 1076 & 1888 & 1889 & 1891 & 1892 & 1898 & 2143 \\
\hline & 2298 & 2001 & 2423 & & & & & & \\
\hline (2) & KAT & & & & & & & \(12!\) & 13.8\% \\
\hline & 02 & 044 & 263 & 522 & 614 & 1505 & i 522 & 1611 & 1735 \\
\hline & 1799 & 1890 & 2412 & & & & & & \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)

155 JAMES 2:7
(1) EPIKL8THEN
\begin{tabular}{rrrrrrrrr}
TR & 01 & 02 & 03 & 020 & 044 & 049 & 5 & 6 \\
38 & 51 & 69 & 104 & 177 & 201 & 203 & 209 & 216 \\
223 & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 547 \\
623 & 642 & 643 & 876 & 920 & 927 & 959 & 999 & 1022 \\
1175 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1319 \\
1424 & 1503 & 1597 & 1610 & 1735 & 1738 & 1739 & 1827 & 1829 \\
1845 & 1854 & 1876 & 1888 & 1889 & 1891 & 1892 & 1898 & 2143 \\
2298 & 2401 & 2423 & & & & & &
\end{tabular}
(2) \(\begin{array}{cccccccccc}\text { KL8THEP } & & & & & & 12! & 13.8 \% \\ 206 & 522 & 614 & 917 & 1315 & 1505 & 1522 & 1611 & 1799 \\ 1874 & 1890 & 2412\end{array}\)

163 JAMES 2:8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SEAR & & & & & & & \multicolumn{2}{|r|}{. \(2 \%\)} \\
\hline TR & 21 & 02 & 23 & 220 & 044 & 049 & 5 & 6 \\
\hline 201 & 203 & 226 & 323 & 385 & 424 & 467 & 479 & 483 \\
\hline 547 & 614 & 623 & 917 & 920 & 1022 & 1245 & 1248 & 1249 \\
\hline 1503 & 1505 & 1610 & \(i 611\) & 1735 & 1739 & 1829 & 1845 & 1854 \\
\hline 1874 & 1876 & 1888 & :088 & 1892 & 1898 & 2298 & 2423 & \\
\hline
\end{tabular}
(2) \(5 A: I T O N\) 42! \(48.8 \%\)
\begin{tabular}{lllllllll}
308 & 51 & 69 & 104 & 177 & 209 & 216 & 223 & 263
\end{tabular}
\begin{tabular}{lllllllll}
307 & 319 & 337 & 378 & 383 & 440 & 489 & 491 & 522
\end{tabular}
\begin{tabular}{lllllllll}
642 & \(6 ́ 43\) & 876 & 927 & 959 & 999 & 1175 & 1240 & 1241
\end{tabular}
\begin{tabular}{llllllllll}
1243 & 1247 & 1315 & \(i 319\) & 1424 & 1522 & \(i 597\) & \(i 738\) & 1799
\end{tabular} \(\begin{array}{llllll}1827 & 1890 & 1891 & 2143 & 2401 & 2412\end{array}\)
(S) 20ć: EAUTOUS
```

Units of Variation and Their Support (Cont.)

```

173 JAMES 2:10
(1) OLON TON NOMON

174 JAMES ?:1n
(1) T8R8SRI
(2) PL8RNSEI 10/ 11.8\%
\begin{tabular}{lllllllll}
72 & 206 & 522 & 614 & 1505 & 1522 & 1611 & 1799 & 1890
\end{tabular}
(3) TELESEI 4/ 4.7\%
\(\begin{array}{llll}044 & 1241 & 1739 & 2298\end{array}\)
(S) 999: POIESEI
(S) 1175: \(78: 8\)

Units of Variation and Their Support (Cont.)

194 JAMES 2:13
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \[
\begin{array}{r}
\mathrm{KAI} \\
\mathrm{TR}
\end{array}
\] & 38 & 491 & 547 & 1249 & 1891 & & 61 & 7.0\% \\
\hline (2) & OM & & & & & & & \(80 /\) & 93.0\% \\
\hline & 01 & 02 & 03 & 020 & 044 & 049 & 5 & 6 & 51 \\
\hline & 69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 \\
\hline & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
\hline & 424 & 440 & 467 & 479 & 483 & 489 & 614 & 623 & 64 \\
\hline & 643 & 876 & 917 & 920 & 927 & 959 & 999 & 1222 & 1175 \\
\hline & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1315 & 1319 & 1424 \\
\hline & 1503 & 1505 & 1522 & 1597 & 1610 & 1611 & 1735 & 1738 & 1739 \\
\hline & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 \\
\hline & 1890 & 1892 & i898 & 2143 & 2298 & \(240 i\) & 2412 & 2423 & \\
\hline
\end{tabular}
(0) 522

203 JANES 2:15

(2) \(O M\)

19: 22.1\% \(\begin{array}{lllllllll}01 & 03 & 5 & 0 & 69 & 327 & 323 & 385 & 623\end{array}\) \(\begin{array}{lllllllll}642 & 917 & i 241 & i 243 & i 245 & 1597 & i 739 & 1845 & 1874\end{array}\) 1898
(S) 1735: GAB
```

Units of Variation and Their Support (Cont.)

```
205 JAMES 2:15
(1) WSI
\begin{tabular}{rrrrrrrrr}
WSI & & & & & & & \(82 /\) & \(94.3 \%\) \\
\(T R\) & 02 & 020 & 044 & 049 & 5 & 6 & 38 & 51 \\
69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 \\
226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 \\
614 & 623 & 642 & 643 & 376 & 917 & 920 & 927 & 959 \\
999 & 1022 & 1240 & 1241 & 1245 & 1247 & 1248 & 1249 & 1315 \\
1319 & 1424 & 1503 & 1505 & 1522 & 1597 & 1610 & 1611 & 1738 \\
1739 & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 \\
1889 & 1890 & 1891 & 1892 & 1898 & 2143 & 2298 & 2401 & 2412 \\
2423 & & & & & & & &
\end{tabular}
\(\begin{array}{llllll}\text { (2) } & 04 & & & & \\ 01 & 03 & 1175 & 1243 & 1735\end{array}\)

213 JAMES 2:17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & & & & & \multicolumn{2}{|l|}{55/ 64.0\%} \\
\hline TR & 020 & 049 & 5 & 38 & 51 & 104 & 177 & \(2 ? 1\) \\
\hline 223 & 209 & 223 & 2206 & 263 & 319 & 323 & 337 & 383 \\
\hline 385 & 467 & 479 & 483 & 489 & 491 & 547 & 643 & 917 \\
\hline 920 & 927 & 959 & 993 & 1022 & 1240 & 1245 & 1247 & 1248 \\
\hline 1249 & 1319 & 1424 & 1503 & \(i 597\) & 1010 & 1738 & 1759 & 1827 \\
\hline 1829 & 1854 & 1874 & 1876 & 1889 & 1891 & i892 & 2143 & 2401 \\
\hline 2423 & & & & & & & & \\
\hline
\end{tabular}
(2) M8 ECH8 ERSA 29/ 33.79
\begin{tabular}{lllllllll}
01 & 02 & 03 & 5 & 69 & 206 & 216 & 307 & 378
\end{tabular}
\begin{tabular}{lllllllll}
424 & 440 & 522 & 614 & 623 & 642 & 876 & \(i 175\) & 1241
\end{tabular} \(\begin{array}{lllllllll}1243 & 1315 & 1505 & 1011 & i 735 & 1799 & 1845 & 1888 & 1898\end{array}\) \(2298 \quad 2412\)
(3) APECYB ERGA 2/ 2.3\%
(S) 044: 5c.48 TA ERGA
```

Units of Variation and Their Support (Cont.)

```
219 JAMES 2:18
(1) EK(1)
\begin{tabular}{rrrrrrrrr}
\(T R\) & 020 & 049 & 5 & 6 & 38 & 51 & 177 & 201 \\
203 & 209 & 216 & 223 & 226 & 263 & 307 & 319 & 323 \\
337 & 378 & 383 & 385 & 424 & 440 & 467 & 479 & 483 \\
489 & 491 & 547 & 642 & 643 & 917 & 920 & 927 & 959 \\
999 & 1022 & 1240 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
1424 & 1503 & 1522 & 1597 & 1010 & 1611 & 1738 & 1827 & 1829 \\
1854 & 1874 & 1876 & 1888 & 1889 & 1891 & 1892 & 1898 & 2143 \\
2298 & 2401 & 2423 & & & & & &
\end{tabular}
(2) CHWRIS 19/22.45 \(\begin{array}{lllllllll}01 & 02 & 23 & 044 & 69 & 104 & 206 & 522 & 614\end{array}\) \(\begin{array}{lllllllll}876 & 1175 & : 41 & 1243 & 1505 & 1735 & 1739 & 1799 & 1890\end{array}\) 2412
(0) \(6 ? 3 \quad 1845\)

220 JAMES :
(1) Sou(2)
\begin{tabular}{rrrrrrrrr}
\(T R\) & \(n 20\) & 049 & 5 & 6 & 38 & 51 & 69 & 104 \\
177 & 201 & 203 & 209 & 216 & 223 & 226 & 203 & 307 \\
319 & 323 & 337 & 378 & 383 & 385 & 424 & 440 & 467 \\
479 & 483 & 489 & 491 & 547 & 542 & 543 & 917 & 920 \\
927 & 959 & 999 & 1222 & 1175 & 1240 & 1243 & 1245 & 1247 \\
1248 & 1249 & 1315 & 1319 & 1424 & 1503 & 1597 & 1610 & 1611 \\
1738 & 1799 & 1827 & 1829 & 1854 & 1874 & 1876 & 1838 & 1889 \\
1891 & 1892 & 1898 & 2143 & 2298 & 2401 & 2423 & &
\end{tabular}
(2) \(\begin{array}{rrrrrrrrr}0 M & & & & & & 15 / 17.6 \% \\ 01 & 02 & 03 & 044 & 206 & 522 & 614 & 876 & 1241\end{array}\) \(\begin{array}{llllll}1505 & 1522 & 1735 & 1739 & 1890 & 2412\end{array}\)
(0) 6231845

\section*{Units of Variation and Their Support (Cont.)}

224 JAMES 2:18
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & DEIXW & W SOI & & & & & & 69/ & 80.2\% \\
\hline & TR & 02 & 020 & 044 & 049 & 5 & 6 & 51 & 104 \\
\hline & 177 & 201 & 203 & 209 & 216 & 223 & 226 & 263 & 307 \\
\hline & 319 & 323 & 337 & 383 & 385 & 424 & 440 & 467 & 479 \\
\hline & 483 & 489 & 491 & 547 & 623 & 876 & 917 & 920 & 927 \\
\hline & 959 & 999 & 1022 & 1240 & \(124 i\) & 1245 & 1247 & 1248 & 1249 \\
\hline & 1315 & 1319 & 1424 & 1503 & \(i 597\) & \(1 \in 10\) & 1735 & 1738 & 1739 \\
\hline & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1891 \\
\hline & 1892 & 1898 & 2143 & 2298 & 2401 & 2423 & & & \\
\hline (2) & SOI D & DEIXW & & & & & & 15/ & 17.4\% \\
\hline & 01 & 33 & 69 & 206 & 378 & 522 & 614 & 643 & 1175 \\
\hline & 1505 & 1522 & 1611 & 1799 & 1897 & 2412 & & & \\
\hline (3) & DEIXW & & & & & & & 21 & 2.3\% \\
\hline & 38 & 1243 & & & & & & & \\
\hline
\end{tabular}

226 JAMES 2:18
(1) MOU(2) \begin{tabular}{rrrrrrrrr}
TR & n2 & 220 & 249 & 5 & 0 & 38 & \(59 / 81\) & 80.20 \\
104 & 177 & 201 & 203 & 209 & 216 & 223 & 226 & 263 \\
307 & 319 & 337 & 378 & 383 & 385 & 424 & 440 & 467 \\
479 & 483 & 489 & 491 & 547 & 623 & 642 & 643 & 876 \\
917 & 920 & 927 & 959 & 999 & 1022 & 1240 & 1245 & 1247 \\
1248 & 1249 & 1315 & 1319 & 1424 & 1503 & 1597 & 1610 & 1735 \\
1738 & 1827 & 1829 & 1345 & 1854 & 1874 & 1876 & 1888 & 1889 \\
1891 & 1892 & 1898 & 2143 & 2298 & 2423 & & &
\end{tabular}
(2) \(O M\)
\begin{tabular}{rrrrrrrrr}
01 & 23 & 044 & 206 & 522 & 614 & 1175 & 1241 & 1243 \\
1505 & 1522 & 1611 & 1739 & 1799 & 1890 & 2401 & 2412 &
\end{tabular}
(0) 323

Units of Variation and Their Support (Cont.)

227 JAMES 2:19
(1) \begin{tabular}{rlllrrrrr}
0 THEOS EIS ESTI & & & & & \(58 / 67.4 \%\) \\
TR & 020 & 049 & 5 & 6 & 51 & 104 & 177 & 201 \\
203 & 209 & 216 & 223 & 226 & 263 & 307 & 323 & 337 \\
383 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 547 \\
623 & 642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 \\
1022 & 1240 & 1245 & 1247 & 1248 & 1249 & 1424 & 1503 & 1597 \\
1738 & 1827 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1892 \\
1898 & 2143 & 2401 & 2423 & & & & &
\end{tabular}
(2) THEOS EIS ESTI \(10 / 11.6 \%\) \(\begin{array}{lllllllll}38 & 69 & 319 & 378 & 385 & 1315 & i 319 & 1610 & 1829\end{array}\) 1891
(3) EIS ESTI 0 ?HEOS

3/ 3.5\%
01021735
(4) ETS SSTI THETS

3/ 3.5\%
\(1241 \quad 1739 \quad 2298\)
(5) EIS 0 THEOS ESTI 2! \(2.3 \%\)
\(i 1751243\)
(6) EIS THEOS ESTI 10/ 11.6\%
\(23206 \quad 522\) ó 14 i505 i522 1611 1799 i89n 2412
(S) \(044:\) Estin theos

231 JANES 2:20
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(1)} & DE & & & & & & & 80. & \(92.0 \%\) \\
\hline & T 5 & 01 & 02 & 23 & 929 & 044 & 249 & 5 & ó \\
\hline & 38 & 51 & 69 & 104 & 177 & 201 & 203 & 206 & 209 \\
\hline & 216 & 223 & 226 & 307 & 319 & 323 & 337 & 383 & 385 \\
\hline & 424 & 440 & 479 & 483 & 489 & 491 & 522 & 547 & 614 \\
\hline & 623 & 642 & 043 & 876 & 917 & 920 & 927 & 959 & 999 \\
\hline & 1022 & 1175 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 \\
\hline & 1319 & 1424 & 1503 & 1505 & 1522 & 1610 & 1611 & 1735 & 1738 \\
\hline & 1739 & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 \\
\hline & 1889 & 1890 & 1892 & 1898 & 2143 & 2298 & 2412 & 2423 & \\
\hline \multirow[t]{2}{*}{(2)} & OM & & & & & & & 71 & 3.0\% \\
\hline & 263 & 378 & 467 & 1315 & 1597 & 1891 & 2401 & & \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)

233 JAMFS 2:20

242 JAMES 2:22
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1) & EPGTN & & & & & & & \(76 /\) & 90.5. \\
\hline & T: & 0 & 02 & 93 & n2? & 244 & 049 & 5 & 51 \\
\hline & 69 & 104 & 177 & 201 & 203 & 2no & 216 & 223 & 226 \\
\hline & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 185 & 424 \\
\hline & \(44 \%\) & 467 & 479 & 483 & 489 & 491 & 547 & ¢23 & 542 \\
\hline & 643 & 876 & 917 & 920 & 927 & 359 & 999 & 1022 & 1175 \\
\hline & i240 & 1241 & 1243 & 1245 & 1248 & 1249 & 1315 & 1319 & 1424 \\
\hline & 1503 & 1597 & 1610 & 10́:1 & 1735 & 1738 & 1739 & 1827 & 1829 \\
\hline & 1845 & 1854 & :874 & :875 & ;885 & 180\% & 1891 & 189? & 1898 \\
\hline & 2143 & 2こ98 & 2401 & 2423 & & & & & \\
\hline \multirow[t]{2}{*}{} & + AUT & & & & & & & 81 & 9.5\% \\
\hline & 6 & 206 & 522 & 514 & 1505 & 1709 & 1890 & 2412 & \\
\hline \[
\begin{aligned}
& (S) \\
& (0)
\end{aligned}
\] & \multicolumn{9}{|l|}{\[
\begin{aligned}
& \text { 1522: + AUTVN AJTOU } \\
& 38 \text { 1247 }
\end{aligned}
\]} \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)

245 JAMES 2:23
(1) \begin{tabular}{rrrrrrrrr}
DE & & & & & & \(71 / 81.6 \%\) \\
\(T R\) & 01 & 02 & 03 & 049 & 6 & 38 & 51 & 69 \\
104 & 177 & 201 & 203 & 209 & 216 & 223 & 226 & 263 \\
307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 & 440 \\
467 & 479 & 483 & 489 & 491 & 642 & 643 & 876 & 917 \\
920 & 927 & 959 & 999 & 1022 & 1175 & 1240 & 1243 & 1245 \\
1247 & 1248 & 1249 & 1315 & 1319 & 1424 & 1503 & 1597 & 1610 \\
1735 & 1738 & 1739 & 1827 & 1829 & 1854 & 1874 & 1876 & 1888 \\
1889 & 1891 & 1892 & 1898 & 2143 & 2298 & 2401 & 2423 &
\end{tabular}
(2)
\begin{tabular}{lrrrrrrrr}
OM & & & & & & \(16 /\) & \(18.4 \%\) \\
020 & 044 & 5 & 206 & 522 & 547 & 614 & 623 & 1241 \\
1505 & 1522 & 1611 & 1799 & 1845 & 1890 & 2412 & &
\end{tabular}

246 JK: 2:23
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\(\stackrel{s}{ }\)} & & & & & \multicolumn{3}{|r|}{77/89.5\%} \\
\hline - & ; & 22 & 03 & ก20 & 244 & 049 & 5 & 5 \\
\hline \(5 i\) & 09 & 104 & 177 & 221 & 203 & 209 & 216 & 223 \\
\hline 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
\hline 424 & 440 & 467 & 479 & 483 & 459 & 491 & 547 & \(52 ?\) \\
\hline 642 & 643 & 376 & 917 & 920 & 927 & 959 & 999 & 1022 \\
\hline 1175 & 124? & 1241 & 1243 & 1245 & 1247 & i248 & 1249 & 1315 \\
\hline 1319 & 1424 & i503 & 1597 & 1610 & 1735 & 1738 & i739 & 1827 \\
\hline 1829 & 1845 & i854 & 1874 & 1876 & 1888 & 1889 & 1891 & 1892 \\
\hline 1898 & 2143 & 2298 & 2401 & 2423 & & & & \\
\hline
\end{tabular}
\begin{tabular}{lllllllllll}
(2) DOULOS & & & & & & & & \(10.5 \%\) \\
206 & 522 & 514 & 1505 & 1522 & 1011 & 1799 & 1890 & 2412
\end{tabular}
(0) 38
```

Units of Variation and Their Support (Cont.)

```

257 JAMES 2：24

（2） \(0 M \quad 20 / 23.5 \%\)
\begin{tabular}{rrrrrrrrr}
01 & 02 & 03 & 044 & 206 & 307 & 522 & 614 & 642 \\
1175 & \(12: 1\) & 1245 & 1505 & 1522 & 1611 & 1735 & 1739 & 1799
\end{tabular}
\(1890 \quad 2412\)
（0） 38 124：

258 JAMES 2：25
（1）\(D E\)
82／95．3\％
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline T？ & 01 & 02 & 03 & 020 & ก24 & 249 & 6 & 38 \\
\hline 51 & 69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 \\
\hline 223 & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
\hline 385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 \\
\hline 547 & 614 & 642 & 643 & 376 & 917 & 920 & 927 & 959 \\
\hline 999 & 1022 & 1175 & 124 ？ & 1241 & 1243 & 1245 & 1248 & \(i 249\) \\
\hline 13 & － & 1424 & 1503 & 1505 & ； 522 & 1597 & 1019 & 1611 \\
\hline 「プ & 1 & 39 & 1799 & 1829 & 1854 & 1874 & 1876 & 1888 \\
\hline 1889 & 1890 & 1891 & i892 & 1898 & 2143 & 2298 & 2401 & 2412 \\
\hline 2423 & & & & & & & & \\
\hline
\end{tabular}
\(\begin{array}{lllll}\text {（2）} & \\ & 5 M & 623 & 1827 & 1845\end{array}\)
4／ \(4.7 \%\)
（0）i247
```

Units of Variation and Their Support (Cont.)

```

259 JAMES 2:25
(1) \begin{tabular}{rrrrrrrrr}
\multicolumn{8}{c}{ AGGELO:S } & \\
TR & 01 & 02 & 03 & 044 & 049 & 5 & 6 & 38 \\
51 & 69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 \\
223 & 220 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
385 & 424 & 440 & 467 & 479 & 489 & 522 & 547 & 614 \\
623 & 643 & 876 & 920 & 927 & 959 & 1022 & 1175 & 1240 \\
1243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1310 & 1424 & 1503 \\
1505 & 1522 & 1597 & 1611 & 1735 & 1738 & 1799 & 1829 & 1845 \\
1854 & 1876 & 1888 & 1889 & 1090 & 1891 & 1892 & 1898 & 2401 \\
2412 & 2423 & & & & & & &
\end{tabular}
(2) KATASKスPOUS 13/14.9\% \(\begin{array}{lllllllll}020 & 483 & 491 & 642 & 917 & 999 & 1241 & 1610 & 1739\end{array}\) \(\begin{array}{llll}1827 & 1874 & 2143 & 2298\end{array}\)

260 JAMES 2:26
(1) \begin{tabular}{rrrrrrrrr}
TWN & & & & & & & \(75 /\) & 86.25 \\
\(T R\) & 02 & 020 & 049 & 5 & 6 & 38 & 51 & 69 \\
104 & 177 & 201 & 203 & 209 & 216 & 223 & 226 & 263 \\
307 & 319 & 323 & 337 & 383 & 385 & 424 & 440 & 467 \\
479 & 483 & 489 & 491 & 522 & 547 & 523 & 642 & 543 \\
917 & 920 & 927 & 959 & 909 & 1022 & 1175 & 1240 & 1241 \\
1243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 & 1424 & 1503 \\
1522 & 1597 & 1610 & 1735 & 1738 & 1739 & 1827 & 1829 & 1845 \\
1854 & -474 & 1876 & 1888 & 1889 & 1890 & 1891 & 1892 & 1898 \\
22. & & 2423 & & & & & &
\end{tabular}
(2) \begin{tabular}{rrrrrrrrr}
OM & & & & & & & \(12 /\) & \(13.8 \%\) \\
01 & 03 & 944 & 206 & 378 & 614 & 876 & 1505 & 1611 \\
1799 & 2143 & 2412 & & & & & &
\end{tabular}

\section*{Units of Variation and Their Support (Cont.)}

269 JAMES 3:2
(1) \begin{tabular}{crrrrrrrr}
\multicolumn{2}{c}{ DUNATOS } & & & & & \(67 / 77.0 \%\) \\
TR & 02 & 03 & 020 & 044 & 049 & 5 & 6 & 38 \\
51 & 69 & 104 & 203 & 209 & 216 & 223 & 226 & 263 \\
307 & 319 & 323 & 378 & 383 & 385 & 424 & 440 & 467 \\
483 & 489 & 491 & 547 & 623 & 642 & 643 & 876 & 917 \\
920 & 927 & 959 & 999 & 1022 & 1175 & 1240 & 1241 & 1243 \\
1245 & 315 & 1319 & 1424 & 1597 & 1610 & \(16 i 1\) & 1735 & 1739 \\
\(179:\) & 9 & 1845 & 1854 & 1874 & 1888 & 1889 & 1891 & 1838 \\
2143 & \(2:\) & \(\ddots 01\) & 2423 & & & & &
\end{tabular}

276 JAMES 3:3
(1) \begin{tabular}{rrrrrrrrr}
ProS & & & & & & & \(79 / 91.9 \%\) \\
TR & 02 & 020 & 044 & 049 & 5 & 0 & 38 & 51 \\
69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 \\
226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
424 & 467 & 479 & 483 & 489 & 491 & 522 & 547 & 614 \\
623 & 642 & 643 & 876 & 917 & 920 & 027 & 959 & 999 \\
1022 & 1175 & 1240 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
1424 & 1503 & 1505 & 1522 & 1597 & 1610 & 1611 & 1738 & 1799 \\
1827 & \(18 ? 9\) & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1890 \\
186 & & \(i 898\) & 2143 & 2401 & 2412 & 2423 & &
\end{tabular}
(2) EIS 7! 8.1\% \(\begin{array}{lllllll}01 & 23 & 440 & 1241 & i 735 & 1739 & 2298\end{array}\)
(0) 1243
```

Units of Variation and Their Support (Cont.)

```

278 JAMES 3:3
(1) AUTOUS 8MIN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline + & 8, & & & & & & 8 & \\
\hline TR & 01 & 93 & 020 & 049 & 5 & 6 & 38 & 51 \\
\hline 69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 \\
\hline 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
\hline 424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 \\
\hline 614 & 623 & 642 & 643 & 876 & 017 & 920 & 927 & 959 \\
\hline 999 & 1022 & 1175 & 1240 & 1245 & 1247 & 1248 & 1249 & 1315 \\
\hline 1319 & 1424 & 1503 & 1505 & 1522 & 1610 & 1611 & 1738 & 1799 \\
\hline 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1890 \\
\hline
\end{tabular} \(\begin{array}{llllll}1891 & 1892 & 2143 & 2401 & 2412 & 2423\end{array}\)
(2) 8MIN AUTOUS \(\begin{array}{lllllllll}n 2 & 044 & 1241 & 1597 & 1735 & 1739 & 1898 & 2298\end{array}\)
(0) 1243

282 JAMES 3:4
(1) SKL8RWiy ANEHTN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Londiv A:} & & \\
\hline TR & 02 & 227 & 044 & 249 & 5 & 0 & 38 & 5 \\
\hline 104 & 177 & 203 & 209 & 223 & 226 & 263 & 319 & 323 \\
\hline 337 & 383 & 385 & 467 & 483 & 489 & 491 & 547 & 623 \\
\hline 642 & 643 & 017 & 920 & 927 & 959 & 999 & 1022 & 1240 \\
\hline 1241 & 1245 & 1319 & 1424 & 1597 & :735 & i738 & 1739 & 1827 \\
\hline 1829 & 1845 & 1854 & 1874 & 1889 & ;891 & 1898 & 2143 & 2298 \\
\hline
\end{tabular} 2401
(2) ANEMWN SKLUSix
\begin{tabular}{lllllllll}
01 & 73 & 09 & 201 & 206 & 216 & 307 & 378 & 424
\end{tabular}
\begin{tabular}{lllllllll}
440 & 479 & 522 & 614 & 876 & 1175 & \(i 243\) & \(i 247\) & 1248
\end{tabular} \(\begin{array}{llllllllll}1249 & 1315 & 1503 & 1505 & 1522 & 1610 & 1011 & 1799 & 1876\end{array}\) \(1888 \quad 1890 \quad 1892 \quad 2412 \quad 2423\)

\section*{Units of Variation and Their Support (Cont.)}

287 JAMES 3:6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{2}{|l|}{OUThS} & \multirow[b]{2}{*}{5} & \multirow[b]{2}{*}{6} & \multirow[b]{2}{*}{38} & \multirow[b]{2}{*}{51} & \multirow[b]{2}{*}{69} & \multicolumn{2}{|l|}{63. \(74.1 \%\)} \\
\hline & TR & 049 & & & & & & 177 & 201 \\
\hline & 2.33 & 206 & 216 & 223 & 226 & 307 & 319 & 337 & 383 \\
\hline & 385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 \\
\hline & 547 & 623 & 642 & 643 & 917 & 920 & 927 & 999 & 1922 \\
\hline & 1240 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 & 1424 & i503 \\
\hline & 1597 & 1610 & 1738 & 1799 & 1829 & 1845 & 1854 & 1874 & 1876 \\
\hline & 1888 & 1889 & 1891 & 1592 & 1898 & 2143 & 2298 & 2401 & 2423 \\
\hline (2) & \[
\begin{aligned}
& +K A I \\
& 320
\end{aligned}
\] & \(i 94\) & 263 & 378 & 876 & 1827 & & 61 & 7.1\% \\
\hline (3) & 3 M & & & & & & & 161 & 18.8\% \\
\hline & 01 & 02 & 03 & 744 & 323 & 514 & 1175 & 1241 & 1243 \\
\hline & 1505 & 15:2 & 1611 & 1735 & i739 & i89? & 2412 & & \\
\hline (0) & 209 & 959 & & & & & & & \\
\hline
\end{tabular}

294 JAMES \(3: 7\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{FE(1)}} & & & & & & \multicolumn{2}{|l|}{82! 94.35} \\
\hline & & & 92 & 23 & 220 & 1744 & 749 & 5 & j \\
\hline & 38 & 51 & 09 & 104 & 177 & 201 & 293 & 296 & 299 \\
\hline & 216 & 223 & 226 & 263 & \(3 \cap 7\) & 313 & 323 & 337 & 378 \\
\hline & 383 & 385 & 424 & 442 & \(4{ }^{6} 7\) & 470 & 483 & 197 & 522 \\
\hline & 547 & 674 & 623 & 542 & 543 & 876 & 917 & 320 & 999 \\
\hline & 102? & 1175 & 1240 & 124; & 1243 & 1245 & 1247 & 12400 & : 349 \\
\hline & 1315 & 1319 & 1424 & i593 & 1505 & 1522 & 1619 & i611 & i735 \\
\hline & 1733 & 1739 & 1827 & ¢ 48 & 1845 & i854 & 1874 & :876 & ;888 \\
\hline & 1889 & 1890 & :891 & 1892 & i¢¢8 & 2143 & 2298 & 2401 & 2412 \\
\hline \multicolumn{10}{|c|}{2423} \\
\hline \multirow[t]{2}{*}{(2)} & 3 M & & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{5/ 5.7\%}} \\
\hline & 489 & 927 & 959 & 1597 & 1799 & & & & \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)

295 JAMES 3:7
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & TE(2) & & & & & & & & 90.8\% \\
\hline & TR & 01 & 03 & 020 & 044 & 049 & 5 & 6 & 38 \\
\hline & 51 & 69 & 104 & 177 & 201 & 203 & 209 & 216 & 223 \\
\hline & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 385 & 24 \\
\hline & 440 & 407 & 479 & 483 & 489 & 522 & 547 & 614 & 623 \\
\hline & 642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 & 1022 \\
\hline & 1175 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 \\
\hline & 1319 & 1424 & 1503 & 1505 & 1597 & 1611 & 1735 & 1738 & \(i 739\) \\
\hline & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 \\
\hline & 1891 & 1892 & 1898 & 2143 & 2298 & 2401 & 2412 & & \\
\hline (2) & & & & & & & & 81 & 9.2\% \\
\hline & 02 & 206 & 383 & 491 & \(i 522\) & 1610 & 1890 & 2423 & \\
\hline
\end{tabular}

296 JK .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{DAMAZETAI KAI DEDAMASTAI} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{rr}
79 / 90.85 \\
5 & 6
\end{array}
\]}} \\
\hline TR & 21 & 02 & 23 & 920 & 244 & 049 & & \\
\hline 33 & 51 & 69 & 104 & 177 & 201 & 203 & 206 & 2 29 \\
\hline 223 & 226 & 263 & 307 & 319 & 337 & 378 & 383 & 385 \\
\hline 467 & 479 & 483 & 489 & 491 & 522 & 547 & 614 & 623 \\
\hline 642 & 643 & 870 & 917 & 920 & 927 & 959 & 999 & 1022 \\
\hline 1175 & 1240 & 1243 & 1245 & 1247 & 1248 & 1249 & ij19 & 1424 \\
\hline 1503 & 1505 & 1522 & 1597 & 1610 & 1611 & 1735 & 1730 & 1799 \\
\hline 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1890 \\
\hline 189. & 1892 & 1898 & 2143 & 2401 & 2412 & 2423 & & \\
\hline
\end{tabular}
\(\begin{array}{llllllllll}\text { (2) DEDAMASTAI KAI DAMAZETAI } & & & 8 / & 9 . ? \% \\ 216 & 323 & 424 & 440 & 1241 & 1315 & 1739 & 2298 & \end{array}\)
```

Units of Variation and Their Support (Cont.)

```

297 JAMES 3:8

(2) DUNATAI DAMASAI ANTHPWPWN 21/ \(24.4 \%\)
\begin{tabular}{rrrrrrrrr}
01 & 02 & 044 & 049 & 5 & 69 & 206 & 307 & 378 \\
522 & 623 & 1175 & 1241 & 1505 & 1522 & 1611 & 1735 & 1799
\end{tabular}
\(1845 \quad 1854 \quad 1800\)
(3) damasai dunatar anthridimn

3/ \(3.5 \%\)
\(03 \quad 1739 \quad 2298\)
(S) 1898: DUNATAI TWN AHTY. DAMASAI

300 JANES 3:9
\begin{tabular}{lrrrrrrrr}
(1) THEON & & & & & & \(76 / 87.4 \%\) \\
FR & 020 & 049 & 6 & 38 & 51 & 69 & 104 & 177 \\
201 & 203 & 206 & 209 & 216 & 223 & 226 & 263 & 307 \\
319 & 323 & 337 & 378 & 383 & 385 & 424 & 440 & 467 \\
479 & 483 & 489 & 491 & 522 & 5147 & 514 & 542 & 043 \\
876 & 917 & 920 & 927 & 959 & 099 & 1022 & 1240 & 1243 \\
1245 & 1247 & 1248 & 1249 & 1315 & 1319 & 1424 & 1503 & 1505 \\
1522 & 1597 & 1610 & 1611 & 1738 & 1799 & 1827 & 1829 & 1854 \\
1874 & 1876 & 1888 & 1889 & 1890 & 1891 & 1892 & 1898 & 2143 \\
2298 & 2401 & 2412 & 2423 & & & & & \\
(2) KURION & & & & & & \(11 /\) & \(12.6 \%\) \\
01 & 22 & 23 & 044 & 5 & 623 & 1175 & 1241 & 1735
\end{tabular}

Units of Variation and Their Support (Cont.)

302 JAMES 3:9
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|l|}{OMOIWSIN} & & & & & \multicolumn{2}{|l|}{78/ 91.8\%} \\
\hline & TR & 01 & 02 & 93 & 020 & 044 & 049 & 5 & 38 \\
\hline & 51 & 69 & 104 & 177 & 201 & 296 & 209 & 216 & 223 \\
\hline & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
\hline & 424 & 440 & 467 & 479 & 483 & 489 & 522 & 547 & 623 \\
\hline & 642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 & 1022 \\
\hline & 1175 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 & i315 \\
\hline & 1319 & 142.4 & 1503 & :597 & 1610 & 1735 & 1738 & 1739 & 1799 \\
\hline & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1891 \\
\hline & 1892 & 1898 & 2143 & 2298 & 2401 & 2423 & & & \\
\hline \multirow[t]{2}{*}{(2)} & \multicolumn{7}{|l|}{+ T OU} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{7/ 8.2\%}} \\
\hline & 491 & 614 & 1505 & 1522 & 1611 & 1890 & 2412 & & \\
\hline \[
\begin{aligned}
& (S) \\
& (0)
\end{aligned}
\] & \multicolumn{3}{|l|}{\[
\text { 203: } 06
\]} & & & & & & \\
\hline
\end{tabular}

303 JAMES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(1)} & MOU & & & & & & & 761 & \(87.4 \%\) \\
\hline & TR & 01 & 72 & 93 & 220 & 344 & 240 & 5 & 6 \\
\hline & 38 & 69 & 104 & i77 & 201 & 203 & 206 & 209 & 216 \\
\hline & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
\hline & 424 & 440 & 479 & 489 & 491 & 522 & 547 & 614 & 023 \\
\hline & 642 & 643 & 876 & 917 & 920 & 927 & 999 & :175 & 1240 \\
\hline & 1241 & 1243 & 1248 & 1249 & 1315 & 1319 & 1424 & 1503 & 1505 \\
\hline & 1522 & 1597 & 1610 & 1611 & 1735 & 1738 & 1739 & 1790 & ;827 \\
\hline & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1890 & 1891 & 1892 \\
\hline & 1898 & 2143 & 2298 & 2412 & & & & & \\
\hline \multirow[t]{3}{*}{(2)} & \multicolumn{2}{|l|}{+ agapgiot} & & & & & & \(11 /\) & 12.6\% \\
\hline & 51 & 223 & 467 & 483 & 959 & :022 & 1245 & 1247 & 1889 \\
\hline & 2401 & 2423 & & & & & & & \\
\hline
\end{tabular}

Units of Variation and Thei: Support (Cont.)

306 JAMES 3:11
(1) \begin{tabular}{crrrrrrrr}
GLUKU KAI & TO PIKRON & & & & \multicolumn{2}{c}{\(76 / 88.4 \%\)} \\
TR & 01 & 02 & 03 & 020 & 044 & 049 & 5 & 6 \\
38 & 51 & 69 & 104 & 177 & 201 & 203 & 209 & 216 \\
223 & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 547 \\
623 & 642 & 643 & 876 & 917 & 920 & 927 & 999 & 1022 \\
1175 & 1240 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
1424 & 1503 & 1597 & 1610 & 1735 & 1738 & 1739 & 1827 & 1829 \\
1845 & 1854 & 1874 & 1876 & 1388 & 1889 & 1891 & 1892 & 1898 \\
2143 & 2298 & 2401 & 2423 & & & & &
\end{tabular}
(2) PIKRON KAI TO GLJKU 10 / \(11.6 \%\) \(\begin{array}{lllllllll}206 & 522 & 614 & 1241 & 1505 & 1522 & 1611 & 1799 & 1890\end{array}\) 2412
(S) 959: GLUKJ KAI PIK?ON

310 JANES 3:12
(1) \begin{tabular}{crrrrrrrr}
गUTWS & & & & & & \multicolumn{2}{c}{\(78 / 89.7 \%\)} \\
TR & 01 & 020 & 044 & 049 & 5 & 0 & 38 & 51 \\
69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 \\
226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 \\
614 & 642 & 643 & 376 & 917 & 920 & 927 & 959 & 999 \\
1022 & 1240 & 1241 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
1424 & 1503 & 1597 & 1610 & 1611 & 1735 & 1738 & 1739 & 1799 \\
1827 & 1829 & 1854 & 1874 & \(i 876\) & 1888 & 1889 & 1891 & 1892 \\
1898 & 2143 & 2298 & 2401 & 2412 & 2423 & & &
\end{tabular}
(2) OM

9/ 10.3\% \(\begin{array}{lllllllll}02 & 03 & 623 & 1175 & 1243 & 1505 & 1522 & 1845 & 189 n\end{array}\)

Units of Variation and Their Support (Cont.)

311 JAMES 3:12
(1) OUDEMIA P8S8
(2) OUTE MIA P3rs8

3/ \(3.5 \%\)
\(15051522 \quad 1890\)
(3) OUDE 3/ 3.5\%
\(\begin{array}{cccccccccc}\left.\text { (4) } \begin{array}{llllll}\text { OUTE } \\ 32 & 03 & 044 & 623 & 1175 & 1243\end{array}\right) 1735 & 1845 & & \end{array}\)
(J) 1241

312 JANE \(3: 12\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(1)} & KAI & & & & & & & 75. & 86.2\% \\
\hline & TR & 020 & 249 & 5 & б́ & 38 & 51 & 104 & 177 \\
\hline & 201 & 203 & 206 & 209 & 216 & 223 & 226 & 263 & 307 \\
\hline & 319 & 337 & 378 & 383 & 385 & 424 & 440 & 407 & 479 \\
\hline & 483 & 489 & 491 & 522 & 547 & 614 & 642 & 643 & 376 \\
\hline & 917 & 920 & 927 & 959 & 999 & 1022 & 1240 & 1245 & 1247 \\
\hline & 1248 & 1249 & 1315 & 1319 & 1424 & 1503 & 1505 & i522 & i597 \\
\hline & 1610 & 1611 & 1735 & 1738 & 1799 & 1827 & \(i 829\) & ;854 & 1874 \\
\hline & 1876 & 1888 & 1889 & 1890 & 1891 & 1892 & 1898 & 2143 & 2298 \\
\hline & 2401 & 2412 & 2423 & & & & & & \\
\hline \multirow[t]{3}{*}{(2)} & OM & & & & & & & \(12 /\) & 13.8\% \\
\hline & 01 & 02 & 03 & 044 & 69 & 323 & 623 & 1175 & \(124 i\) \\
\hline & 1243 & 1739 & 1845 & & & & & & \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)

315 JAMES 3:13
(1) TrIS \begin{tabular}{rrrrrrrrr}
\\
TR & 01 & 02 & 03 & 020 & 044 & 5 & 38 & 69 \\
104 & 201 & 206 & 209 & 216 & 226 & 319 & 323 & 383 \\
385 & 424 & 440 & 467 & 479 & 483 & 491 & 522 & 547 \\
614 & 623 & 642 & 643 & 876 & 959 & 999 & 1022 & 1175 \\
1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1319 & 1503 & 1505 \\
1522 & 1597 & 1610 & 1011 & 1735 & 1738 & 1739 & 1799 & 1827 \\
1845 & 1876 & 1888 & 1889 & 1890 & 1891 & 1892 & 1898 & 2401 \\
2412 & 2423 & & & & & & &
\end{tabular}
(2) EI IIS \(\begin{array}{lllllrr}223 & 489 & 027 & 1315 & 2143 & 2298 & 9.3 \%\end{array}\)
(3) OM 13/ 15.1\% \(\begin{array}{lllllllll}049 & j & 177 & 263 & 307 & 337 & 917 & 920 & 1240\end{array}\)
(S) 378: OS IIS

317 JAMES 3:14

\section*{Jnits of Variation and Their Support (Cont.)}

320 JAMES 3:14
(1) \begin{tabular}{rrrrrrrrr}
\multicolumn{9}{c}{ T8 KARDIA } \\
TR & 02 & 03 & 020 & 044 & 049 & 5 & 6 & 38 \\
51 & 69 & 104 & 177 & 201 & 206 & 209 & 223 & 226 \\
263 & 307 & 319 & 337 & 378 & 383 & 385 & 424 & 467 \\
479 & 483 & 489 & 491 & 522 & 547 & 614 & 623 & 642 \\
876 & 917 & 920 & 927 & 959 & 999 & 1022 & 1175 & 1240 \\
1243 & 1245 & 1247 & 1248 & 1249 & 1319 & 1424 & 1503 & 1505 \\
1522 & 1597 & 1610 & 1611 & 1738 & 1799 & 1827 & 1829 & 1845 \\
1854 & 1874 & 1876 & 1888 & 1889 & \(189 n\) & 1891 & 1892 & 1898 \\
2143 & 2401 & 2412 & 2423 & & & & &
\end{tabular}
\begin{tabular}{cccccccccc}
(2) TAIS KARDIAIS \\
01 & 203 & 216 & 323 & 440 & 643 & 1241 & \(i 315\) & 1735 \\
1739 & 2298
\end{tabular}

330 JAMES \(3: 4\)
(1) Katakaucuastue
\begin{tabular}{rrrrrrrrr}
\(T R\) & 01 & 03 & 020 & 244 & 049 & 5 & 6 & 51 \\
104 & 177 & 201 & 203 & 209 & 216 & 223 & 226 & 263 \\
307 & 319 & 323 & 337 & 378 & 383 & 424 & \(44 n\) & 479 \\
483 & 489 & 491 & 514 & 623 & 042 & 643 & 676 & 917 \\
920 & 927 & 959 & 999 & 1022 & 1175 & \(124 n\) & 1241 & 1243 \\
1247 & 1248 & 1249 & 1315 & 1424 & 1503 & 1505 & 1522 & 1597 \\
1610 & 1611 & 1735 & 1738 & 1739 & 1827 & 1845 & 1854 & 1874 \\
1876 & 1888 & 1889 & 1890 & 1892 & 1898 & 2143 & 2298 & 2401 \\
2412 & 2423 & & & & & & &
\end{tabular}
(2) KAUCHASTHE

13/ 14.9\% \(\begin{array}{lllllllll}02 & 38 & 69 & 206 & 385 & 467 & 522 & 547 & 1245\end{array}\) \(131917991829 \quad 1891\)

Units of Variation and Their Support (Cont.)

351 JAMES 3:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(1)} & AuT8 & 8 Sop & & & & & & \(70 /\) & 81.4\% \\
\hline & TR & 01 & 02 & 03 & 020 & 044 & 049 & 5 & 6 \\
\hline & 38 & 51 & 69 & 177 & 201 & 203 & 209 & 216 & 223 \\
\hline & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
\hline & 424 & 440 & 479 & 483 & 491 & 547 & 623 & 642 & 643 \\
\hline & 876 & 917 & 929 & 959 & 959 & 1022 & 1175 & 1240 & 1243 \\
\hline & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 & 1424 & 1503 & 1597 \\
\hline & 1610 & 1735 & 1738 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 \\
\hline & 1888 & 1889 & 1891 & ;892 & 2143 & 2401 & 2423 & & \\
\hline \multirow[t]{2}{*}{(2)} & AuT8 & Sop: & & & & & & \(4 /\) & 4.7\% \\
\hline & 104 & 467 & 489 & 927 & & & & & \\
\hline \multirow[t]{3}{*}{(3)} & \multicolumn{3}{|l|}{8 SOPHIA AUTP} & & & & & 12/ & 14.0\% \\
\hline & 206 & & 514 & 1241 & 1525 & 1522 & 1611 & 1739 & 1799 \\
\hline & 1890 & - \({ }_{0}\) & 2412 & & & & & & \\
\hline
\end{tabular}

395 JANES \(3: 17\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|l|}{ADIAKRİOS} & & & & & \multicolumn{2}{|l|}{82/ 94.35} \\
\hline & TR & 01 & 02 & 23 & 220 & 044 & 249 & 5 & 5 \\
\hline & 38 & 51 & 69 & 194 & 177 & 201 & 202 & 206 & 209 \\
\hline & 216 & 223 & 226 & 263 & 307 & 319 & 323 & 337 & 383 \\
\hline & 385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 52.2 \\
\hline & 547 & 614 & 623 & 642 & 643 & 917 & 922 & 927 & 959 \\
\hline & 1022 & 1175 & 1240 & 1241 & 1243 & 1245 & 1247 & i248 & 1249 \\
\hline & 1315 & 1:19 & 1424 & 1503 & 1505 & 1522 & 1597 & i610 & 1511 \\
\hline & 1735 & 1738 & 1739 & 1790 & 1827 & 1829 & 1845 & 1854 & 1874 \\
\hline & 1876 & 1888 & 1889 & 1890 & 1891 & 1892 & 1898 & 2143 & 2298 \\
\hline \multicolumn{10}{|c|}{2412} \\
\hline \multirow[t]{2}{*}{(2)} & \multicolumn{7}{|l|}{EUDIAKAITOS} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{5/ 5.7\%}} \\
\hline & 378 & 876 & 999 & 2401 & 2423 & & & & \\
\hline
\end{tabular}
```

Units of Variation and Their Support (Cont.)

```

396 JAMES 3:17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{KAI (\(\bigcirc\))} & & & & & & \multicolumn{2}{|l|}{66/ 75.9\%} \\
\hline TR & 020 & 049 & 6 & 38 & 51 & 69 & 104 & 177 \\
\hline 201 & 203 & 209 & 216 & 223 & 226 & 263 & 307 & 319 \\
\hline 323 & 337 & 378 & 383 & 385 & 424 & 440 & 467 & 479 \\
\hline 483 & 489 & 491 & 547 & 614 & 642 & 643 & 876 & 917 \\
\hline 920 & 927 & 999 & 1022 & 1240 & 1245 & 1247 & 1248 & 1249 \\
\hline 1315 & 1319 & 1503 & 1522 & 1597 & 1610 & 1738 & 1827 & 1829 \\
\hline 1854 & 1874 & 1876 & 1888 & 1889 & 1890 & 1891 & 1892 & 1898 \\
\hline 2143 & 2401 & 2423 & & & & & & \\
\hline
\end{tabular}
(2) \begin{tabular}{rrrrrrrrr}
OM & & & & & & \(21 / 24.1 \%\) \\
01 & 02 & 03 & 044 & 5 & 206 & 522 & 623 & 959 \\
1175 & 1241 & 1243 & 1424 & 1505 & \(161 i\) & 1735 & 1739 & 1799 \\
1845 & 2298 & 2412 & & & & & &
\end{tabular}

397 JAMES 3: \({ }^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & T8S & & & & & & & \(45 /\) & \(54.2 \%\) \\
\hline & TR & 049 & 6 & 38 & 51 & 59 & 104 & 177 & 201 \\
\hline & 203 & 209 & 216 & 223 & 226 & 263 & 307 & 319 & 323 \\
\hline & 337 & 378 & 383 & 385 & 42.4 & 440 & 483 & 523 & 643 \\
\hline & 917 & 920 & 959 & 999 & 1022 & 1240 & 1245 & 1247 & 1315 \\
\hline & 1319 & 1424 & 1611 & 1738 & 1854 & 1874 & 1891 & 1898 & 2143 \\
\hline (2) & 0 H & & & & & & & 38/ & 45.8\% \\
\hline & 02 & 93 & 320 & 5 & 206 & 467 & 479 & 489 & 522 \\
\hline & 547 & 614 & 642 & 876 & 927 & 1175 & 1241 & 1243 & 1248 \\
\hline & 1249 & 1503 & 1505 & 1522 & i597 & 1610 & 1735 & 1739 & 1799 \\
\hline & 1827 & 1829 & 1845 & 1876 & 1889 & 1890 & 1892 & 2298 & 2401 \\
\hline & 2412 & 2423 & & & & & & & \\
\hline
\end{tabular}
(S) 044: 0
(o) 1888
(U) \(0 i 491\)

Units of Variation and Their Support (Cont.)

398 JAMES 4:1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{KAI Machai en umin} & & & & \multicolumn{2}{|l|}{63/73.3\%} \\
\hline TR & 020 & 349 & 6 & 38 & 51 & 104 & 177 & 201 \\
\hline 203 & 209 & 216 & 223 & 226 & 263 & 319 & 323 & 337 \\
\hline 378 & 383 & 385 & 424 & 440 & 467 & 479 & 483 & 489 \\
\hline 491 & 547 & 642 & 643 & 876 & 917 & 920 & 927 & 959 \\
\hline 999 & 1022 & 1240 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
\hline 1424 & 1503 & 1597 & 1610 & 1738 & 1827 & 1829 & 1854 & 1874 \\
\hline 1876 & 1888 & 1889 & 1891 & 1892 & 1898 & 2143 & 2401 & 2423 \\
\hline
\end{tabular}
(2) KaI pothen machai en imin

18/20.9\% \(\begin{array}{lllllllll}01 & 03 & 69 & 206 & 307 & 522 & 614 & 1175 & 1241\end{array}\) \(\begin{array}{lllllllll}1243 & 1505 & 1522 & 1611 & 1739 & 1799 & 1890 & 2298 & 2412\end{array}\)
(3) EN UMIN ZAI POTHEN MACLAI 5/ 5.8\% \(\begin{array}{lllll}02 & 5 & 623 & 1735 & 1845\end{array}\)
(S) 044 : 5 N JMIN KAI MACHAI

400 JANES 4:2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & 0ik & ECHET5 & & & & & & 51 & 5.8\% \\
\hline & TR & 1241 & 1738 & 1739 & 2298 & & & & \\
\hline \multirow[t]{7}{*}{(2)} & JUK & SCHETE & & & & & & \(49 /\) & 57.7\% \\
\hline & 32 & 03 & 020 & 049 & 5 & 5 & 51 & 69 & 104 \\
\hline & 177 & 201 & 209 & 216 & 223 & 226 & 263 & 319 & 337 \\
\hline & 378 & 383 & 385 & 424 & 440 & 467 & 479 & 491 & 014 \\
\hline & 642 & 643 & 917 & 920 & 999 & 1240 & 1247 & 1248 & 1249 \\
\hline & 1315 & 1424 & 1503 & 1597 & 1827 & ; 854 & 1874 & 1876 & 1888 \\
\hline & 1891 & 1892 & 1898 & 2143 & & & & & \\
\hline \multirow[t]{5}{*}{(3)} & KAI & OUK EC & ETE & & & & & 32; & 37.2\% \\
\hline & 01 & 044 & 38 & 203 & 206 & 307 & 323 & 483 & 489 \\
\hline & 522 & 547 & 623 & 876 & 327 & 959 & 1022 & 1175 & 1243 \\
\hline & 1245 & 1319 & 1505 & 1522 & 1611 & 1735 & 1799 & 1829 & i845 \\
\hline & 1889 & 1890 & 2401 & 2412 & 2423 & & & & \\
\hline
\end{tabular}
(0) 1610

Units of Variation and Their Support (Cont.)

401 JAMES 4:3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{2}{|l|}{AITEITE} & & & & & & \multicolumn{2}{|l|}{75/ \(88.2 \%\)} \\
\hline & TR & 01 & 32 & 03 & 020 & 049 & 5 & 6 & 51 \\
\hline & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 & 226 \\
\hline & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 \\
\hline & 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 & 614 \\
\hline & 643 & 876 & 917 & 929 & 927 & 959 & 999 & 102? & 1240 \\
\hline & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 & \(i 424\) & 1503 & 1505 \\
\hline & 1522 & 1597 & 1610 & 1611 & 1738 & \(i 799\) & 1827 & 1829 & 1854 \\
\hline & 1876 & 1888 & 1889 & 1890 & 1891 & 1892 & 1898 & 2143 & 2298 \\
\hline & 2401 & \(241^{-}\) & 2423 & & & & & & \\
\hline \multirow[t]{3}{*}{(2)} & \(+D E\) & & & & & & & 10: & 11.8\% \\
\hline & 044 & 69 & 623 & 642 & 1175 & 1241 & 1243 & 1735 & 1739 \\
\hline & 1845 & & & & & & & & \\
\hline (S) & 1874 & \multicolumn{2}{|l|}{- EISTHE} & & & & & & \\
\hline (0) & 38 & & & & & & & & \\
\hline
\end{tabular}

403 JAMES 4:4

```

Units of Variation and Their Support (Cont.)

```

404 JAMES \(4: 4\)
(1) AN OUN \begin{tabular}{rrrrrrrrr}
\multicolumn{2}{c}{} \\
TR & 02 & 020 & 044 & 049 & 69 & 104 & 177 & 201 \\
203 & 209 & 216 & 226 & 263 & 307 & 337 & 385 & 440 \\
479 & 483 & 491 & 642 & 643 & 876 & 917 & 920 & 1922 \\
1247 & 1248 & 1249 & 1315 & 1424 & 1503 & 1735 & 1738 & 1827 \\
1854 & 1874 & 1891 & & & & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline EAN & OUN & & & & & & 11/ & 12.6\% \\
\hline 01 & 03 & 5 & 614 & 623 & 1175 & 1611 & 1739 & 1845 \\
\hline 1890 & 2298 & & & & & & & \\
\hline
\end{tabular}
(3) AN \begin{tabular}{rrrrrrrrr}
& & & & & \(28 / 32.2 \%\) \\
6 & 38 & 51 & 223 & 319 & 323 & 378 & 383 & 424 \\
467 & 489 & 927 & 959 & 999 & 1240 & 1243 & 1245 & 1319 \\
1597 & 1610 & 1829 & 1876 & 1888 & 1892 & 1898 & 2143 & 2401 \\
2423 & & & & & & & &
\end{tabular}
\begin{tabular}{llllllllll}
(4) & EAN \\
& 206 & 522 & 1241 & 1505 & 1522 & 1799 & 2412 & \(7!\) & \(8.0 \%\) \\
(5) OUN AN & & & & & & & \\
& 547 & 1889 & & & & & & \(2 /\) & \(2.3 \%\)
\end{tabular}

408 JANES 4:ó

\section*{Units of Variation and Their Support (Cont.)}
```

409 JAMES 4:6
(1) DIO LEGEI O THEOS...CHARIN

TR	01	02	03	044	049	5	6	38
51	69	104	201	203	299	216	223	226
263	307	319	323	378	383	385	424	440
467	479	483	489	491	522	547	614	623
642	643	876	917	920	927	959	999	1022
1175	1240	1241	1243	1245	1247	1248	1249	1315
1319	1424	1503	1505	1522	1597	1610	1611	1735
1739	1799	1827	1829	1845	1854	1874	1876	1888
1889	1890	1891	1892	1898	2143	2298	2411	2412

    2423
    (2) }3\textrm{M}\mathrm{ 4! 4.7%
    (S) 206: 0 THEOS. . CHARIN
    412 JAMES 4:6

0 TH50S							70/85.4\%	
TR	01	02	23	044	749	$\sigma$	38	69
104	201	203	236	216	226	263	307	323
383	385	424	440	467	479	483	489	491
522	547	614	542	643	917	920	927	959
999	1022	1175	1240	1241	1.2.43	i245	1247	i248
1249	1315	1424	1503	: 505	1522	1597	ió11	i735
1799	1827	1829	1854	1874	1876	1088	i889	1890
1891	1892	1898	2298	2401	2412	2423		

(2) KURIOS 12! 14.6\%

5	51	209	223	319	378	623	876	1319

    1610 1739 2143
    (S) 1845: 9 KJRIOS
(0) $020 \quad 177 \quad 337 \quad 1738$

```

Units of Variation and Their Support (Cont.)

413 JAMES \(4: 7\)
(1) \begin{tabular}{crrrrrrrr}
ANTIST8TE & & & & & \(36 / 41.4 \%\) \\
TR & 020 & 044 & 5 & 6 & 104 & 177 & 201 & 203 \\
337 & 378 & 383 & 479 & 489 & 491 & 643 & 917 & 920 \\
927 & 999 & 1175 & 1240 & 1241 & 1243 & 1247 & 1248 & 1249 \\
1315 & 1424 & 1503 & 1597 & 1610 & 1738 & 1876 & 1892 & 2143
\end{tabular}
\begin{tabular}{crrrrrrrr}
\((2)\) \\
\(+D E\) & & & & & & \(51 /\) & \(58.6 \%\) \\
01 & 02 & 03 & 049 & 38 & 51 & 69 & 206 & 209 \\
216 & 223 & 226 & 263 & 307 & 319 & 323 & 385 & 424 \\
440 & 467 & 483 & 522 & 547 & 614 & 623 & 642 & 376 \\
959 & 1022 & 1245 & 1319 & 1505 & 1522 & 1611 & 1735 & 1739 \\
1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1088 & 1889 & 1897 \\
1891 & 1898 & 2298 & 2401 & 2412 & 2423 & & &
\end{tabular}

414 JAMES \(4: 8\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|l|}{KATharisate} & & & & & \multicolumn{2}{|l|}{81/93.1号} \\
\hline & TR & 01 & 02 & 33 & 92n & 044 & 749 & 5 & 5 \\
\hline & 38 & 51 & 69 & 104 & 177 & 201 & 203 & 206 & 216 \\
\hline & 223 & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
\hline & 385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 \\
\hline & 547 & 614 & 623 & 642 & 645 & 970́ & 920 & 927 & 959 \\
\hline & 1022 & 1175 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 \\
\hline & 1319 & 1424 & 1503 & 1505 & i522 & 1010 & 1611 & 1735 & i738 \\
\hline & 1739 & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & ;888 \\
\hline & 1889 & 1890 & 1891 & 1892 & 1898 & 2143 & 2401 & 2412 & 2423 \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{lllllll}\text { (2) } & + \text { TAS } \\ \\ 209 & 917 & 999 & 1315 & 1597 & 2298\end{array}\)}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{6/6.9\%}} \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
```

Units of Variation and Their Support (Cont.)

```

415 JAMES \(4: 8\)
(1) \begin{tabular}{rrrrrrrrr}
\multicolumn{9}{c}{ AGNISATE } \\
TR & \(n 1\) & \(n 2\) & 03 & 020 & 049 & 5 & 51 & 69 \\
104 & 177 & 201 & 203 & 209 & 216 & 223 & 226 & 263 \\
307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 & 440 \\
467 & 479 & 483 & 489 & 491 & 547 & 614 & 623 & 642 \\
643 & 876 & 917 & 929 & 927 & 959 & 999 & 1022 & 1175 \\
1240 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1424 & 1503 \\
1597 & 1610 & 1611 & 1735 & 1738 & 1739 & 1827 & 1829 & 1845 \\
1854 & 1874 & 1876 & 1868 & \(i 889\) & 1891 & 1892 & 1898 & 2143 \\
2298 & 2401 & 2412 & 2423 & & & & &
\end{tabular}
\begin{tabular}{llllllll}
(2) ASIASSEE & & & & & & \(6 \%\) & \(7.3 \%\) \\
206 & \(\equiv 22\) & 1505 & 1522 & 1799 & 1890 & &
\end{tabular}
(S) 044: KīHARISATE
(S) ó: éGNISANEES
(S) 38: AGNISTE8TaI
(S) 12. : AS":Sere
(S) 1319: n'sust beser

421 JAMES \(4: 19\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(1)} & 750 & & & & & & & 67 ! & 77.28 \\
\hline & TP & 220 & 349 & , & 6 & 38 & 51 & ¢9 & 104 \\
\hline & 177 & 201 & 203 & 209 & 216 & 223 & 226 & 263 & 19 \\
\hline & 323 & :37 & 383 & 385 & 424 & 440 & 467 & 479 & 483 \\
\hline & 489 & -91 & 547 & 623 & 042 & 643 & 876 & 917 & 929 \\
\hline & 927 & 959 & 999 & 1022 & i240 & 124: & 1245 & 1247 & 1248 \\
\hline & 1249 & 135 & 1424 & 1503 & 1597 & 1610 & 1738 & 1739 & i829 \\
\hline & 1845 & 1854 & 1874 & 1676 & 1888 & 1889 & 1891 & 1892 & 1898 \\
\hline & 2143 & 2298 & 2401 & 2423 & & & & & \\
\hline \multirow[t]{4}{*}{(2)} & OM & & & & & & & \(20 /\) & 23.9\% \\
\hline & 01 & 22 & 03 & 244 & 206 & 307 & 378 & 522 & 614 \\
\hline & 1175 & 1243 & 1319 & 1505 & 1522 & \(i 611\) & 1735 & 1799 & 1827 \\
\hline & 1890 & 2412 & & & & & & & \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)
```

422 JAMES 4:10

```

```

(2) THEOU
424 JANES I! -7

Ai	V ADELPHOI						79/ 91.9\%	
		03	020	049	6	38	51	69
104	: 7	201	203	296	209	216	223	226
263	307	319	323	337	378	383	385	424
440	467	479	483	489	491	522	547	614
642	643	376	$99^{7}$	920	927	959	999	1022
1240	1341	1243	1245	1247	1248	1249	1315	: 319
1424	1505	:505	1522	1597	1610	1611	17ミ8	;739
1799	1829	1854	i87i	1876	1888	1889	1890	i891
1892	1898	2143	2298	2401	2412	2423		

(2) ADELPHOI ALL,8LGN 4/ 4.7%
(3) ADELPYOI MO: ALL.8LWN 3/ 3.5%
(S) 1827: MLLBLWN ADELPPHOI MOU

```

Units of Variation and Their Support (Cont.)

426 JAMES 4:11

427 JAMES \(4: 11\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{2}{|l|}{KAI (1)} & & & & & & \multicolumn{2}{|l|}{64! 73.6\%} \\
\hline & TR & 220 & 049 & 5 & 6 & 38 & 51 & 69 & 177 \\
\hline & 201 & 203 & 206 & 299 & 216 & 223 & 226 & 263 & 307 \\
\hline & 319 & 323 & 337 & 383 & 385 & 424 & 467 & 479 & 483 \\
\hline & 489 & 491 & 547 & 623 & 642 & 876 & 317 & 920 & 927 \\
\hline & 959 & 999 & 1022 & 1240 & 1245 & 1247 & 1248 & 1249 & 1319 \\
\hline & 1424 & 1503 & 1505 & 1597 & 16 in & i738 & 1829 & 1845 & 1854 \\
\hline & 1874 & 1870 & 1888 & 1889 & iS91 & 1892 & 1898 & 2143 & 2401 \\
\hline \multicolumn{10}{|c|}{2423} \\
\hline \multirow[t]{4}{*}{(2)} & 8 & & & & & & & 23/ & 26.4\% \\
\hline & 01 & 22 & 03 & 044 & 104 & 378 & 440 & 522 & 614 \\
\hline & 643 & 1175 & 1241 & 1243 & 1315 & 1522 & 1611 & 1735 & \(\bigcirc 739\) \\
\hline & 1799 & 1827 & 1890 & 2298 & 2412 & & & & \\
\hline
\end{tabular}
```

Units of Variation and Their Support (Cont.)

```

428 JAMES 4:11
(1) OUK \begin{tabular}{rrrrrrrrr}
& & & & & & \(79 /\) & \(90.8 \%\) \\
TR & 01 & 02 & 93 & \(n 20\) & 049 & 5 & 6 & 38 \\
51 & 104 & 177 & 291 & 203 & 206 & 209 & 216 & 223 \\
226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 \\
614 & 623 & 642 & 643 & 876 & 917 & 920 & 927 & 959 \\
999 & 1022 & 1240 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
1424 & 1503 & 1505 & 1522 & 1597 & 1610 & 1611 & 1735 & 1758 \\
1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1889 & 1890 \\
1891 & 1892 & 1898 & 2143 & 2401 & 2412 & 2423 & &
\end{tabular}
\begin{tabular}{lllllllll}
(2) OKE:- & & & & & & \(8 /\) & \(9.2 \%\) \\
044 & 69 & 1175 & 1241 & 1243 & 1739 & 1888 & 2298 &
\end{tabular}

431 jAMES 4: 2
(1) NONOTHETBS
\begin{tabular}{rrrrrrrrr}
IR & 020 & 049 & 5 & 38 & 51 & 104 & 177 & 203 \\
209 & 223 & 263 & 337 & 383 & 385 & 424 & 491 & 522 \\
547 & 642 & 917 & 920 & 927 & 099 & 1022 & 1240 & 1245 \\
1319 & 1424 & 1522 & 1597 & 1610 & 1738 & 1827 & 1829 & \(i 854\) \\
1874 & 1888 & 1889 & 1891 & 2143 & \(240 i\) & 2423 & &
\end{tabular}
(2) + KAI KRIT8S

38/46.9\%
\begin{tabular}{lllllllll}
& 01 & 02 & 73 & 044 & 5 & 69 & 201 & 206 \\
210
\end{tabular}
\begin{tabular}{llllllllll}
226 & 307 & 323 & 378 & 140 & 467 & 479 & 483 & 514
\end{tabular}
\(623 \quad 876 \quad 959 \quad i 175 \quad i 241 \quad 1243 \quad 1247 \quad 1248 \quad 1249\) 1315 i5n3 1505 16i1 i735 1739 i876 i892 i898 2298 2412
(S) 64?: + KAI 0 KRI:8S
(S) 1845: + 2 Ki3II8S
(0) 17991890
(U) 319489

Units of Variation and Their Support (Cont.)

433 JAMES 4:12

436 JAMES : : 12

Units of Variation and Their Support (Cont.)

438 JAMES 4:12
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(1)} & \multicolumn{2}{|l|}{ETERON} & \multirow[b]{2}{*}{049} & \multirow[b]{2}{*}{6} & \multirow[b]{2}{*}{38} & \multirow[b]{2}{*}{51} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 63 / \\
& 177
\end{aligned}
\]} & 72.4\% \\
\hline & TR & 020 & & & & & 69 & & 201 \\
\hline & 203 & 209 & 216 & 223 & 226 & 263 & 307 & 319 & 337 \\
\hline & 378 & 383 & 385 & 424 & 440 & 467 & 479 & 483 & 489 \\
\hline & 491 & 547 & 642 & 643 & 876 & 917 & 920 & 927 & 959 \\
\hline & 999 & 1022 & 1240 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
\hline & 1424 & 1503 & 1597 & 1610 & 1738 & 1827 & 1829 & 1854 & 1874 \\
\hline & 1876 & 1888 & 1889 & 1891 & 1892 & 1898 & 2143 & 2401 & 2423 \\
\hline \multirow[t]{4}{*}{(2)} & \multicolumn{2}{|l|}{PL.8SION} & & & & & & 24/ & 27.6\% \\
\hline & 01 & 02 & 03 & 044 & 5 & 104 & 206 & 323 & 522 \\
\hline & 614 & 52 & 1175 & 1241 & 1243 & 1505 & 1522 & 1611 & 1735 \\
\hline & 1739 & .799 & 1845 & 1890 & 2298 & 2412 & & & \\
\hline
\end{tabular}

443 JAMES 4:13
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(1)} & \multicolumn{2}{|l|}{KAI (i)} & & & & & & 761 & \(87.4 \%^{\circ}\) \\
\hline & TR & 02 & 020 & 749 & 6 & 38 & 51 & 69 & 174 \\
\hline & 177 & 201 & 203 & 206 & 209 & 216 & 223 & 226 & 263 \\
\hline & 307 & 319 & 337 & 378 & 383 & 385 & 424 & 440 & 467 \\
\hline & 479 & 483 & 489 & 491 & 522 & 547 & 514 & 542 & 643 \\
\hline & 876 & 917 & 920 & 927 & 959 & 990 & 192? & 1175 & 1240 \\
\hline & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1310 & 1424 & 1503 \\
\hline & 1505 & 1522 & 1597 & 1610 & \(161 i\) & 1738 & 1799 & i827 & :829 \\
\hline & 1854 & 1874 & 1876 & 1848 & 1889 & 1890 & 1891 & 1892 & 1898 \\
\hline & 2143 & 2401 & 2412 & 2423 & & & & & \\
\hline \multirow[t]{3}{*}{(2)} & \multicolumn{2}{|l|}{8} & & & & & & 11/ & 12.65 \\
\hline & 01 & 03 & 044 & 5 & 323 & 623 & 1241 & 1735 & 1739 \\
\hline & 1845 & 2298 & & & & & & & \\
\hline
\end{tabular}

\section*{Units of Variation and Their Support (Cont.)}

444 JAMES 4:13
(1) \begin{tabular}{rrrrrrrrr}
ENA & & & & & & & \(80 / 92.0 \%\) \\
TR & 02 & 020 & 044 & 049 & 5 & 6 & 38 & 51 \\
69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 \\
226 & 263 & 319 & 323 & 337 & 378 & 383 & 385 & 424 \\
440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 & 614 \\
623 & 642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 \\
1022 & 1175 & 1240 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
1424 & 1503 & 1505 & 1522 & 1597 & 1510 & 1611 & 1735 & 1738 \\
1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 \\
1890 & 1891 & 1892 & 1898 & 2143 & 2401 & 2412 & 2423 &
\end{tabular}
\(\begin{array}{cccccccc}\text { (2) } & O M & & & & & & \\ 01 & 13 & 307 & 1241 & 1243 & 1739 & 2298\end{array}\)

445 JAMES \(4: 1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(1)} & \(\square\) & & & & & & & 69/ & 81. 2 \% \\
\hline & TR & 01 & 320 & 044 & 049 & う & 6 & 38 & 51 \\
\hline & 69 & 104 & 177 & 291 & 203 & 299 & 216 & 223 & 226 \\
\hline & 263 & 307 & 319 & 323 & 337 & 383 & 385 & 424 & 440 \\
\hline & 467 & 479 & 483 & 489 & 491 & 547 & 523 & 642 & 543 \\
\hline & 876 & 217 & 920 & 927 & 959 & 999 & 1022 & 1240 & 1245 \\
\hline & 1247 & 1248 & 1249 & 1315 & 1319 & 1424 & 1503 & 1597 & 1619 \\
\hline & 1735 & 1738 & 18.7 & 1829 & 1845 & i854 & 1874 & 1876́ & 1888 \\
\hline & 1889 & 1891 & 1892 & 1898 & 2143 & 2423 & & & \\
\hline \multirow[t]{3}{*}{(2)} & TA & & & & & & & 161 & 18.8\% \\
\hline & 02 & 206 & 378 & 522 & 614 & 1175 & 1241 & 1243 & 1505 \\
\hline & 1522 & 1511 & 1739 & 1799 & 1890 & 2298 & 2412 & & \\
\hline \multirow[t]{2}{*}{(S)} & 23. & JM & & & & & & & \\
\hline & 2401: & TON & & & & & & & \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)

446 JAMES 4:14
(1) GAR(1) \begin{tabular}{rrrrrrrrr}
GR & 02 & 020 & 044 & 049 & 5 & 6 & 38 & 51 \\
69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 \\
226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 \\
623 & 642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 \\
1022 & 1175 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 \\
1315 & 1319 & 1424 & 1503 & 1597 & 1610 & 1735 & 1738 & 1739 \\
1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 \\
1891 & 1892 & 1898 & 2143 & 2298 & 2401 & 2423 & &
\end{tabular}
(2) \(0 M \quad 03-614 \quad 1505-1522-1611 \quad 1890 \quad 8 / 2 \%\)
\(\begin{array}{llllllll}01 & 03 & 614 & 1505 & 1522 & 1611 & 1890 & 2412\end{array}\)

448 JAMES :
(1) ESTI \begin{tabular}{rrrrrrrrr}
& & & & \(36 / 42.49\) \\
TR & 020 & 5 & 201 & 293 & 206 & 209 & 216 & 226 \\
319 & 373 & 440 & 470 & 491 & 522 & 547 & 023 & 917 \\
959 & 999 & 1247 & 1248 & 1249 & 1315 & \(i 503\) & 1522 & 1735 \\
1799 & \(i 829\) & 1845 & 1876 & \(i 889\) & \(i 890\) & 1892 & 2401 & 2423
\end{tabular}
(2) ESTAI 37! 43.5\%

\(\begin{array}{lllllllll}263 & 337 & 383 & 385 & 424 & 467 & 483 & 489 & 543\end{array}\)
\(\begin{array}{lllllllll}870 & 320 & 927 & 1022 & 1240 & 1241 & 1245 & i 319 & 1424\end{array}\) \(\begin{array}{llllllllll}1505 & 1597 & 1610 & 1611 & 1738 & 1827 & 1854 & 1874 & 1888\end{array}\) 2143
(3) \(\begin{array}{rrrrrrrrr}\operatorname{ESTE} & & & & & & 12 / & 14.1 \% \\ 03 & 104 & 323 & 614 & 042 & 1175 & i 243 & i 739 & 1091 \\ 1898 & 2208 & 2412\end{array}\)
(0) 01
(U) 307

Units of Variation and Their Support (Cont.)

450 JAMES 4:14
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{8(2)}} & & & & & & \multicolumn{2}{|l|}{81/ 93.1\%} \\
\hline & & & 22 & 020 & 044 & 049 & 5 & 6 & 38 \\
\hline & 51 & 69 & 104 & 177 & 201 & 203 & 296 & 209 & 216 \\
\hline & 223 & 226 & 263 & 307 & 319 & 337 & 378 & 383 & 385 \\
\hline & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 52? & 547 \\
\hline & 614 & 623 & 642 & 643 & 876 & 917 & 920 & 927 & 959 \\
\hline & 999 & 1022 & 1240 & :243 & 1245 & 1247 & 1248 & 1249 & i315 \\
\hline & 1319 & 1424 & ; 503 & 1505 & \(152 \overline{2}\) & 1597 & 1617 & 1611 & 1735 \\
\hline & 1738 & 1799 & 18ご & 182? & 1845 & 1854 & 1874 & 1876 & - 888 \\
\hline & 1889 & 1890 & 1851 & 1892 & 1898 & 2143 & 2401 & 2412 & 2423 \\
\hline (2) & \multicolumn{7}{|l|}{OM} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{6/ 6.9\%}} \\
\hline & 33 & 323 & 1175 & 1241 & 1739 & 2298 & & & \\
\hline
\end{tabular}

451 JAMES 4:14
(1) \(\begin{array}{rrrrrrrrr}D 5 & & & & & & 17! & 20.72 \\ 7 ? ~ & 177 & 203 & 209 & 263 & 319 & 337 & 572 & 467 \\ 491 & i 3 i 5 & 1319 & i 424 & 1738 & i 876 & i 891 & 2143 & \end{array}\)
(2) Kй 12 , 14.15 \(\begin{array}{lllllllll}11 & 22 & 03 & 044 & 5 & 307 & 623 & i 175 & \vdots 241\end{array}\) \(1610 \quad 1739 \quad i 845\)
(3) + KAI 39. 45.39 \(\begin{array}{lllllllll}220 & 749 & 6 & 51 & 69 & 104 & 216 & 223 & 226\end{array}\) \(\begin{array}{lllllllll}323 & 383 & 385 & 424 & 44 n & 483 & 459 & 547 & 042\end{array}\) \(\begin{array}{llllllll} & 643 & 875 & 917 & 927 & 927 & 959 & 99 \\ i n 22 & i 24 n\end{array}\) \(\begin{array}{llllllllllll}1243 & i 245 & 1597 & i 755 & i 827 & i 829 & i 854 & 1889 & i 898\end{array}\) \(22982401 \quad 2423\)
(4) OM i7! 20.0\% \(\begin{array}{lllllllll}201 & 206 & 479 & 522 & 614 & 1247 & i 249 & i 249 & i 503\end{array}\) \(\begin{array}{llllllll}1505 & 1522 & 1011 & 1739 & i 874 & 1890 & 1892 & 2412\end{array}\)
(0) \(38 \quad 1888\)

Units of Variation and Their Support (Cont.)

459 JAMES 4:16
(1) \begin{tabular}{rrrrrrrrr}
\(\operatorname{EN}\) & & & & & & & \(77 / 88.5 \%\) \\
\(T R\) & 01 & 02 & 03 & 020 & 044 & 049 & 5 & 6 \\
38 & 51 & 69 & 104 & 177 & 201 & 203 & 209 & 216 \\
223 & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 547 \\
623 & 642 & 643 & 917 & 920 & 927 & 959 & 999 & 1022 \\
1175 & 1240 & 1247 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 \\
1319 & 1424 & 1503 & 1597 & 1610 & 1735 & 1738 & 1739 & 1827 \\
1829 & 1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1891 & 1892 \\
1893 & 2143 & 2298 & 2401 & 2423 & & & &
\end{tabular}
(2) EPI \(\begin{array}{llllllllll} & & & & & & & 10 / & 11.5 \% \\ 206 & 522 & 6.4 & 876 & 1505 & 1522 & 1611 & 1799 & 1890\end{array}\)

460 JANES:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & PASA & & & & & & & 75. & 89. 3 \% \\
\hline & TR & 02 & 23 & 220 & 044 & 749 & 5 & 6 & 38 \\
\hline & 51 & 69 & 104 & 177 & 201 & 299 & 216 & 223 & 226 \\
\hline & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 \\
\hline & 440 & 467 & 479 & 483 & 489 & 491 & 547 & 614 & 623 \\
\hline & 643 & 917 & 927 & 927 & 959 & 999 & in22 & 1175 & 1240 \\
\hline & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 & 1424 \\
\hline & 1503 & :597 & 1610 & 1735 & 1738 & 1739 & 1827 & 1829 & 1845 \\
\hline & 1854 & 1374 & :376 & ;888 & 1889 & 1891 & i892 & 1898 & 2143 \\
\hline & 2298 & 2401 & 2423 & & & & & & \\
\hline & + OUN & & & & & & & 9. & 10.7\% \\
\hline & 206 & 522 & 876 & 1505 & 1522 & 1611 & 1799 & 1800 & 2412 \\
\hline (S) & 01: & apasa & & & & & & & \\
\hline (S) & 203: & + DE & & & & & & & \\
\hline (S) & 642: & + GAB & & & & & & & \\
\hline
\end{tabular}
```

Units of Variation and Their Suppurt (Cont.)

```

464 JAMES 5：1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{（1）} & \multicolumn{3}{|l|}{EPERCHONENAIS} & & & & & \multicolumn{2}{|l|}{80／93．0\％} \\
\hline & TR & 02 & 03 & 320 & 044 & 949 & 6 & 51 & 69 \\
\hline & 177 & 201 & 203 & 206 & 209 & 216 & 223 & 226 & 263 \\
\hline & 307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 & 440 \\
\hline & 467 & 479 & 483 & 489 & 491 & 522 & 547 & 614 & 642 \\
\hline & 643 & 876 & 917 & 920 & 927 & 959 & 999 & 1022 & 1175 \\
\hline & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
\hline & 1503 & 1505 & 1522 & 1597 & 1610 & 1611 & ：735 & 1738 & 1739 \\
\hline & 1799 & 1827 & 1829 & 1854 & 1874 & 1876 & ib88 & 1889 & 1890 \\
\hline & 1891 & 1892 & 1898 & 2143 & 2298 & 2401 & 2412 & 2423 & \\
\hline （2） & \[
\begin{gathered}
+\mathrm{M} \\
01
\end{gathered}
\] & 5 & 104 & 623 & 1424 & 1845 & & 6.1 & 7．0\％ \\
\hline （0） & 38 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline （1） & \multicolumn{2}{|l|}{TMLN（2）} & & & & & & \multicolumn{2}{|l|}{74． \(85.1 \%\)} \\
\hline & TR & 01 & 93 & 320 & 349 & ó & 38 & 51 & 69 \\
\hline & 177 & 201 & 203 & 206 & 299 & 216 & 223 & 226 & 253 \\
\hline & 307 & 319 & 323 & 337 & 378 & ことう & 385 & 424 & \(44 n\) \\
\hline & 467 & 479 & 483 & 489 & 491 & 52？ & 547 & 642 & 643 \\
\hline & 876 & 917 & 920 & 927 & 959 & 995 & in22 & 1240 & 124； \\
\hline & 1243 & i245 & 1247 & iく 48 & 1249 & iS15 & i弓ic & 1424 & 1503 \\
\hline & 1522 & 1597 & 1610 & 1755 & ：730 & 1759 & 1799 & 1829 & ：854 \\
\hline & 1874 & 1876 & 1888 & 1889 & ：891 & 1892 & 1898 & 2143 & 2298 \\
\hline & 2401 & 2423 & & & & & & & \\
\hline \multirow[t]{3}{*}{（2）} & ＋ 0 & IJS & & & & & & 13.1 & 14．9\％ \\
\hline & 32 & 244 & \(j\) & 194 & 614 & 623 & \(i 175\) & ； 505 & 1611 \\
\hline & 1827 & 1845 & ：890 & 2412 & & & & & \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)

467 JAIES 5:3
(1) ESCHATAIS 8MERAIS
\begin{tabular}{rrrrrrrrr}
IR & 01 & \(n 3\) & 020 & 044 & 049 & 5 & 6 & 38 \\
51 & 60 & 104 & 177 & 201 & 203 & 206 & 209 & 216 \\
223 & 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 \\
385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 \\
547 & 614 & 623 & 642 & 917 & 920 & 927 & 959 & 999 \\
1022 & 1175 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 \\
1315 & 1319 & 1424 & 1503 & 1505 & 1522 & 1597 & 1610 & 1611 \\
1738 & \(i 709\) & 1827 & \(i 829\) & 1845 & 1854 & 1874 & 1876 & 1888 \\
1889 & 1890 & 1891 & 1892 & 1898 & 2143 & 2401 & 2412 & 2423
\end{tabular}
(2) 8merais eschatais

4/ 4.6\%
\(32 \quad 1735 \quad 1739 \quad 22 j 8\)
(3) Tais Eschatais 8mezais
2.12 .35

643876

477 JAMES \(5: 7\)

(2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|l|}{४ - \({ }^{\text {c }}\)} & \multicolumn{2}{|l|}{57! 67.14} \\
\hline \(3 \%\) & 719 & 6 & 38 & \(5 i\) & i04 & i77 & 201 & 2ヵ3 \\
\hline 209 & \(\because:\) & 226 & 263 & 319 & 323 & 337 & 378 & 383 \\
\hline 385 & 424 & 467 & 479 & 483 & 489 & 491 & 547 & 376 \\
\hline 917 & 920 & 959 & 999 & in22 & 1240 & \(i 245\) & 1247 & 1248 \\
\hline 1249 & i3:9 & : 424 & 1503 & 1522 & :610 & 1738 & 1827 & 1829 \\
\hline 1854 & 1874 & 1876 & :888 & 1889 & i8go & i891 & 1892 & ;898 \\
\hline 2143 & 2401 & 2423 & & & & & & \\
\hline
\end{tabular}
(S) 1597: AUT8S
(U) 927

Units of Variation and Their Support (Cont.)

478 JAMES 5:7
(1) \begin{tabular}{rrrrrrrrr}
AN & & & & & & \(50 / 57.5 \%\) \\
TR & 01 & 044 & 5 & 51 & 69 & 104 & 201 & 206 \\
216 & 223 & 323 & 440 & 479 & 483 & 522 & 547 & 614 \\
623 & 876 & 920 & 959 & 999 & 1022 & 1175 & 1240 & 1243 \\
1245 & 1248 & 1249 & 1315 & 1319 & 1424 & 1503 & 1505 & 1522 \\
1611 & 1799 & 1829 & 1845 & 1874 & 1876 & 1889 & 1890 & 1892 \\
2143 & 2298 & 2401 & 2412 & 2423 & & & &
\end{tabular}
(2) OM \begin{tabular}{rrrrrrrrr}
OM & & & & & & \(35 / 40.20\) \\
02 & 03 & 020 & 049 & 6 & 38 & 177 & 203 & 209 \\
226 & 263 & 307 & 319 & 337 & 378 & 383 & 385 & 424 \\
467 & 489 & 642 & 643 & 917 & 927 & 1241 & 1247 & 1610 \\
1735 & 1738 & 1739 & 1827 & 1854 & 1888 & 1891 & 1898 &
\end{tabular}
(3) 00

2/ 2.39

480 JAMES 5:7

(S) ग1: KARPON TON
(S) 69: KAI :ON
(S) i175: KARPON
```

Units of Variation and Their Support (Cont.)

```

483 JAMES 5:8

(2) \(\begin{array}{llllllllll}+8 \mathrm{MWN} \\ 206 & 378 & 522 & 614 & 1505 & 1522 & 1611 & 1790 & 11.6 \% \\ & 24997\end{array}\)
(S) 1241: THEOU

485 JANES 5:9

(2) ADELPPHOI KAT ALLBL.KN 21/ \(24.4 \%\)
\begin{tabular}{rrrrrrrrr}
03 & 044 & 5 & 69 & 276 & 378 & 522 & 614 & 023 \\
022 & 1241 & \(i 245\) & 1505 & \(i 522\) & \(i 611\) & \(i 739\) & 1799 & 1845
\end{tabular}
\(18902298 \quad 2412\)
(3) ADEL.PHOI MOU KAT ULL8L,WN 5! 5.8\% \(\begin{array}{lllll}02 & 642 & i 175 & i 735 & 1827\end{array}\)
(4) KAT AL.L.8Liwn 3/ 3.5\% \(307 \quad 876\) і888
(S) i319: MET' ALLBLWN ADELPHOI

Units of Variation and Their Support (cont.)

488 JAMES 5:9
(1) KATAKRITH8TE 4/4.6\%
\(\begin{array}{llll}\text { IR } & 209 & 547 & 1315\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{KRITH8TE} & & & & & \multicolumn{3}{|r|}{83! \(95.4 \%\)} \\
\hline 01 & 02 & 03 & 320 & 044 & 049 & 5 & 5 & 38 \\
\hline 51 & 69 & 104 & 177 & 201 & 203 & 206 & 216 & 223 \\
\hline 226 & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 \\
\hline 424 & 440 & 467 & 473 & 483 & 489 & 491 & 522 & 6:4 \\
\hline 623 & 642 & 643 & 876 & 917 & 027 & 027 & 959 & 999 \\
\hline 1022 & 1175 & i240 & 124; & 1243 & i245 & 1247 & i248 & 1249 \\
\hline 1319 & 1424 & 1503 & i505 & 1522 & :597 & \(10 \div 9\) & ;611 & 1735 \\
\hline 1738 & 1739 & 1799 & 18こ7 & 1829 & 1845 & 1854 & i874 & 1876 \\
\hline 1888 & і४४9 & 1890 & 169i & i892 & 1898 & 2143 & 2298 & 2401 \\
\hline 2412 & 2423 & & & & & & & \\
\hline
\end{tabular}

490 JAMES 5:17
(1) 18S KAKOPATH. ADELPKOI MOU n/ . O\%
(2) ADELPHOI :O: T8S KiKOP\& Th.
\begin{tabular}{rrrrrrrrr}
020 & 749 & 0 & 30 & 51 & 59 & 104 & 177 & 399 \\
216 & 223 & 263 & 307 & \(3 i 9\) & 323 & 337 & 378 & 303 \\
385 & 424 & 440 & 483 & 489 & \(49 i\) & 547 & 542 & 043 \\
876 & 917 & 920 & 927 & 959 & 999 & 1922 & \(i 240\) & \(i 245\) \\
1315 & \(i 424\) & 1597 & \(i 6 i 0\) & \(i 735\) & 1738 & \(i 827\) & \(i 829\) & 354 \\
1874 & \(i 888\) & \(i 889\) & 1091 & 2143 & 2298 & 2407 & 2423 &
\end{tabular}
(3) ADELPLOL ISS KAKOPATSEIAS 27/33.7\%
\(0203044 \quad 5 \quad 201\) 206 226 479 202
\(614 \quad 0231175\) i24i i24j i247 i248 i249 i503 \(1505 \quad 1522 \quad 1611 \quad 1739 \quad i 845 \quad i 875 \quad 189 n \quad i 892 \quad 24 i 2\)
(S) IR: F8S KAKOPATHETAS ADELPHOI MO:
(S) 01: ADELDAOI HOU ESS KALGEAGABHIAS
(S) 203: AD. M. AD. UPODEITAA LAEETE -. KAKOPATH.
(S) 467: TOS KAKOPATHEIAS
(S) 1j19: AD. MOU 53 S MAERPJTLSMIAS KAT KAKORATH.

(S) i898: ADELPHOI NOU TO TYS KAKOPATHEIAS

Units of Variation and Their Support (Cont.)

492 JAMES 5:10
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{MAKROTHUMIAS} & \multicolumn{2}{|l|}{80/ 93.0\%} \\
\hline TR & 01 & 03 & 320 & 049 & 6 & 38 & 51 & 59 \\
\hline 104 & 177 & 201 & 203 & 206 & 299 & 216 & 223 & 226 \\
\hline 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 \\
\hline 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 & 614 \\
\hline 642 & 643 & 876 & 917 & 920 & 927 & 959 & 999 & 1022 \\
\hline 1175 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 \\
\hline 1424 & 1503 & 1505 & 1522 & 1597 & 1610 & i611 & 1738 & 1739 \\
\hline 1799 & 1827 & 1829 & 1854 & 1874 & 1876 & 1888 & 1889 & 1890 \\
\hline 1891 & 1892 & 1898 & 2143 & 2298 & 2401 & 2412 & 2423 & \\
\hline
\end{tabular}
(2) + ECHETE 6! 7.0\%
\(\begin{array}{llllll}22 & 044 & 5 & 623 & 1735 & 1845\end{array}\)
(S) 1319: SEE JNIT 490

494 JAMES 5:in
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{ELALBSAN} & & & & & & \multicolumn{2}{|l|}{52! 60.5\%} \\
\hline TR & 02 & 020 & 044 & 049 & б & 38 & 104 & i77 \\
\hline 203 & 209 & 216 & 225 & 263 & 337 & 378 & 383 & 385 \\
\hline 424 & 440 & 467 & 483 & 489 & 491 & 547 & 614 & 042 \\
\hline 643 & 917 & 920 & 927 & 959 & 1022 & 1240 & i245 & \(13 i 5\) \\
\hline 1319 & 1424 & 1503 & i522 & 1597 & 1735 & 1738 & 1827 & ;829 \\
\hline 1854 & 1874 & :888 & 1889 & 1897 & \(i 891\) & 2143 & & \\
\hline
\end{tabular}
(2) +5 N 34! 39.5\%
\begin{tabular}{rrrrrrrrr}
+21 & 03 & 5 & 51 & 69 & 201 & 206 & 223 & 307 \\
319 & 323 & 479 & 522 & 523 & 876 & 909 & 1175 & \(i 24 i\) \\
1243 & 1247 & \(i 248\) & 1249 & 1505 & \(i 610\) & \(i 6 i i\) & 1739 & 1799 \\
1845 & 1876 & \(i 892\) & 2298 & 2401 & 2412 & 2423 & &
\end{tabular}
(S) 1898: + 5PI

Units of Variation and Their Support（Cont．）

\section*{495 JAMES 5：19}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline （1） & \multicolumn{2}{|l|}{KJRIOU} & & & & & & \multicolumn{2}{|l|}{68／78．2\％} \\
\hline & TR & 01 & 02 & 33 & 320 & 044 & 049 & 6 & 38 \\
\hline & 51 & 104 & 201 & 203 & 299 & 216 & 223 & 226 & 263 \\
\hline & 307 & 378 & 383 & 385 & 424 & 440 & 467 & 479 & 483 \\
\hline & 489 & 491 & 547 & 642 & 643 & 876 & 917 & 920 & 927 \\
\hline & 959 & 999 & 1022 & 124n & 1243 & ：245 & 1247 & 1243 & 1249 \\
\hline & 1315 & 1319 & 1424 & i5n3 & 1522 & 1597 & 1610 & i735 & 1738 \\
\hline & 1827 & 1829 & 1854 & 1874 & 1876 & i888 & 1889 & 1890 & 1892 \\
\hline & i898 & 2143 & 2298 & 2401 & 2423 & & & & \\
\hline \multirow[t]{4}{*}{（2）} & To & KURIOU & & & & & & 19． & 21．8\％ \\
\hline & 5 & 69 & 177 & 296 & 319 & 323 & 337 & 522 & 514 \\
\hline & 623 & i175 & 1241 & 1505 & 16：11 & 1739 & 1799 & 1845 & 8891 \\
\hline & \multicolumn{9}{|l|}{\(24: 2\)} \\
\hline
\end{tabular}

501 JAMES 5：11
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1） & \multicolumn{3}{|l|}{pnitisdiancenos} & & & & & \multicolumn{2}{|l|}{6n： 69.0 \％} \\
\hline & TR & 91 & 72 & 73 & 720 & 744 & 749 & 5 & － \\
\hline & 69 & 201 & 209 & \(2 i 5\) & 226 & 307 & 319 & 323 & 383 \\
\hline & 305 & 424 & 440 & 467 & 479 & 403 & 489 & 547 & 614 \\
\hline & 623 & 643 & 876 & ¢ & 920 & 927 & in22 & iif5 & 1247 \\
\hline & 1245 & i247 & 1248 & ：240 & i3i9 & 1424 & i50j & 1597 & 1619 \\
\hline & 1735 & i739 & ；829 & 1845 & ：85，4 & 1874 & i876 & 1300 & i¢89 \\
\hline & ；891 & 1892 & 2143 & 3290 & 24.2 & 2423 & & & \\
\hline \multirow[t]{4}{*}{（2）} & \multicolumn{3}{|l|}{POLUEUSPLAGCHNOS} & & & & & \(27!\) & 31．\({ }^{\circ}\) \\
\hline & 38 & 51 & i04 & ¢77 & こワ3 & 206 & 223 & 263 & 337 \\
\hline & 378 & 491 & 522 & 642 & 959 & 999 & 124i & 1243 & ：315 \\
\hline & 1505 & \(15 こ 2\) & 1610 & ；738 & 1790 & 1827 & 1890 & －898 & \(24 n 1\) \\
\hline
\end{tabular}

Units of Variation and Their Support (Cont.)

502 JAMES 5:11
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{0 KJRIOS} & & & & & & \multicolumn{2}{|l|}{19/22.1\%} \\
\hline TR & 01 & 32 & 044 & 5 & 491 & 522 & 614 & 623 \\
\hline 1175 & 1243 & 1505 & 1611 & 1735 & 1739 & 1827 & 1845 & 2298 \\
\hline 2412 & & & & & & & & \\
\hline
\end{tabular}
(2) \begin{tabular}{lrrrrrrrr}
OM & & & & & & \(67 /\) & \(77.9 \%\) \\
020 & 049 & 6 & 38 & 51 & 69 & 104 & 177 & 201 \\
203 & 206 & 209 & 216 & 223 & 226 & 263 & 307 & 310 \\
323 & 337 & 378 & 383 & 385 & 424 & 440 & 467 & 479 \\
483 & 489 & 547 & 642 & 643 & 876 & 917 & 920 & 927 \\
959 & 999 & \(i 022\) & 1240 & 1241 & 1245 & 1247 & 1248 & 1249 \\
1315 & 1319 & \(i 424\) & 1503 & 1522 & \(i 597\) & \(i 610\) & \(i 738\) & 1799 \\
1829 & 1854 & 1874 & 1876 & 1888 & \(i 869\) & \(i 890\) & \(189 i\) & 1892 \\
1898 & 2143 & \(240 i\) & 2423 & & & & &
\end{tabular}
(S) \(03:\) KURIOS

503 JAVPS 5:12
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & EIS & UPOKRI & & & & & & 761 & 88.4\% \\
\hline & :R & 020 & 344 & 749 & 5 & 6 & 38 & 51 & -9 \\
\hline & 177 & 201 & 203 & 200 & 216 & 223 & 263 & 397 & 319 \\
\hline & 323 & 337 & 378 & 383 & 385 & 424 & 440 & 467 & 479 \\
\hline & 483 & 489 & 491 & 522 & 547 & 514 & 623 & 642 & 043 \\
\hline & 876 & 917 & 927 & 927 & 959 & 999 & :722 & ;175 & i 247 \\
\hline & 1243 & 1245 & 1247 & i248 & i249 & 1315 & i319 & i424 & 1503 \\
\hline & 1505 & 1522 & i6in & 1611 & i735 & 1738 & i799 & i827 & i829 \\
\hline & 1845 & 1874 & 1876 & 1888 & 1889 & 1890 & ;891 & i802 & 2143 \\
\hline & 2298 & 2401 & 2412 & 2423 & & & & & \\
\hline (2) & UPO & KRISIN & & & & & & 10! & \(11.6 \%\) \\
\hline & 01 & 02 & 03 & 104 & 226 & 1241 & i597 & 1739 & 1854 \\
\hline & 1898 & & & & & & & & \\
\hline
\end{tabular}
```

Units of Variation and Their Support (Cont.)

```

507 JAMES 5:14
(1) \begin{tabular}{rrrrrrrrr}
TOU & & & & & & & \(78 / 89.7 \%\) \\
\(T R\) & 01 & 020 & 049 & 5 & 6 & 38 & 51 & 69 \\
177 & 201 & 203 & 206 & 209 & 216 & 223 & 226 & 263 \\
307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 & 440 \\
479 & 483 & 489 & 491 & 522 & 614 & 623 & 642 & 643 \\
876 & 917 & 920 & 927 & 959 & 999 & 1022 & 1175 & 1240 \\
1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 & 1424 \\
1503 & 1505 & 1522 & 1597 & 1611 & 1735 & 1738 & 1739 & 1799 \\
1827 & 1829 & 1845 & 1854 & 1874 & 1888 & 1890 & 1891 & 1892 \\
1898 & 2143 & 2298 & 2401 & 2412 & 2423 & & &
\end{tabular}
\begin{tabular}{lllllllllll}
(2) & \(0 M\) \\
& 02 & 03 & 044 & 104 & 467 & 547 & \(i 610\) & 1876 & 1889
\end{tabular}

508 JATES 5:15

\section*{Uni=s of Variation and Their Support (Cont.)}

510 JAMES 5:16

(2) \(\begin{array}{rrrrrrrrr} \\ 0 & & & & & & 24, & 27.6 \pi \\ 01 & 02 & 03 & 5 & 206 & 307 & 483 & 522 & 614 \\ 623 & 959 & 1175 & 1241 & 1243 & i 505 & 1522 & 1611 & 1735 \\ 1739 & 1799 & 1845 & 1890 & 2298 & 2412 & & & \end{array}\)

511 JAIES 5:16
(1) TA PARAPTNMATA
\begin{tabular}{rrrrrrrrr}
\(7 R\) & 049 & 38 & 51 & 69 & 104 & \(i 77\) & 201 & 209 \\
216 & 223 & 226 & 263 & 307 & 319 & 323 & 337 & 383 \\
385 & 424 & 440 & 467 & 479 & 483 & 489 & 491 & 547 \\
643 & 917 & 927 & 027 & 959 & 099 & 1022 & \(i 240\) & \(i 245\) \\
1247 & 1248 & 1249 & \(i 315\) & 1319 & \(i 424\) & 1503 & \(i 597\) & \(i 6 i n\) \\
1827 & 1829 & 1854 & \(i 874\) & 1876 & 1888 & 1889 & 1891 & \(i 89 ?\) \\
1898 & 2143 & 2401 & 2423 & & & & &
\end{tabular}
(2) TA PARAPTWMATA THN 5/ 5.9\%
\(\begin{array}{lllll}320 & 273 & 378 & 876 & 2298\end{array}\)
(3) TAS ARARTIAS EATMEN 3/ 3.5\%
(4) TAS AMARTLAS 9/ 10.6\%
\begin{tabular}{lllllllll}
31 & 02 & 73 & 044 & 6 & 642 & 1175 & 1243 & 1735
\end{tabular}
(5) TAS AMARTIAS JMNN 10/ 11.8\% \(\begin{array}{lllllllll}206 & 614 & 1241 & 1505 & 1522 & 1611 & 1739 & 1799 & 890\end{array}\) 2412
(S) 522: AMARTIAS AUTWN
(S) 1738: TA PARAPTWMATA EAUTWN

Units of Variation and Their Support（Cont．）

514 JAMES 5：17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{（1）TOU M8 BREXAI} & \(76 /\) & 88．4\％ \\
\hline & TR & 01 & 02 & 33 & 020 & 049 & 6 & 38 & 51 \\
\hline & 69 & 104 & 177 & 201 & 203 & 206 & 209 & 216 & 223 \\
\hline & 226 & 263 & 307 & 319 & 337 & 378 & 383 & 385 & 424 \\
\hline & 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 & 014 \\
\hline & 642 & 643 & 876 & 917 & 922 & 927 & 959 & 999 & 1022 \\
\hline & 1175 & 1240 & 1243 & 1245 & 1247 & 1248 & 1249 & \(13 i 5\) & 1319 \\
\hline & 1424 & 1503 & i597 & 16i0 & ：611 & 1735 & －738 & ¢799 & \(i 827\) \\
\hline & 1829 & 1854 & 1874 & i876 & i888 & 1889 & 1891 & 1892 & 1098 \\
\hline & 2143 & 2401 & 2412 & 2423 & & & & & \\
\hline \multirow[t]{2}{*}{（2）} & \multicolumn{4}{|l|}{TOU Mi8 EREXAL ：IETON} & & & & 71 & 8．1\％ \\
\hline & 5 & 323 & 623 & 1241 & 1739 & 1845 & 2298 & & \\
\hline \multirow[t]{2}{*}{（3）} & \multicolumn{4}{|l|}{INA M8 EREY8} & & & & 31 & 3．5\％ \\
\hline & 1505 & 1522 & 1890 & & & & & & \\
\hline
\end{tabular}
```

517 jAi冗S j:1%

```
（1）JETON EDWK
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline － & & & & & & & & \\
\hline T？ & 93 & 220 & 349 & & 51 & 69 & ir， 4 & i77 \\
\hline 201 & 203 & 206 & こ29 & 216 & 223 & 226 & 263 & 327 \\
\hline 319 & ミ23 & 337 & 375 & 383 & 385 & 424 & 445 & 467 \\
\hline 479 & 483 & 489 & \(4 ¢\) & 三22 & 347 & 014 & 642 & 543 \\
\hline 876 & 9.17 & 929 & \(9 ミ 7\) & 359 & 399 & in2？ & ：175 & 1240 \\
\hline 1243 & i245 & 1247 & i248 & i249 & 1315 & 13i9 & 1424 & ： 593 \\
\hline 1505 & i522 & 1597 & ión & ：611 & 1738 & ：799 & 1827 & ；829 \\
\hline 1854 & is74 & 1876 & ：888 & 1889 & ：890 & 1891 & i892 & 189 \\
\hline 2143 & 2401 & 2412 & 2423 & & & & & \\
\hline
\end{tabular}
（2）SDRKE \(15 \%\) \(\begin{array}{lllllllll}02 & 044 & 5 & 623 & 1241 & 1735 & 1739 & 1845 & 2298\end{array}\)
（S） \(31:\) EDWKEN TON JETON
（S）38：©匚โON OUK EDWKE

Units of Variation and Their Support (Cont.)

519 JAMES 5:19
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{2}{|l|}{ADELPHOI} & & & & & & \multicolumn{2}{|l|}{55/63.2\%} \\
\hline & TR & 020 & 049 & 5 & 6 & 38 & 51 & 104 & 177 \\
\hline & 201 & 203 & 209 & 223 & 226 & 263 & 319 & 323 & 337 \\
\hline & 383 & 385 & 479 & 483 & 489 & 491 & 547 & 643 & 917 \\
\hline & 920 & 927 & 959 & 999 & 1022 & 1240 & 1245 & 1247 & 1248 \\
\hline & 1249 & 1319 & 1424 & 1503 & 1597 & \(16: 0\) & 1738 & 1827 & 1829 \\
\hline & 1854 & 1874 & i876 & 1889 & 1891 & 1892 & 1898 & 2143 & 2401 \\
\hline & \multicolumn{9}{|l|}{2423} \\
\hline \multirow[t]{5}{*}{(2)} & \multicolumn{2}{|l|}{\(+\mathrm{MOU}\)} & & & & & & \(32 /\) & 36.8\% \\
\hline & 01 & 02 & 03 & 044 & 69 & 206 & 216 & 307 & 378 \\
\hline & 424 & 440 & 467 & 52.2 & 614 & 523 & 642 & 876 & 1175 \\
\hline & 1241 & 1243 & 1315 & 1505 & 1522 & ió11 & 1735 & 1739 & 1799 \\
\hline & 1845 & 1888 & 1890 & 2298 & 2412 & & & & \\
\hline
\end{tabular}

520 JARES 5:19

\(\begin{array}{cccccccccc}(2) & +78 S & \text { ODOU } \\ 01 & 5 & 307 & 467 & 623 & 542 & 643 & 1610 & 1845\end{array}\)
(0) 044
```

Units of Variation and Their Support (Cont.)

```

523 JAMES 5:20
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{2}{|l|}{GINWSKETW} & & & & & & \multicolumn{2}{|l|}{81/94.2\%} \\
\hline & Ti & 01 & 02 & 020 & 049 & 5 & ó & 38 & 51 \\
\hline & 104 & 177 & 201 & 203 & 296 & 209 & 216 & 223 & 226 \\
\hline & 263 & 307 & 319 & 323 & 337 & 378 & 383 & 385 & 424 \\
\hline & 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 & 614 \\
\hline & 623 & 642 & 643 & -Tis & 917 & 920 & 927 & 959 & 999 \\
\hline & 1022 & 1175 & 1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 \\
\hline & 1315 & 1319 & 1424 & 1503 & 1597 & 1619 & 1611 & 1735 & 1738 \\
\hline & 1739 & 1799 & 1827 & 1829 & 1845 & 1854 & 1874 & 1876 & 1888 \\
\hline & 1889 & 1891 & i892 & \(i 898\) & 2143 & 2298 & 2401 & 2412 & 2423 \\
\hline \multirow[t]{2}{*}{(2)} & \multicolumn{2}{|l|}{GINWSKETE} & & & & & & \multirow[t]{2}{*}{51} & \multirow[t]{2}{*}{5.8\%} \\
\hline & 33 & 69 & 1505 & 1522 & 1890 & & & & \\
\hline & 944: & OM & & & & & & & \\
\hline
\end{tabular}

524 JANES 5:20
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{5}{|l|}{PSJCHEN 5K THANATOU} & & & & \multicolumn{2}{|l|}{75/86.29} \\
\hline & TR & 020 & 344 & & 049 & 6 & 38 & 51 & 69 & 104 \\
\hline & 177 & 291 & 203 & & 296 & 209 & 216 & 223 & 226 & 263 \\
\hline & 319 & 323 & 337 & & 378 & 383 & 385 & 424 & 440 & 467 \\
\hline & 479 & 483 & 489 & & 491 & 522 & 547 & 642 & 643 & 876 \\
\hline & 917 & 923 & 327 & & 959 & 999 & 1022 & \(i 175\) & 1240 & 1241 \\
\hline & 1243 & 1245 & 124 & & 1248 & 1249 & 1315 & i319 & 1424 & :503 \\
\hline & 1505 & 1522 & i597 & & 15in & 1738 & 1799 & 1827 & 1829 & i854 \\
\hline & 1874 & 1876 & :888 & & 1889 & 1890 & 1891 & 1892 & :898 & 2143 \\
\hline & 2401 & 2412 & 242 & & & & & & & \\
\hline \multirow[t]{2}{*}{(2)} & \multicolumn{8}{|l|}{PSUCH8N AUTOU EK rhanatou} & 91 & 10. 38 \\
\hline & 01 & 32 & & 5 & 307 & 023 & :735 & 1739 & 1845 & 2298 \\
\hline (3) & \multicolumn{8}{|l|}{PSUCH8N EK THANATOU AUTOU \(\begin{array}{lll}33 & 614 & 1611\end{array}\)} & 31 & 3.4\% \\
\hline
\end{tabular}

525 JAMES 5:20
(1) \begin{tabular}{rrrrrrrrr}
\multicolumn{8}{c}{ AMARTIWN } & \\
TR & 01 & 02 & 03 & 020 & 044 & 049 & 5 & 6 \\
38 & 51 & 69 & 104 & 177 & 201 & 203 & 206 & 209 \\
216 & 223 & 226 & 263 & 307 & 319 & 323 & 337 & 385 \\
424 & 440 & 467 & 479 & 483 & 489 & 491 & 522 & 547 \\
623 & 642 & 643 & 917 & 920 & 927 & 959 & 1022 & 1175 \\
1240 & 1241 & 1243 & 1245 & 1247 & 1248 & 1249 & 1315 & 1319 \\
1424 & 1503 & 1597 & 1610 & 1735 & 1738 & 1739 & 1827 & 1829 \\
1845 & 1854 & 1874 & 1876 & 1888 & 1889 & 1891 & 1892 & 2143 \\
2298 & 2401 & 2423 & & & & & &
\end{tabular}
(2) + AM8N 10/ 11.8\% \(\begin{array}{lllllllll}378 & 383 & 614 & 876 & 1505 & 1522 & 1611 & 1890 & 1898\end{array}\) 2412
(S) 999: + DOXOLOGY
(S) 1799: AMART8MATKN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
```

                                    MERGE IOINTS AND GROUP CONTENTS
                            Single Linkage, Unweighted Similarity Coeficients
    ```
```

GROUP 20 MERSES INTO GROUP 11 AT LEVEL 100.00.

```
GROUP 20 MERSES INTO GROUP 11 AT LEVEL 100.00.
GROUP 11 NOW CONTAINS:
GROUP 11 NOW CONTAINS:
 51 223
 51 223
GROUP 26 MERGES INTO GROUP 14 AT LEVEL 100.00.
GROUP 26 MERGES INTO GROUP 14 AT LEVEL 100.00.
GROUP 14: NOW CONTAIVS:
GROUP 14: NOW CONTAIVS:
 177 337
 177 337
GROUP 74 MEEGES INTO GROUP 7 AI LEVEL 99.31.
GROUP 74 MEEGES INTO GROUP 7 AI LEVEL 99.31.
GROUP 7 NOW CONTAINS:
GROUP 7 NOW CONTAINS:
 049 1854
 049 1854
GROUP 33 MEEGES INTO GAOUP 15 AT LEVEL 99.31.
GROUP 33 MEEGES INTO GAOUP 15 AT LEVEL 99.31.
GROUP 15 NOW CONTAINS:
GROUP 15 NOW CONTAINS:
 201479
 201479
GROUP 56 MERGES INTD GROUP 15 dT LEVEL 99.31.
GROUP 56 MERGES INTD GROUP 15 dT LEVEL 99.31.
gROUP 15 NOH CONTAINS:
gROUP 15 NOH CONTAINS:
 201449 1248
 201449 1248
GROUP 61 MERGES INTJ GROUP 15 AT LEVEL 99.31.
GROUP 61 MERGES INTJ GROUP 15 AT LEVEL 99.31.
GROUP 15 NOF CONTAINS:
GROUP 15 NOF CONTAINS:
 201 479 1248 1503
 201 479 1248 1503
GROUP 81 MERGES INTJ GROUP 15 AT LEVEL 99.31.
GROUP 81 MERGES INTJ GROUP 15 AT LEVEL 99.31.
GROUP 15 NOH OONTAINS:
GROUP 15 NOH OONTAINS:
 201 479
 201 479
GROUP 46 MERGES INTO GROUP 35 AT LEVE: 99.30.
GROUP 46 MERGES INTO GROUP 35 AT LEVE: 99.30.
GROUP 35 NOW CONTAINS:
GROUP 35 NOW CONTAINS:
 489 927
 489 927
GROUP 73 MERGES INTO GROUP 40 AT LEVEL 99.29.
GROUP 73 MERGES INTO GROUP 40 AT LEVEL 99.29.
GROUP 40 NON CONTAINS:
GROUP 40 NON CONTAINS:
 623 1845
 623 1845
GROUP 57 MERGES INTO GROUP 15 AT LEVEL 99.28.
GROUP 57 MERGES INTO GROUP 15 AT LEVEL 99.28.
GROUP 15 NOW CONTAINS:
GROUP 15 NOW CONTAINS:
 201 479 1248 1503 1892 i249
 201 479 1248 1503 1892 i249
GROUP 45 MERGES INTO GROUP 7 AT LEVEL 97.93.
GROUP 45 MERGES INTO GROUP 7 AT LEVEL 97.93.
GROUP }7\mathrm{ NOW CONTAINS:
GROUP }7\mathrm{ NOW CONTAINS:
 049 1854 920
```

    049 1854 920
    ```

\section*{Single Linkage, Unweighted}

GROUP 54 MERGES INTO GROUP 49 AT LEVEL 97.93. GROUP 49 NJW CONTAINS: 10221245

GROUP 77 MERGES INTO GROUP 30 AT LEVEL 97.90. GROUP 30 :NOW CONTAINS:

4241888

GROUP 60 NERGES INTJ GROUP 7 AT LEVEL 97.24. GROUP 7 NכW CONTAINS:

0491854 920 1424
GROUP 7Ó MERGES IVTO GROUP 15 AT LEVEL 97.24. GROJP 15 NOW CONTAINS:
\(201 \quad 479 \quad 1248 \quad 1503 \quad 1892 \quad 1249 \quad 1876\)

GROJP 51 :UERSES INTO GROUP 7 AT LEVEL 97.こ2. GROUP 7 NOW CONTAINS: \(049 \quad 1854 \quad 020 \quad 1424 \quad 1240\)

GROUP 31 MERGES INTO GROUP 19 AI LEVEL 96.55. GROUP 19 NOW CONTAIYS:
\(216 \quad 440\)

GROUP 75 MERGES INTO GROUP 44 AT LEVEL 96.53. GROUP 44 NOW SONTAITS:
\(917 \quad 1874\)

GROUP Sర VEPGES ENTO GSOUP 14 AT LEVEL 96.50. GROUP i4 YON SONTAINS:
\(\begin{array}{lll}177 & 337 & 1738\end{array}\)
GROUP 29 NERGES INIO GROUP 7 AT LEVEL 96.38. GROUP 7 KOW CONTAINS:
\(\begin{array}{llllll}049 & 1054 & 320 & 1424 & 1240 & 385\end{array}\)
GROUP 9 MEBGES INTO GROUP 7 AT LEVEi 95.80. GROUF 7 NOW CONTAIMS:
\(049 \quad 1854 \quad 920 \quad 1424 \quad i 240 \quad 385 \quad 6\)

GROUP 59 MERGES INTO GROUP 10 AT LEVEL 95.49. GROUP 10 NOW CONTAINS:
\(38 \quad 1319\)
GROUP 87 MERGES INTO GROUP 78 AT LEVEL 95.17.
GROUP 73 NOW CONTAINS:
18892423

GROUP 21 MERCES INTO GROUP 7 AT LEVEL 95.14. GROUP 7 NOW CONTAINS: \(\begin{array}{llllllll}049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226\end{array}\)

Single Linkage, Jnweighted
```

GROUP 85 MERGES INTO GROUP 78 AT LEVEL 95.10.
GROUP 73 NOW CONTAINS:
1889 2423 2401
GROUP 55 MERGES INTO GROUP 15 AT LEEVEL 95.07.
GROUP 15 NOW CONTAINS:
201 479 1248}1503031892 1249 1876 1247
GROUP ४ MEPSES INTO GROUP 40 AT LEVEL 95.04.
GROUP 40 NOW CONIAINS:
623 1845 5
GROUP 24 MERGES INTO GROJP 10 AT LEVEL 95.00.
GROUP 10 NON CONTAINS:
38 1319 319
GROUP 8O MERGES IVTO GROUP 7 AT LEVE1., 94.93.
GROUP 7 NOW CONTMINS:
049 1854 920 1424 1240 385 % 6 % 226 1891
GROUP SO MERGES INTO GROUP 7 AT LEVEL 94.48.
GROUP }7\mathrm{ NOF SONTAINS:
049 i854 920 1424 1240 385 ó 226 1891
424 1888
GROUP 49 MEFGES ENTO GROUP 7 AT LEVEL 94.48.
GROUD 7 NOW SOSTAINS:
249
424 1888 1022 1245
GROUP 22 MEPGES INTO GROEP 7 AT LEVEL 94.48.
GROUP 7 NOW CONIMINS:
049
424}18888\quad1022 1245 263
GROUP 28 MEAGES INTO GROTJP 7 AT LEVEL 94.48.
GROUP }7\mathrm{ NOW CONT:INS:
049
GROUP 38 MERGES INTO GROUP 78 AT LEVEL. 94.48.
GROUP 78 NOW CON:AINS:
1889 2423 2401 547
GROUP 44 MESGES INTO GROUP 7 AT LEVEL 94.44.
GROUP 7 NOW CS:TAINS:
049
GROUP 79 MESGES INTO GROUP 63 AT LEVEL 94.29.
GROUP 63 NOW CONTATNS:
1522 1890

```

Single L.inkage, Unweighted
GROUP 72 MEPGES INTO GROUP 7 AT LEVEL 94.16. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829
\end{tabular}

GROUP 10 MERGES INTO GROUP 7 AT LEVEL 93.80. GROUP 7 NOW CONTAINS:
\(\begin{array}{lllllllll}049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891\end{array}\)
\(\begin{array}{llllllllll}424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829\end{array}\) \(38 \quad 1319 \quad 319\)

GROUP 11 MERGES INTO GROUP 7 AT LEVEL 93.79. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
249 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829
\end{tabular}
\(\begin{array}{lllll}38 & 1319 & 319 & 51\end{array}\)
GROUP \(\forall 3\) MERGES ENTO GROUP 7 AI LEVEL 93.79. GROUP 7 NOW CONDAINS:
\(\begin{array}{rrrrrrrrr}049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\ 42.4 & 1888 & 1222 & 1245 & 263 & 383 & 917 & 1874 & 1829\end{array}\) \(\begin{array}{lllll}30 & 1519 & 319 & 223 & 2143\end{array}\)

GROUP 78 MERSES ENMO GROID 7 AT LEVEL 93.75. GROUP 7 NOW SONEAINS:
\(\begin{array}{rrrrrrrrr}249 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\ 424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\ 38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401\end{array}\)
547
GROUP 14 MENGES INTO GROIP 7 AT LEVEL 93.75.
GROUP 7 NOW SONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & \(92 n\) & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & \(i 245\) & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & & & & &
\end{tabular}

GROUP 86 MERGES INTO GROUP 39 AT LEVEL 93.75. GROUP 39 NOW SONTAINS:

6142412

GROUP 70 ME?GES INTO GROUP 37 AT LEVEL. 93.57.
GROUP 37 NOW SONTAINS:
5221799

GROUP 34 MERGES INTO GROUP 7 AT LEVEL 93.10.
GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
\(n 49\) & 1854 & 020 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & & & &
\end{tabular}

Single Linkage, Unweighted
GROUP 35 MERGES INTO GROUP 7 AT LEVEL 93.06. GROUP 7 NWW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & &
\end{tabular}

GROJP 5 MERGES INTJ GROJP 7 AT LEVEL. 93.06.
GROUP 7 NOW CONIAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 253 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 &
\end{tabular}

GROJP 42 VERGES INTO GROUP 7 AT LEVEL 93.06.
GROIP 7 NOW CONIAINS:
\(\begin{array}{rrrrrrrrr}049 & 1854 & 920 & i 424 & 124 n & 385 & 5 & 226 & 1891 \\ 424 & 1888 & 1022 & i 245 & 253 & 383 & 917 & i 874 & 1829 \\ 38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\ 547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 043\end{array}\)
GROID 16 VEAGES IVIO GROUP 7 AT LEVEL 92.95.
GROUD 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
949 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & \(i 874\) & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1809 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 027 & 020 & 543 \\
203 & & & & & & & &
\end{tabular}

GROUP 18 VEESES ENIO GROUT 7 AI LEVEL 32.96.
GROUP 7 NOW CONAATIS:
\begin{tabular}{rrrrrrrrr}
\(n 49\) & 1654 & 920 & 1424 & 1240 & 385 & 0 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 289 & 327 & 720 & 543 \\
203 & 209 & & & & & & &
\end{tabular}

GROUP 15 MERSES INRO GROUP 7 AT LEVEL 92.36.
GROUP 7 NON CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 043 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & & & & & & & &
\end{tabular}

Single Linkage, Unweighted
GROUP 47 MERGES INTO GROUP 7 AT LEVEL 92.31. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & & & & & & &
\end{tabular}

GROUP 17 MERGES INTO GROUP 37 AT LEVEL 92.14. GROUP 37 NOW CONTAINS:
\(522 \quad 1799 \quad 206\)
GROUP 82 HESGES INTD GROUP 7 AT LEVEL 92.09. gROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & & & & & &
\end{tabular}
gROUP 19 MERGES INTO GROUP 7 AT LEVEL 31.72. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 210 & 440 & & & &
\end{tabular}
gRoup 36 MERGES INTO GROAT 1 AT LEVEL. 91.b1. GROUP 1 NOW CONTAINS: TR 491

GROUP 48 MERGES INTO GROUP 7 AT LEVEL 91.55. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & \(i 240\) & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 999 & & &
\end{tabular}

GROUP 64 MERGES INTO GROUP 7 AT LEVEL 91.55.
GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 233 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 999 & 1597 & &
\end{tabular}

Single Linkage, Unweighted
GROUP 1 MERGES INTO GROUP 7 AT LEVEL 90.97. gROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 999 & 1597 & \(7 R\) & 491
\end{tabular}

GROUP 32 MERGES INTO GROUP 7 AT LEVEL 90.28. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 242.3 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 220 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 999 & 1597 & 19 & 491 \\
467 & & & & & & & &
\end{tabular}

GROUP 58 MEEGES INTO GROUP 7 AT LEVEL 90. 28. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & \(i 424\) & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 043 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 999 & 1597 & \(7 R\) & 491 \\
467 & 1315 & & & & & & &
\end{tabular}

GROUP 13 MERGES INTO GROUP 7 AT LEVEL 88.97.
GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 5 & 22.6 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 22.3 & 2143 & 1889 & 242.3 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 999 & 1597 & \(7 R\) & 491 \\
467 & 1315 & 104 & & & & & &
\end{tabular}

GROUP 65 MEAGES INTO GROUP 7 AT LEVEL 88.89.
GROUP 7 NOW SONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 999 & 1597 & \(7 R\) & 491 \\
467 & 1315 & 104 & 1610 & & & & &
\end{tabular}

\section*{Single Linkage, Unweighted}

GROUP 66 MERGES INTO GROUP 39 AT LEVEL 88.81. GROUP 39 NOW CONTATNS: \(614 \quad 2412 \quad 1611\)

GROUP 69 MERGES INTO GROUP 52 AT LEVEL 38.65. GROUP 52 NOW CONTAINS: 12411739

GROUP 62 MERGES INTO GROUP 39 AT LEVEL 88. 19. GROUP 39 NOW GONTAINS: \(\begin{array}{llll}614 & 2412 & 1611 & 1505\end{array}\)

GROUP 41 MERGES INIO GROUP 7 AT LEVEL 87.94. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 020 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 480 & 927 & 1200 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 999 & 1597 & 72 & 491 \\
467 & 1315 & 104 & 1610 & 642 & & & &
\end{tabular}

GROUP 23 : KERG5S INTO GRO:IP 7 AT LEVE: 86.81. GROUP 7 VOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & \(124 n\) & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & \(02 n\) & 543 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1802 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 099 & 1597 & 12 & 491 \\
467 & 1315 & 104 & 1610 & 042 & 307 & & &
\end{tabular}

GROUP 71 MERGES INEO GROUP 7 AT LEVEL 36.71. GROUP 7 YOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 999 & 1597 & \(7 R\) & 491 \\
467 & 1315 & 104 & 1610 & 642 & 307 & 1827 & &
\end{tabular}

GROUP 37 MERGES INTO GROUP 39 AT LEVEL 85.11. GROUP 39 NOW CONTAINS: \(\begin{array}{lllllll}614 & 2412 & 1611 & 1505 & 522 & 1799 & 206\end{array}\)

Single Linkage, Unweighted

GROUP 12 MERGES INTO GROUP 7 AT LEVEL 83.94. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 999 & 1597 & \(7 R\) & 491 \\
467 & 1315 & 104 & 1610 & 642 & 307 & 1827 & 69 &
\end{tabular}

GROUP 63 MERSES INTO GROUP 39 AT LEVEL 83.92.
GROUP 39 NOW CONTAINS:
\(\begin{array}{lllllllll}614 & 2412 & 1611 & 1505 & 522 & 1799 & 206 & 1522 & 1890\end{array}\)
GROUP 67 MERGES INTO GROUP 3 AT LPVEL 83.22. GROUP 3 NOW CONTAINS:
\(02 \quad 1735\)
GROUP 25 MERGES INTO GROUP 7 AT LEVEL 82. 74. GROUP 7 NON CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 020 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 210 & 440 & 999 & 1597 & \(7 R\) & 491 \\
467 & 1315 & 104 & 1610 & 642 & 307 & 1827 & 69 & 323
\end{tabular}

GROUP 43 MERGES INTO GROUD 7 AT LEVEL 82.52.
GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 0 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & \(i 876\) \\
1247 & 959 & 1898 & 216 & 440 & 999 & 1597 & \(2 R\) & 491 \\
467 & 1315 & 104 & 1610 & 642 & 307 & 1827 & 69 & 323 \\
876 & & & & & & & &
\end{tabular}

GROUP 53 MESGES INTO GROUP 50 AT LEVEL 82.27. GROUP 50 NOW CONTAINS:

11751243

GROUP 84 AEPGES INTO GROUP 52 AT LEVEL 81.94. GROUP 52 NOW CONTAINS:
\(1241 \quad 17392298\)

GROUP 4 MERGES INTO GROUP 2 AT LEVEL 81.75.
GROUP 2 NO: CONTAINS:
0103

Single Linkage，Jnweighted
GROUP 27 MERSES INTO GROUP 7 AT LEVEL 8O． 28. GROUP 7 NOW COMRAINS：
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & 319 & 51 & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 020 & 643 \\
203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 216 & 440 & 099 & 1597 & 3.7 & 491 \\
467 & 1315 & 104 & 1610 & 642 & 307 & 1827 & 09 & 323 \\
876 & 378 & & & & & & &
\end{tabular}

GROUP 6 MERGES ENMO GROUP 3 AT LEVEL 79．41． GROUP 3 NOW COMDATNS：

ワ2 1735 044
GROUP 50 MERGES IV：O GTOUP 2 AI LEVEL 76.00. GROUP 2 NOK OOS：AINS：
\(\begin{array}{llll}01 & 03 & 1175 & 1243\end{array}\)

GROJP 7 NOW この：IAIIU：
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 049 & 1854 & 92？ & 1424 & 1240 & 385 & 6 & 226 & 1891 \\
\hline 424 & 1888 & 1 1222 & ； 245 & 263 & 383 & 917 & 1874 & 1829 \\
\hline 38 & 1319 & 319 & シ1 & 223 & 2143 & 7889 & 2423 & 2401 \\
\hline 547 & 177 & 337 & ¢738 & 483 & 489 & 927 & ？20 & 643 \\
\hline 203 & 209 & 201 & 479 & 1248 & 1503 & 1892 & i249 & 1876 \\
\hline 1247 & 959 & 1806 & 216 & 440 & 997 & 1597 & 97 & 491 \\
\hline 467 & 1315 & 104 & ¢610 & 642 & 307 & 1827 & 69 & 323 \\
\hline 876 & 378 & －23 & \％ 845 & 5 & & & & \\
\hline
\end{tabular}

GROTP 3 MEEGES ニVEO GROUP 2 AT LEVEL T3．19．
GROJP 2 NOW CONTAINS：
\(\begin{array}{lllllll}01 & 03 & 1175 & 1243 & 02 & 1735 & 044\end{array}\)
GROUP 2 MERSES ミ．V：SROTP 7 AI LEJEL 72．86．
GROUP 7 NOW OOSTAINS：
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 320 & \(i 424\) & 1240 & 385 & 5 & 226 & 1891 \\
424 & 1888 & 1022 & 1245 & 263 & 383 & 917 & 1874 & 1829 \\
38 & 1319 & \(3 i 9\) & \(5 i\) & 223 & 2143 & 1889 & 2423 & 2401 \\
547 & 177 & 337 & 1738 & 483 & 489 & 927 & 220 & 043 \\
203 & 200 & 201 & 479 & 1248 & 1503 & 1892 & 1249 & 1876 \\
1247 & 959 & 1898 & 210 & 440 & 999 & 1597 & 72 & 491 \\
467 & 1315 & 104 & 1610 & 642 & 307 & 1827 & 69 & 323 \\
876 & 378 & 623 & 1845 & 5 & 01 & 03 & 1175 & 1243 \\
02 & 1735 & 044 & & & & & &
\end{tabular}

Single Linkage, Unweighted

\section*{POINTS OF FORMATION FOR INITIAL gROUPS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 7) & 049 : & 100.00 & (74) & 1854 : & ion.00 & (45) & \(920:\) & 120.00 \\
\hline (60) & 1424: & 10n.00 & (5i) & 1240: & 10n. & (29) & 385: & 100.00 \\
\hline (9) & 6: & ion.00 & (21) & 226 : & ion.on & (80) & 1891: & 100.00 \\
\hline (30) & 424: & 100.00 & (77) & 1888: & inn.nn & (49) & 1n22: & ino.no \\
\hline (54) & 1245: & 100.00 & (22) & 263: & 10n. n \(^{\text {n }}\) & '28) & 383: & 100.00 \\
\hline (44) & 917 : & 1non & (75) & 1874: & 1nno & (72) & 1829: & 10n. \\
\hline (10) & 38: & 100.00 & (59) & 1319: & 1 กn. \(\mathrm{n}^{1}\) & (24) & \(319:\) & 10n. 0 \\
\hline (11) & 51: & 100.00 & (20) & 223: & inn. & (83) & 2143: & inn. 0 n \\
\hline (78) & 1889: & ion.on & (87) & 2423: & 10r.nn & (85) & 2401: & inn. \\
\hline (38) & 547: & inn.0n & (14) & 177: & 10n.nn & '26) & 337: & 10 O .00 \\
\hline (68) & i738: & 10n.0n & (34) & 483: & inn.nn & (35) & 489: & 10n.0n \\
\hline (46) & 927 : & ino.nn & (5) & 220: & 12n. \({ }^{\text {n }}\) & (42) & 643 : & 10n.0n \\
\hline (16) & 203: & inn.00 & (18) & 209: & inn. n \(^{\text {n }}\) & (15) & 2n1: & 10n. 0 \\
\hline (33) & 479: & 10n.0n & (56) & 1248: & inn.nn & '61) & 1503: & ino.no \\
\hline (81) & i892: & ion.on & (57) & 1249: & ion.nn & '76) & 1876: & 10n. \\
\hline (55) & 1247: & 120.00 & (47) & 959: & 10n & (02) & i898: & 10n.no \\
\hline (19) & 210: & ino.nn & (31) & 44n: & 1nn. n \(^{\text {n }}\) & '48) & 999: & 10n.00 \\
\hline (64) & 1597: & ion.0n & (1) & TR: & 10n. & '36) & 491 : & 1 n \\
\hline (32) & 467: & ion.on & (58) & 1315: & inn. & ! 13 ? & 104: & ion.no \\
\hline (65) & i610: & ion.nn & (41) & \(542:\) & 12n.nn & '23) & \(307:\) & ino.no \\
\hline (71) & ;827: & ion. 0 & (12) & 69 : & inn. \(\mathrm{n}^{\text {n }}\) & '25) & 323: & 10 n . 0 n \\
\hline (43) & 876: & חon & (27) & 378 : & 100.0n & '40] & 623: & 100 \\
\hline (73) & 1845: & ion.0n & (8) & \(5:\) & 10n.nn & ! 2: & ก1: & 10n. \\
\hline (4) & \(23:\) & ino.on & (50) & 1175: & !nn. n \(^{\text {a }}\) & '53) & i243: & 10n.on \\
\hline (3) & n2: & 10n.00 & (67) & i735: & 10n. & (6) & O44: & ถַnononon \\
\hline (52) & 1241: & incon & (69) & 1739: & - & '84) & 2298: & 10n.no \\
\hline (39) & 614 : & 10n 0 & (86) & 2412: & ino.no & '56: & 1611: & in \\
\hline (62) & 1505: & 10n.no & (37) & 52?: & inn.nn & (70) & 1799: & inn \\
\hline (17) & \(206:\) & 100.00 & (63) & 1522: & -nonon & (79) & 1690: & 100 \\
\hline
\end{tabular}

```

                    MERGE POINTS AND GRUUP CONTENTS
    Average Linkage, Unweignted Similarity Coeficients
    GROUP 20 MERGES INTO GROUP 11 AT L\&VEL 100.00.
GROUP 11 NOW CONTAINS:
51 223
GROUP 26 MERGES INTO GROUP 14 AT LEVEL 10N.00.
GROUP 14 NOW CONTAINS:
177 337
GROUP 74 MEPGES INTO GROUP 7 AT L\&VEL 99.31.
GROUP 7 NOW CONTAINS:
049 1854
GROUP 33 MEEGES INTO GROUP 15 AT LSVEL 99.31.
GROUP 15 NOH OONTAINS:
201479
GROUP 61 MERSES INTO GROUP 56 AT LکVEL 99.31.
GROUP 56 NOW CONTAINS:
1248 i503
GROUP 46 MEEGES INTO GROITP 35 AT LEVEL 99.30.
GROUP 35 NOW CONTAINS:
489 927
GROUP 73 MEZGES INTO GROUP 4O AT LEVEL 99.29.
GROUP 40 NON CONTAINS:
623 1845
GROUP 81 MERSES INTO GROUP 56 AT LUVEL 9%.97.
GROUP 56 NOW CONTAINS:
1248 1503 1892
GROUP 57 MEPGES INTO GROUP 56 AT L\&VEL 98.80.
GROUP 56 NOW CONTAINS:
1248}1015031892 12.4
GROUP 15 MEMGES INTO GROUP 56 AT LEVEL 98.43.
GROUP 56 NOW SONTAINS:
1248}15503 1892 1249 201 479
GROUP 54 MERGES INTO GROUP 49 AT LEVEL 97.93.
GROUP 4F NOW CONTAINS:
1022 1245

```

Average Linkage, Unweighted
```

GROUP 77 MERSES [NTO GROUP 30 AT LEVEL. 97.90.
GROUP 30 NOW CONTAINS:
42.4 1888
GROUP 45 MEPFES INTO GROUP 7 AT LEVEL 97.59.
GROUP }7\mathrm{ NOW SONTAINS:
049 1854 920
GROUP 31 MERSES INTO GROUP 19 AT LLVEL 96.55.
GROUP 19 NOW CONTAINS:
216 440
GROUP 75 MERGES INTO GROUP 44 AT LEVEL 96.53.
GROUP 44 NOW CONTAINS:
917 1874
GROUP 68 MEPGES INTO GROUP i4 AT LEVEL, 96.50.
GROUP 14 NO% CONTAINS:
177 337 1738
GROUP 76 ME?SES INTO GROUP 5Ó AT L\&VEL 96.18.
GROUP 56 NOW SONTAINS:
1248}151503 1892 1249 201 479 1876
GROUP 29 MEEGES INTO GROUP 7 AT LUVEL, 95.89.
GROUP }7\mathrm{ NOIY GONTAINS:
049 1854 920 385
GROUP SO MESGES [NOO GROUP 51 AT L\&VEL 95.83.
GROUP 51 NOW SONTAINS:
1240 i424
GROUP 59 MEPGES INTO GRO:IP 10 AT LEVEL 95.49.
GROUP 10 NOW SONTAINS:
38 1319
GROUP ४7 MEEGES INTO GRONT 78 AT LLVEL 95.17.
GROUP 7S NOW CONTAINS:
1889 2423
GROUP 51 MEPGES INTO GROUP 7 AT LEVEL 94.89.
GROUP }7\mathrm{ NOW CONTAINS:
049 1854 920 385 1240 1424
GROUP \& MERGES INTO GROUP 4O AT LEVEL 94.72.
GROUP 40 NOW CONTAINS:
623 1845 5
GROUP 9 MERGES INTO GROUP 7 AT L\&VEL 94.47.
GROUP }7\mathrm{ NOW CONTALNS:

```


Average Linkage，Jnweighted
```

GROUP 55 MESGES INTO GROUP 56 AT LEVEL. 94.33.
GROUP 56 NO'w CONTAINS:
1248
GROUP 79 MERSES INTO GROUP 63 AT LEVEL 94.29.
gROUP 63 NOW CONTAINS:
1522 1890
gROUP 24 MERGES INTO G足UP 1n AT LEVEL 94.17.
gROUP 10 NOW CONTAINS:
38 1319 319
GROUP ४5 MEPSES INTO GROUP 78 AT LEVEL 94.06.
GROUP 78 NJW CONTAINS:
1889 2423 2401
GROUP 86 NEPGES INTO GRO:UP 39 AT L\&VEL 93.75.
gROIP 39 !%ON CONTAINS:
614 2412
gROUP 70 *ESGES ニNIO GROJP ミ7 AT LEVEL 93.57.
gROUP 37 NOM CONTAINS:
522 1799
gROUP 28 VEPCES INTO GRO:T 7 AT LEVEL 93.53.
GROUP 7 NOM CONTAINS:
049 i854 920 385 1240 i424 6 % 38j
gROUP 49 NEPS5S INO GROTP it AT L.EVEL 93.45.
GROUP 11 NOW OONTAINS:
51 223 1022 ;245
GROUP 80 MERESS INTO GROJP IO AT L,SVEL 93.11.
GROUP 10 NOW OONTAINS:
38 1319 319 1891
GROUP 72 HESGES INTO EROUP 38 AT LEVEL 93.06.
gROUP 38 NOw SONTAINS:
547 1829
gROUP 22 MESES INTO GROUP 14 AT LEVEL 92.81.
group 14 NOH contains:
177}
group 30 MESges inTo gajup 7 at level 92.77.
gROUP }7\mathrm{ NON CONTAINS:
049
1888
gROUP 83 MEGGES INTO GROUP 44 AT L\&VEL g2.39.
GROUP 44 NOW COnTAINS:
917 1874 2143

```

Average Linkage, Unweighted
```

GROUP 34 MERCES INTO GROUP 21 AT LEVEL. 92.36.
GROUP 21 NOW CONTAINS:
226 483
GROUP 17 MERSES INTO GROUP 37 AT LEVEL. 92.11.
GROUP 37 NOW CONTAINS:
522 1799 206

```
GROUP 38 MERGES INOO GROUP 78 AT LEVEL 92.00.
GROUP 78 NOW CONTAINS:
 \(1889 \quad 2423 \quad 2401 \quad 547 \quad 1829\)
GROUP 44 MERGES INTO GROUP 7 AT LEVEL 01.78.
GROUP 7 NOW CONTAINS:
 \(\begin{array}{lllllllll}049 & 1854 & 920 & 385 & 1240 & 1424 & 6 & 383 & 424\end{array}\)
 \(1888 \quad 917 \quad 1874 \quad 2143\)
GROUP 18 NETGES INTO GROUD 14 AI LEVEL 91.73.
GROUP i4 NOW SONTAINS:
 \(\begin{array}{lllll}177 & 337 & 1738 & 263 & 209\end{array}\)
GROUP 36 YERGES INTO GROUP 1 AT LEVEL 9i.61.
GROUP 1 NON SONTAINS:
 TR 491
GROUP 47 MERGES ENEO GROTP 21 AT LEVEL 91.22.
GROUP 21 NOW SONTATNS:
 226483959
GROUP 14 MERGES INÃO GRDTP 7 AT LEVEL Y1.10.
GROUP 7 NOW SONEAINS:
 \(\begin{array}{rrrrrrrrr}049 & 1854 & 920 & 385 & 1240 & 1424 & 6 & 383 & 42.4 \\ 1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209\end{array}\)
GROUP 10 MEREES EVEO GEOUP 7 AT LEVEL 90.93.
GROUP 7 NOW CONTAINS:
 \(\begin{array}{lllllllll}049 & 1854 & 920 & 385 & 1240 & 1424 & 5 & 383 & 424\end{array}\)
 \(\begin{array}{llllllllll}1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209\end{array}\)
 \(38 \quad 1319\) 319 iとg1
GROUP 16 MERGES INTO GROUP 5 AT LEVEL 90.78.
GROUP 5 NOW COUTAINS:
 020203
GROUP 11 MERGES INTO GROUP 7 AT LEVEL 90.36.
GROUP 7 NOW CONIAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & \(i 424\) & 6 & 303 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 &
\end{tabular}

\section*{Average Linkage, Unweighted}
```

GROUP 5 MERGES INTO GROUP 7 AT LLVEL 89.88.
GROUP }7\mathrm{ NOW CONTAINS:

049	1854	920	385	1240	1424	6	383	424
1888	917	1874	2143	177	337	1738	263	209
38	1319	319	1891	51	223	1022	1245	020
203								

    203
    GROIP 42 MERGES INTO GROUP 7 AT LEVEL. 89.59.
GROUP 7 NOW CONTAINS:
049
203 64
GROUP 21 MERGES INTO GROUP 78 AT L\&VEL 89.49.
GROUP 78 NOW CONTAINS:

```

```

GROUP 58 MEPGES IN:O GROUP 19 AT LEVEL 89.24.
GROJP 19 NJW SONTAINS:
216 440 1315
GROUP 78 MERG5S INTO GROUP 7 AT L\&VEL 89.20.
GROUD 7 NOW CONIATNS:

049	1064	920	385	1240	1424	0	383	424
1888	977	1874	2143	177	337	1738	263	209
38	1319	319	1891	51	223	1022	1245	720
203	643	1889	2423	2401	547	1829	226	483

    959
    GROUP 64 MERSES INEO GROUP 35 AT LLVEL 89.20.
GROUP 35 NOW SONTAINS:
489 927 i597
GROUP 69 MERGES INTO GROUP 52 AT LEVEL 84.65.
gROUP 52 NOW CONIALNS:
1241 1739
GROUP 35 MEROES INTO GROTP 7 AT LEVEL 88.55.
GROUP 7 NOW CONTAINS:

049	1854	920	385	1240	1424	6	383	424
1888	917	1874	2143	177	337	1738	263	209
38	1319	319	1891	51	223	1022	1245	$n 20$
203	543	1889	2423	2401	547	1829	226	483
959	489	927	1597					

GROUP 65 MERGES INTO GROUP 48 AT LEVEL 88.03.
GROUP 48 NON CONTAINS:
999 1610

```

Average Linkage, Unieignced

GROUP 66 MERGES INTO GROUP 39 AT LLVEL 87.76. GROUP 39 NOW CONTAINS:

61424121611

GROUP 82 MERGES INTO GROUP 7 AT LEVEL 87.72. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & \(: 424\) & 6 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
203 & 643 & 1889 & 2423 & 2401 & 547 & 1829 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1898 & & & &
\end{tabular}

GROUP 1 MESGES INTO GROUP 7 AT LEVEL 87. 18.
GROUP 7 NGW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 6 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
203 & 643 & 1869 & 2423 & 2401 & 547 & 1829 & 226 & 423 \\
959 & 489 & 927 & 1597 & 1898 & 72 & 491 & &
\end{tabular}

GROUP 48 NEPGES TNTO GROUP 7 AT LEVEL 86.86. GROUP 7 NOW CONTAIVS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 5 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
203 & 643 & 1889 & 2423 & 2421 & 547 & 1829 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1898 & 12 & 491 & 999 & 1010
\end{tabular}

GROUP 56 MERTES INTO GROUD 7 AT LGVED 8ÓÓT. GROUP 7 NOH CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 929 & 385 & 1240 & \(i 424\) & 6 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 537 & 1738 & 263 & 200 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
203 & 643 & 1889 & 2423 & 2401 & 547 & 1829 & 226 & 483 \\
959 & 489 & 027 & 1597 & 1898 & 79 & 491 & 999 & 1010 \\
1248 & 1503 & 1892 & 1249 & 201 & 179 & 1876 & 1247 &
\end{tabular}

GROUP 62 MERGES INTO GROUP 39 AT LEVEL 35.88. GROUP 39 NOW CONTAINS:
\(\begin{array}{llll}614 & 2412 & 1611 & 1505\end{array}\)

GROUP 32 MERGES INTO GRO:IP 7 AT LEVEL. 85.27. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 6 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 200 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
203 & 643 & 1889 & 2423 & 2401 & 547 & 1829 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1898 & 78 & 491 & 999 & 1610 \\
1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876 & 1247 & 467
\end{tabular}

Average Linkage, Unweighted
GROUP 41 MERGES INTO GROUP 23 AT LEVEL 85.21. group 23 NOW CONTAINS:

307642
GROUP 13 MERתES INTO GROUP 7 AT゙ LะVEL 85.07.
GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 6 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 220 \\
203 & 643 & 1889 & 2423 & 2401 & 547 & 1829 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1898 & 78 & 491 & 999 & 1610 \\
1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876 & 1247 & 467 \\
104 & & & & & & & &
\end{tabular}

GROUP 19 NERGES INTO GRO:JP 7 AT LEVEL 83.67. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 6 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
203 & 643 & 1889 & 2423 & 2401 & 547 & 1829 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1898 & 70 & 491 & 999 & 1610 \\
1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876 & 1247 & 467 \\
104 & 216 & 440 & 1315 & & & & &
\end{tabular}

GROUP 67 UEEGES INTO GROUP 3 at LUVEL 83.22.
group 3 NOW contains:
ก2 1735
GROUP 23 MEEGES INTO GROJP 7 AT LEVEL 83.03.
GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 5 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 220 \\
203 & 643 & 1889 & 2423 & 2401 & 547 & 1829 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1898 & 79 & 491 & 999 & 1610 \\
1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876 & 1247 & 467 \\
104 & 216 & 440 & 1315 & 307 & 642 & & &
\end{tabular}

GROUP 71 MESGES INTO GROUD 7 AT LEVEL 82.65. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 0 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
203 & 643 & 1889 & 2423 & 2401 & 547 & 1829 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1898 & 78 & 491 & 999 & 1610 \\
1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876 & 1247 & 467 \\
104 & 216 & 440 & 1315 & 307 & 642 & 1827 & &
\end{tabular}

GROUP 53 MESGES INTO GROUP 50 AT LEVEL 82.27.
GROUP 50 NOW CONTAINS:
11751243

\section*{Average Linkage, Unweighted}

GROUP 4 MEAGES INTO GROUP 2 AT LEVEL 81.75. GROUP 2 NOW CONTAINS:

0103
GROUP 37 MERSES INTO GROUP 39 AT LEVEL 80.75.
GROUP 39 NOW CONTAINS:
\(614 \quad 2412 \quad 1011 \quad 1505 \quad\) 5?2. \(1799 \quad 206\)
GROUP 84 MEASES INTO GROUP 52 AT LEVEL 79.70.
GROUP 52 NOW SONTAINS:
\(1241 \quad 1739 \quad 2298\)
GROUP 12 MERGES INET GROUP 7 AT LEVEL 79.O6.
GROUP 7 NOW SONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 6 & 383 & 42.4 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
203 & 643 & 1889 & 2423 & 2401 & 547 & 1829 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1898 & 72 & 491 & 999 & 1610 \\
1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876 & 1247 & 467 \\
104 & 216 & 440 & 1315 & 307 & 642 & 1827 & 69 &
\end{tabular}

GROUP ó3 MERGES INTM GROUP 39 AT LEVEL 78.68.
GROIP 39 NOW SONTAIMS: \(614 \quad 2412 \quad i 611 \quad 1505 \quad 522 \quad 1799 \quad 206 \quad 1522 \quad 1890\)

GROUP 43 MERGES INTO GROUP 7 AT LEVEL 78.23.
GROUP 7 NOW GONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 5 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & \(i 891\) & 51 & 223 & 1022 & 1245 & 120 \\
203 & 643 & 1889 & 2423 & 2401 & 547 & 1820 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1895 & \(7 ?\) & 491 & 999 & 1610 \\
1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876 & 1247 & 467 \\
104 & 216 & 440 & 1315 & 307 & \(64 ?\) & 1827 & 69 & 876
\end{tabular}

GROUP 25 MERGES INTO GROUP 7 AT LEVEL. 78.11.
GROUP 7 NOW SONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 0 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
203 & 643 & 1889 & 2423 & \(240 i\) & 547 & 1829 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1898 & \(5 R\) & 491 & 999 & 1610 \\
1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876 & 1247 & 467 \\
104 & 216 & 440 & 1315 & 307 & 642 & 1827 & 69 & 876
\end{tabular}

325
GROUP 6 MERGES INTO GROUP 3 AT LLVEL. 77.48.
GROUP 3 NOW SONTAINS:
\(02 \quad 1735044\)

Average Linkage, Inweighted
GROUP 27 MERGES INTO GROUP 7 AT LEVEL 75.29.
GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 6 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
203 & 643 & 1889 & 2423 & 2401 & 547 & 1829 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1898 & 29 & 491 & 999 & 1610 \\
1248 & 1503 & 1892 & 1249 & 201. & 479 & 1876 & 1247 & 467 \\
104 & 216 & 440 & 1315 & 307 & 642 & 1827 & 69 & 876
\end{tabular}

323378
GROUP 50 MERSES INTO GROUP 2 AT LEVEL 73.22. GROJP 2 NOW CONTAINS:
\[
\begin{array}{llll}
01 & 03 & 1175 & 1243
\end{array}
\]

GROUP 40 MERGES INTO GROUP 7 AT LEVEL 7O.OQ. GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 1240 & 1424 & 6 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & \(5 i\) & 223 & \(i n 22\) & 1245 & 120 \\
203 & 643 & 1889 & 2423 & 2401 & 347 & 1829 & 226 & 483 \\
959 & 489 & 927 & \(i 597\) & 1898 & -9 & 401 & 999 & 1510 \\
1248 & 1503 & \(i 892\) & 1249 & 201 & 479 & 1875 & 1247 & 457 \\
104 & 216 & 440 & 1315 & 307 & 642 & 1827 & 57 & 376 \\
323 & 378 & 623 & 1845 & 5 & & & &
\end{tabular}

GROUP 3 MERGES INTS TRJUQ 2 AT LSVEL 69. 18. GROUP 2 NOH SONTAINS:
\(\begin{array}{lllllll}01 & 03 & 1175 & 1243 & 22 & 1735 & 944\end{array}\)
GROJP 52 ME:NES INTO GRO:JP 2 AT LצVEL ÓO.18. GROUP 2 NGW CONIAINS:
\(\begin{array}{lllllllll}01 & 03 & 1175 & 1243 & \text { n2 } & 1735 \text { n44 } & 124 i & i 739\end{array}\) 2298

GROUP 2 MERGES IYTO SROUP 7 dT LEVEL 58. O2. GROJP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
949 & 1854 & 920 & 385 & 1240 & 1424 & 0 & 383 & 424 \\
1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 263 & 209 \\
38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
203 & 643 & 1889 & 2423 & 2401 & 547 & 1829 & 226 & 483 \\
959 & 489 & 927 & 1597 & 1898 & 28 & 491 & 999 & 1610 \\
1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876 & 1247 & 467 \\
104 & 216 & 440 & 1315 & 307 & 542 & 1827 & 69 & 376 \\
323 & 378 & 023 & 1845 & 5 & 01 & 03 & 1175 & 12.43 \\
02 & 1735 & 044 & 1241 & 1739 & 2298 & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Average Linkage, Unweighted} \\
\hline \multirow[t]{12}{*}{GROUP 39 GROUP 7} & \multicolumn{2}{|l|}{} & \multirow[t]{2}{*}{GROUP} & \multirow[t]{2}{*}{7 AT} & \multirow[t]{2}{*}{T LEVEL} & \multicolumn{2}{|l|}{51.97.} & & \\
\hline & \multicolumn{2}{|l|}{MERGES INTO
NOW CONTAINS:} & & & & & & & \\
\hline & 049 & 1854 & 92.0 & 385 & 1240 & 1424 & 6 & 383 & 424 \\
\hline & 1888 & 917 & 1874 & 2143 & 177 & 337 & 1738 & 2.63 & 299 \\
\hline & 38 & 1319 & 319 & 1891 & 51 & 223 & 1022 & 1245 & 020 \\
\hline & 203 & 643 & 1889 & 2423 & 2401 & 547 & 1829 & 226 & 483 \\
\hline & 959 & 489 & 927 & 1597 & 1898 & TR & 491 & 999 & 1610 \\
\hline & 1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876 & 1247 & 467 \\
\hline & 104 & 216 & 440 & 1315 & 307 & 642 & 1827 & 69 & 876 \\
\hline & 323 & 378 & 623 & 1845 & 5 & 01 & 03 & 1175 & 1243 \\
\hline & 02 & 1735 & 044 & 1241 & 1739 & 2298 & 614 & 2412 & 1611 \\
\hline & 1505 & 522 & i799 & 206 & 1522 & 1890 & & & \\
\hline
\end{tabular}

POINTS OF FORMATION FOR INITIAL GROUPS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (7) & 049 : & 100.0 & (74) & 1854: & 100.00 & (45) & 920 : & 100.00 \\
\hline (29) & 385: & 100.00 & (51) & 1240: & 100.00 & (60) & 1424: & 100.00 \\
\hline (9) & 6: & 100.00 & (28) & 383: & 100.00 & (30) & 424 : & 100.0 \\
\hline (77) & 1888: & 100.00 & (44) & 917 : & 100.00 & (75) & 1874: & 100.00 \\
\hline (83) & 2143: & 100.00 & (14) & 177: & 100.00 & (26) & 337 : & 100. \\
\hline (08) & 1738: & 100.00 & (22) & 263: & 100.00 & (18) & 209 : & 100 \\
\hline (10) & 38 : & 100.00 & (59) & 1319: & 100.co & (24) & 319: & 100.0 \\
\hline (80) & 1891: & 100.00 & (11) & 51 : & 100.00 & (20) & 2?3: & 100.0 \\
\hline (49) & 1022: & 100.no & (54) & 1245: & 10n.nn & (5) & -20: & 100 \\
\hline (16) & 203: & 100.00 & (42) & 643 : & 100.00 & (78) & i889: & 1nc.on \\
\hline (87) & 2423: & 100.00 & (85) & 2401: & 100.00 & (38) & 547: & 100.0 \\
\hline (72) & 1829: & 100.00 & (21) & \(226:\) & 100.70 & (34) & 483: & 10n. \(\mathrm{n}^{\text {n }}\) \\
\hline (47) & 959 : & 100.00 & (35) & 489: & 10 n . 00 & (46) & 927: & 1no. no \\
\hline (64) & 1597: & 100.00 & (82) & 1898: & 100.0n & (1) & TR: & 100.00 \\
\hline (36) & 491: & 100.0000000 & (48) & 999 : & 10n.00 & (65) & 1610: & \(1 \mathrm{no.0}\) \\
\hline (56) & 1248: & 100.00 & (61) & 1503: & 10n.00 & (81) & 1892: & 100.0 \\
\hline (57) & 1249: & 100.00 & (15) & 201 : & 100.00 & (33) & 479: & 100.00 \\
\hline (76) & 1876: & 100.0n & (55) & 1247: & 102.00 & (32) & 467: & 100.0 \\
\hline (13) & \(104:\) & 10n.00 & (19) & 216: & 100.01 & (31) & 440: & 100.00 \\
\hline (58) & 1315: & 100.00 & (23) & 307 : & 100 & (41) & 642: & 100.00 \\
\hline (71) & 1827: & 100.00 & (12) & 69: & 100.00 & (43) & 876: & 100.00 \\
\hline (25) & \(323:\) & 10n.non & (27) & 378 : & 100.20 & (40) & \(623:\) & 10 non \\
\hline (73) & 1845: & 120.00 & (8) & う: & 10n.00 & (2) & 11: & 100.00 \\
\hline (4) & 03 : & 100.00 & '50) & 1175: & 100.00 & (53) & 1243: & \(10 \mathrm{On.00}\) \\
\hline (3) & \(02:\) & 100.00 & (67) & 1735: & 100.no & (6) & 244: & 100.nn \\
\hline (52) & 1241: & ion.00 & (69) & 1739: & 100.0n & (84) & 2298: & ino.on \\
\hline (39) & 614: & ion.on & (86) & 2412: & 10n. n \(^{1}\) & (66) & 1611: & 100.00 \\
\hline (62) & 1505: & 100 & (37) & 522: & 100.00 & (70) & 1799: & 100.00 \\
\hline (17) & 206 : & 100.00 & (63) & 1522: & 100.00 & (79) & 1890: & 100.0 \\
\hline
\end{tabular}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
```

    MERGE POINTS AND GROUP CONTENTS
    Complete Linkage, Unweighted Similarity Coeficients
    GROUP 20 NERGES INTO GROUP 1: AT LEVEL 100.00.
GROUP 11 NOW CONTAINS:
51 223
GROUP 26 MERGES INTO GROUP 14 AT LEVEL 100.00.
GROUP 14 NOW CONTAINS:
177 337
GROUP 74 MERGES INTO GROUP 7 AT LEVEL 99.31.
GROUP }7\mathrm{ NOW CONTAINS:
049 1854
GROUP 33 MERGES INTO GROUP 15 AT LEVEL 99.31.
GROUP 15 NOW CONTAINS:
201479
GROUP 61 MERGES INTO GROUP 56 AT LEVEL 99.31.
GROUP 56 NOW CONTAINS:
1248 1503
GROUP 46 MERGES INTO GROUP 35 AT LEVEL 99.30.
GROUP 35 NOW CONTAINS:
489 927
GROUP 73 MERGES INTO GROUP 40 AT LEVEL 99.29.
GROUP 40 NOW CONTAINS:
623 1845
GROUP 81 MERGES INTO GROUP 56 AT LEVEL 98.62.
GROUP 56 NOW CONTAINS:
1248 1503 1892
GROUP 57 MERGES INTO GROUP 5S AT LEYEL 98.56.
GROUP 55 NOW CONTAINS:
1248}121503 1892 124
GROUP 54 MERGES INTO GROUP 49 AT LEVEL 97.93.
GROUP 49 NOW CONTAINS:
1022 1245
GROUP 77 MERGES INTO GROUP 30 AT LEVEL 97.90.
GROUP 30 NON CONTAINS:
424 1888

Complete Linkage, Unweighted

```
GROUP 15 MERGES INTO GROUP 56 AT LEVEL 97.84.
GROUP }56\mathrm{ NOW CONTAINS:
 1248}12503 1892 1249 201 479
GROUP 45 MERGES INTO GROUP 7 AT LEVEL 97.24.
GROUP 7 NOW CONTAINS:
 049 1854 920
GROUP 31 MERGES INTO GROUP 19 AT LEVEL 96.55.
GROUP 19 NOW CONTAINS:
 216440
GROUP 75 MERGES INTOO GROUP 44 AT LEVEL 96.53.
GROUP 44 NOW CONTAINS:
 917 1874
GROJP 68 NERGES INTO GROUP 14 AT LEVEL 96.50.
GROUP 14 NOW CONTAINS:
 177 337 1738
GROUP 60 MERGES INTO GROUP 51 AT LEVEL 95.83.
GROUP 51 NOW CONTAINS:
 1240 1424
GROUP 2.9 MERGES INTO GROUP 7 AT LEVEL 95.65.
GROUP 7 NOW CONTAINS:
 049 1854 920 385
GROUP 59 MERGES INTO GROUP 10 AT LEVEL 95.49.
GROUP 10 NOW CONTAINS:
 38 1319
GROUP 76 MERGES INTO GROUP 56 AT LEVEL 95.17.
GROUP 56 NOW CONTAINS:
 1248
GROUP 87 MERGES INTO GROUP 78 AT LEVEL 95.17.
GROUP 78 NOW CONTAINS:
 1889 2423
GROUP 8 MESGES INTO GROUP 40 AT LEVEL 94.41.
GROJP 40 NOW CONTAINS:
 623 1845 5
GROUP 79 MERGES INTO GROUP Ó3 AT LEVEL 94.29.
GROUP 63 NOW CONTAIVS:
 1522 1890
GROUP 9 MERGES INT2 GROUP 7 AT LEVEL 94.12.
GROUP }7\mathrm{ NOW CONTAIAS:
 049}101854 920 385 6
```

Complete Linkage, Unweighted
GROUP 80 MERGES INTO GROUP 24 AT LEVEL 93.75. GROUP 24 NOW CONTAINS: 3191891

GROUP 86 MERGES INTO GROUP 39 AT LEVEL 93.75. GROUP 39 NOW CONTAINS: 6142412

GROUP 83 MEAGES INTO GROUP 51 AT LEVEL 93.75. GROUP 51 NOW CONTAINS: $1240 \quad 1424 \quad 2143$

GROUP 70 MERGES INTO GROUP 37 AT LEVEL 93.57. GROUP 37 NOW CONTAINS: $522 \quad 1799$

GROUP 49 MERGES INTO GROUP 11 AT LEVEL 93.10. GROUP 11 NOW CONTAINS:
$\begin{array}{llll}51 & 223 & 1022 & 1245\end{array}$
GROUP 72 MERGES INTO GROUP 78 AT LEVEL 93.06.
GROUP 78 NOW CONTAINS: $1889 \quad 2423 \quad 1829$

GROUP 28 TERGES INTO GROUP 30 AT LEVEL 93.01. gROUP 30 NOW CONTAINS: $424 \quad 1888 \quad 383$

GROUP 55 MERGES INTO GROUP 56 AT LEVEL 92.96. gROUP 56 NOW CONTAINS: $\begin{array}{llllllll}1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876 & 1247\end{array}$

GROUP 44 NERGES INTO GROUP 7 AT LEVEL 92.41. GROUP 7 NOW CONTAINS: $\begin{array}{lllllll}049 & 1854 & 920 & 385 & 6 & 917 & 1874\end{array}$

GROUP 34 MERGES INTO GROUP 21 AT LEVEL 92.36. GROUP 21 NOW CONTAINS: 22.6483

GROUP 22 MERGES INTO GROUP 14 AT LEVEL 92.31. GROUP 14 NOW CONTAINS: $\begin{array}{llll}177 & 337 & 1738 & 263\end{array}$

GROUP 24 MERGES INTO GROUP 10 AT LEVEL 92.20. GROUP 10 NOW CONTAINS: $\begin{array}{llll}38 & 1319 & 319 & 1891\end{array}$

GROUP 17 MEAGES INTO GROUP 37 AT LEVEL 92.09. GROUP 37 NOW CONTAINS: $5221799 \quad 206$

Complete Linkage, Unweighted

```
GROUP 36 MERGES INTO GROUP 1 AT LEVEL 91.61.
GROUP 1 NOW CONTAINS:
 TR 491
GROUP 18 MERGES INTO GROUP 14 AT L.EVEL 91.55.
GROUP 14 NOW CONTAINS:
 177}3337\quad1738 263 209
GROUP 85 MERGES INTO GROUP 48 AT LEVEL 9i.49.
GROUP 48 NOW CONTAINS:
 9992401
GROUP 38 MERGES INTO GROUP 78 AT LEVEL 91.03.
GROUP 78 NNOW CONTAINS:
 1889 2423 1829 547
GROUP 16 MERGES INTO GROUP 5 AT LEVEL 90.78.
GROUP 5 NOW CONTAINS:
 025 203
GROUP 51 MERGES INTO GROUP 7 AT LEVEL 90.58.
GROUP }7\mathrm{ NOW CONTAINS:
```



```
 2143
GROUP 47 MERGES INTO GROUP 21 AT LEVEL 90.14.
GROUP 21 NOW CONTAINS:
 226 483 959
GROUP 30 MERGES INTO GROUP 10 AT LEVEL 89.51.
GROUP 10 NOW CONTATNS:
```



```
GROUP 5 MERGES INTO CROUP 14 AT LEVEL 89.29.
GROUP 14 NOW CONTAINS:
 177 337}17388 263 209 020 203
GROUP 64 MERGES INTO GROUP 35 AT LEVEL 88.89.
GROUP 35 NOW CONTAINS:
 489 927 1597
GROUP 21 MERGES INTO GROUP 11 AT LEVEL 88.81.
GROUP 11 NOW CONTAINS:
 51
GROUP 42 MERGES INTO GROUP 14 AT LEVEL 88.73.
GROUP 14 !OW CONTAINS:
 177
GROUP 69 MEMGES INTO GROUP 52 AT LEVEL 88.65.
GROUP 52 NON CONTAINS:
 1241 1739
```

```
 - 162 -
 Complete Linkage, Unweighted
GROUP 58 MERGES INTO GROUP 19 AT LEVEL 88.19.
GROUP 19 NOW CONTAINS:
 216 440 1315
GROUP 14 MERGES INTO GROUP 7 AT LEVEL 87.41.
GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 6 & 917 & 1874 & 1240 & 1424 \\
2143 & 177 & 337 & 1738 & 263 & 209 & 020 & 203 & 643
\end{tabular}
GROUP 78 MERGES INTO GROUP 11 AT LEVEL 87.41.
GROUP 11 NOW CONTAINS:
 51
 1829 547
GROUP 65 MERGES INTO GROJP 48 AT LEVEL 87.32.
GROUP 48 NOW CONTAINS:
 999 2401 1010
GROUP 66 MERGES INTO GROUP 39 AT LEVEL 86.71.
GROUP 39 NOW CONTAINS:
 614 2412 1611
GROUP 10 MERGES INTO GROUP 7 AT LEVEL 86.67.
GROUP 7 NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 6 & 917 & 1874 & 1240 & 1424 \\
2143 & 177 & 337 & 1738 & 263 & 209 & 020 & 203 & 643 \\
38 & 1319 & 319 & 1891 & 424 & 1888 & 383 & &
\end{tabular}
GROUP 82 MERGES INTO GROUP 13 AT LEVEL 85.71.
GROUP 13 NOW CONTAINS:
 104 1898
GROUP 35 MERGES INTO GROUP 11 AT LEVEL 35.42.
GROUP 11 NOW CONTAINS:
 51
 1829 547 489 927 1597
GROUP 1 MERGES INTO GROUP 7 AT LEVEL 85.31.
GROUP }7\mathrm{ NOH CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 6 & 917 & 1874 & 1240 & 1424 \\
2143 & 177 & 337 & 1738 & 263 & 209 & 020 & 203 & 643 \\
38 & 1319 & 319 & 1891 & 424 & 1888 & 383 & \(T R\) & 491
\end{tabular}
GROUP 41 MERGES INTO GROUP 23 AT LEVEL 85.21.
GROUP 23 NOW CONTAINS:
 307 642
GROUP 48 MEPGES INTO GROUP 11 AT LEVEL 83.80.
GROUP 11 N'JW CONTAINS:
\begin{tabular}{lllllllll}
51 & 223 & 1022 & 1245 & 226 & 483 & 959 & 1889 & 2423
\end{tabular}
 1829 547
```

```
 - 163 -
 Complete Linkage, Unweighted
GROUP 13 MERGES INTO GROUP 7 AT LEVEL 83.33.
GROUP }7\mathrm{ NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 6 & 917 & 1874 & 1240 & 1424 \\
2143 & 177 & 337 & 1738 & 263 & 209 & 020 & 203 & 643 \\
38 & 1319 & 319 & 1891 & 424 & 1888 & 383 & TR & 491 \\
104 & 1898 & & & & & & &
\end{tabular}
GROUP 32 MERGES INTO GROUP 56 AT LEVEL 83.33.
GROUP 56 NOW CONTAINS:
 1248
GROUP 62 MERGES INTO GROUP 39 AT LEVEL 83.33.
GROUP 39 NOW CONTAINS:
 614}2412\quad1611\quad150
GROUP 67 MERGES INTO GROUP 3 AT LEVEL 83.22.
GROUP 3 NOW CONTAINS:
 02 1735
GROUP 53 MERGES INTO GROUP 50 AT LEVEL 82.27.
GROUP 50 NOW CONTAINS:
 1175 1243
GROUP 4 MERGES INTO GROUP 2 AT LEVEL 81.75.
GROUP 2 NOW CONTAINS:
 01 }2
GROUP 11 MERGES INTO GROUP 7 AT LEVEL 81.25.
GROUP }7\mathrm{ NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 6 & 917 & 1874 & 1240 & 1424 \\
2143 & 177 & 337 & 1738 & 263 & 209 & 020 & 203 & 643 \\
38 & 1319 & 319 & 1891 & 424 & 1888 & 383 & 12 & 491 \\
104 & 1898 & 51 & 223 & 1022 & 1245 & 226 & 483 & 959 \\
1889 & 2423 & 1829 & 547 & 489 & 927 & 1597 & 999 & 2401 \\
1610 & & & & & & & &
\end{tabular}
 1610
GROUP 12 MERGES INTO GROUP 23 AT LEVEL 80.99.
GROUP 23 NOW CONTAINS:
 307 642 69
GROUP 71 MERGES INTO GROUP 7 AT LEVEL 80.42.
GROUP }7\mathrm{ NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 6 & 917 & 1874 & 1240 & 1424 \\
2143 & 177 & 337 & 1738 & 263 & 209 & 020 & 203 & 643 \\
38 & 1319 & 319 & 1891 & 424 & 1888 & 383 & \(7 R\) & 491 \\
104 & 1898 & 51 & 223 & 1022 & 1245 & 226 & 483 & 959 \\
1889 & 2423 & 1829 & 547 & 489 & 927 & 1597 & 999 & 2401
\end{tabular}
 1610 1827
```

Complete Linkage, Unweighted

```
GROUP 56 MERGES INTO GROUP 7 AT LEVEL 79.02.
GROUP }7\mathrm{ NOW CONTAINS:
\begin{tabular}{rrrrrrrrr}
049 & 1854 & 920 & 385 & 6 & 917 & 1874 & 1240 & 1424 \\
2143 & 177 & 337 & 1738 & 263 & 209 & 020 & 203 & 643 \\
38 & 1319 & 319 & 1891 & 424 & 1838 & 383 & \(T R\) & 491 \\
104 & 1898 & 51 & 223 & 1022 & 1245 & 226 & 483 & 959 \\
1889 & 2423 & 1829 & 547 & 489 & 927 & 1597 & 999 & 2401 \\
1610 & 1827 & 1248 & 1503 & 1892 & 1249 & 201 & 479 & 1876
\end{tabular}
1247 467
GROUP 63 MERGES INTO GROUP 37 AT LEVEL 78.57.
GROUP 37 NOW CONTAINS:
 522 1799 206 1522 1890
GROUP 84 MERGES INTO GROUP 52 AT LEVEL 77.46.
GROUP 52 NOW CONTAINS:
 1241 1739 2298
GROUP 43 MESGES INTO GROUP 27 AT LEVEL 76.22.
GROUP 27 NOW CONTAINS:
 378 876
GROUP 6 MERGES INTO GROUP 3 AT LEVEL 75.55.
GROUP = NOW CONTAINS:
 02 1735 044
GROUP 23 MERGES INTO GROUP 19 AT LEVEL 75.52.
GROUP 19 NOW CONTAINS:
 216 440 1315 307 642 69
GROUP 39 MERGES INTO GROUP 37 AT LEVEL 73.76.
GROUP 37 NOW CONTAINS:
 522 1799 206 1522 1890 614 2412 1611 1505
GROUP 27 MERGES INTO GROUP 19 AT LEVEL 72.92.
GROUP 19 NOLi COAMAITSS:
 216
GROUP 25 MERGES INTO GROUP 7 AT LEVEL 72.73.
GROUP }7\mathrm{ NOW CONTAINS:
```



```
 2143
```




```
 1889
 1610}181827 1248 1503 1892 1249 201 479 1876
 1247 467 323
GROUP 50 HERGES INTO GROUP 2 AT LEVEL 70.07.
GROUP 2 NOW CONTAINS:
 01 03 1175 1243
```

Complete Linkage, Unweighted
GROUP 3 MEFGES INTO GROUP 2 AT LEVEL 65.49. GROUP 2 NOW CONTAINS:
$\begin{array}{lllllll}01 & 03 & 1175 & 1243 & 02 & 1735 & 044\end{array}$
GROUP 40 MERGES INTO GROUP 7 AT LEVEL 64.79. GROUP 7 NOW CONTAINS:

049	1854	920	385	6	917	1874	1240	1424
2143	177	337	1738	263	209	020	203	643
38	1319	319	1891	424	1888	383	$7 R$	491
104	1898	51	223	1022	1245	226	483	959
1889	2423	1829	547	489	927	1597	999	2401
1610	1827	1248	1503	1892	1249	201	479	1876
1247	467	323	623	1845	5			

GROUP 19 MERGES INTO GROUP 7 AT LEVEL 59.71. GROUP 7 NOW CONTAI:IS:

049	1854	920	385	6	917	1874	1240	1424
2143	177	337	1738	263	209	020	203	643
38	1319	319	1891	424	1888	383	$7 R$	491
104	1898	51	223	1022	1245	226	483	959
1889	2423	1829	547	489	927	1597	999	2401
1610	1827	1248	1503	1892	1249	201	479	1876
1247	467	323	623	1845	5	216	440	1315
307	642	69	378	876				

GROUP 52 MERGES INTO GROUP 2 AT LEVEL 59.56.
gROUP 2 NOW CONTAINS:
$\begin{array}{lllllllll}01 & 03 & 1175 & 1243 & 02 & 1735 & 044 & 1241 & 1739\end{array}$ 2298

GROUP 2 MERGES INTO GROUP 7 AT LEVEL 41.55.
gROUP 7 NOW CONTAINS:

049	1854	920	385	6	917	1874	1240	1424
2143	177	337	1738	263	209	020	203	643
38	1319	319	1891	424	1888	383	78	491
104	1898	51	223	1022	1245	226	483	959
1889	2423	1829	547	489	927	1597	999	2401
1610	1827	1248	1503	1892	1249	201	479	1876
1247	467	323	623	1845	5	216	440	1315
307	642	69	378	876	01	03	1175	1243
02	1735	044	1241	1739	2298			

Complete Linkage, Unweighted

GROUP 37 MERGES INTO GROUP 7 AT LEVEL 39.58.
GROUP 7 NOW CONTAINS:

049	1854	920	385	6	917	1874	1240	1424
2143	177	337	1738	263	209	020	203	643
38	1319	319	1891	424	1888	383	$T R$	491
104	1898	51	223	1022	1245	226	483	959
1889	2423	1829	547	489	927	1597	999	2401
1610	1827	1248	1503	1892	1249	201	479	1876
1247	467	323	623	1845	5	216	440	1315
307	642	69	378	876	01	03	1175	1243
02	1735	044	1241	1739	2298	522	1799	206
1522	1890	614	2412	1611	1505			

Complete Linkage, Unweighted

POINTS OF FORMATION FOR INITIAL GROUPS

$(7)$	$049:$	100.00	$(74)$	$1854:$	100.00	$(45)$	$920:$	100.00
$(29)$	$385:$	100.00	$(9)$	$6:$	100.00	$(44)$	$917:$	100.00
$(75)$	$1874:$	100.00	$(51)$	$1240:$	100.00	$(60)$	$1424:$	100.00
$(83)$	$2143:$	100.00	$(14)$	$177:$	100.00	$(26)$	$337:$	100.00
$(68)$	$1738:$	100.00	$(22)$	$203:$	100.00	$(18)$	$209:$	100.00
$(5)$	$020:$	100.00	$(16)$	$203:$	100.00	$(42)$	$643:$	100.00
$(10)$	$38:$	100.00	$(59)$	$1319:$	100.00	$(24)$	$319:$	100.00
$(80)$	$1891:$	100.00	$(30)$	$424:$	100.00	$(77)$	$1888:$	100.00
$(28)$	$383:$	100.00	$(1)$	$7 R:$	100.00	$(36)$	$491:$	100.00
$(13)$	$104:$	100.00	$(82)$	$1898:$	100.00	$(11)$	$51:$	100.00
$(20)$	$223:$	100.00	$(49)$	$1022:$	100.00	$(54)$	$1245:$	100.00
$(21)$	$226:$	100.00	$(34)$	$483:$	100.00	$(47)$	$959:$	100.00
$(78)$	$1889:$	100.00	$(87)$	$2423:$	100.00	$(72)$	$1829:$	100.00
$(38)$	$547:$	100.00	$(35)$	$489:$	100.00	$(46)$	$927:$	100.00
$(64)$	$1597:$	100.00	$(48)$	$999:$	100.00	$(85)$	$2401:$	100.00
$(65)$	$1610:$	100.00	$(71)$	$1827:$	100.00	$(56)$	$1248:$	100.00
$(61)$	$1503:$	100.00	$(81)$	$1892:$	100.00	$(57)$	$1249:$	100.00
$(15)$	$201:$	100.00	$(33)$	$479:$	100.00	$(76)$	$1876:$	100.00
$(55)$	$1247:$	100.00	$(32)$	$467:$	100.00	$(25)$	$323:$	100.00
$(40)$	$623:$	100.00	$(73)$	$1845:$	100.00	$(8)$	$5:$	100.00
$(19)$	$216:$	100.00	$(31)$	$440:$	100.00	$(58)$	$1315:$	100.00
$(23)$	$307:$	100.00	$(41)$	$642:$	100.00	$(12)$	$69:$	100.00
$(27)$	$378:$	100.00	$(43)$	$876:$	100.00	$(2)$	$01:$	100.00
$(4)$	$03:$	100.00	$(50)$	$1175:$	100.00	$(53)$	$1243:$	100.00
$(3)$	$02:$	100.00	$(67)$	$1735:$	100.00	$(6)$	$044:$	100.00
$(52)$	$1241:$	100.00	$(69)$	$1739:$	100.00	$(84)$	$2298:$	100.00
$(37)$	$522:$	100.00	$(70)$	$1799:$	100.00	$(17)$	$206:$	100.00
$(63)$	$1522:$	100.00	$(79)$	$1890:$	100.00	$(39)$	$614:$	100.00
$(86)$	$2412:$	100.00	$(66)$	$1611:$	100.00	$(62)$	$1505:$	100.00

UNVEIGHTED

	TR	01	02	0	020	044	049	5	6
TR	100.0	57.6	58.7	52.1	88.1	60.7	88.9	73.6	86
01	57.6	100.0	69.6	81.8	57.2	68.7	59.7	66.9	59
02	58.7	69.6	100.0	69.0	59.4	79.4	61.8	65.3	59.2
03	52.1	81.8	69.0	100.0	53.5	66.4	54.5	58.0	54.6
020	88.1	57.2	59.4	53.5	100.0	60.0	92.4	75.7	90.8
044	60.7	68.7	79.4	66.4	60.0	100.7	60.3	67.6	59.3
049	88.9	59.7	61.8	54.5	92.4	60.3	100.0	73.8	95.1
5	73.6	66.9	65.3	58.0	75.7	67.6	73.8	100.0	74.1
6	86.6	59.1	59.2	54.6	90.8	59.3	95.1	74.1	100.0
38	85.9	58.0	58.5	50.7	86.7	57.8	91.9	69.9	91.9
51	86.1	56.8	55.6	51.0	87.5	55.	92.4	71.	90.2
69	75.5	64.0	60.1	ó0.6	76.2	62.2	82.6	72.2	80.3
104	83.3	59.0	60.4	53.8	86.8	60.3	86.9	72	84.6
177	86.0	54.3	55.2	48.6	89.6	56.3	93.1	75.8	90.8
201	87.5	60.4	56.9	53.8	86.8	58.1	89.1	73.1	86.7
203	88.0	59.	57.4	52.9	90.8	58.6	92.3	71.	90.8
206	54.	55.1	55.3	55.0	54.6	57	54	54	52.1
209	89.4	56.9	58.5	52.5	91.5	56.0	92.3	72.0	88.7
216	85.4	62.6	58.3	53.8	84.7	57.4	86.9	71.7	83.2
223	86.	56.8	55.6	51.0	87.5	55.	92.4	71.	. 2
226	88	60.9	62.9	57	0	60	94.4	73	90.8
263	86.1	56.1	59.7	51.7	89.6	58.1	94.5	69.0	90.9
307	79.0	69.1	02.2	61.3	79.7	60.7	86.8	75.0	83.1
319	86.7	59.4	58.7	54.9	89.5	57.0	92.4	76.4	91.5
323	77.6	65.2	55.9	59.2	78.	63.	80.6	77.8	79.6
337	86.0	54.3	55.2	48.6	89.6	56.	93.1	$7 n .8$	90.8
378	70.4	56.2	53.5	51.8	76.1	53.0	76.9	64.3	76.6
383	86.8	55.4	58.3	51.0	90.3	55.6	93.8	72.4	93.0
385	88.3	58.3	60.6	53.7		58.	96.4	?2	94.1
424	86.1	60.4	60.4	55.9	89.	58.	4.5	73	
4	84.7	64.7	59.0	55.9	85.4	58.1	87.6	72.4	83.9
7	81.9	54.7	58.7	51.4	83.9	55.6	87.5	79.1	85.2
479	36.8	00.4	57.6	54.	87.5	58.	88.3	73.8	86.0
483	88.9	60.4	59.7	53.1	90.3	59.6	92.4	73.1	88.8
489	85.3	55.8	56.6	52.1	89.5	57.0	91.0	72.2	90.1
491	91.6	55.4	59.4	51.4	89.5	58.1	88.2	72.2	88.0
2	54.2	55.5	54.2	53.2	51.	57.5	51.7	53.1	51.1
547	88.9	57.6	59.0	52.4	9.3	59.6	91.0	72.4	88.1
614	51.7	54.3	52.4	57.7	49.7	54.1	48.6	49.3	47.9
623	69.7	69.3	67.6	60.3	69.7	70.9	70.6	94.4	б0.
642	81.0	61.6	59.9	56.0	86.6	59.7	87.4	71.3	86.5
643	86.7	62.3	60.8	54.9	88.8	60.7	92.4	72.2	90.1
876	75.5	60.4	56.9	55.2	79.9	57.4	80.0	64.8	76.9
917	87.5	57.6	57.6	53.1	92.4	58.8	93.1	73.8	93.7

Unweighted (Cont.)

	TR	01	02	03	020	044	049		
			59.7				97.9		
	85.	55.	55.9	51.4	88.8	56.	90.3	71.5	
	83.8	58.4	56.3	51.	85.	56.0	88.8	.	86
	83.8	54.0	52.8	8.2	87.	56	88.	70.6	87.
1022	88.9	59.7	59.7	52.4	88.9	61.8	93.8	1.7	90.2
1175	56.3	72.5	71.1	76.6	56.3	73.	56.6	61.5	54.6
1240	89.5	56.5	58.0	52.8	90.2	60.7	95.	72.	94.4
1241	51.1	65.4	55.2	67.	54.6	67.2	52.	59.	51.8
1243	63.4	70.1	66.9	73.8	62.7	67.	61.	60.	63.
1245	86.8	59.7	59.0	52.4	86.8	59.6	91.7	71.	90.9
12	85.	56.6	54.6	51.	85.8	54.	88.0	71.	86.4
1248	86	61.2	58.3	55.	88.2	58.8	89.0	74.5	86.7
1249	87.0	59.4	56.5	53.	87	57.7	87.8	73.4	85.4
13	83.2	57.2	53.1	48.6	79.7	54.8	81.3	67.4	78.9
13	86.5	59.6	61.4	53.2	87.	61.7	91.5	73.8	90.7
1424	89	59		5		60.	95.2	75.	93.0
1503	86.8	60.4	59.0	54.5	88.9	59	89	8	87.4
1505	45.8	54.7	50.7	56.6	44.4	56	45.5	7.6	44.1
15	53	53.	52.5	52.	56.0	55.6	55.6	48.6	53.6
1597	83.9	57	60.	52.	87	58.5	89.0	72.	91.5
16	81.8	58.0	58.0	53.5	87	58.5	87	72.9	
1611	55.2	57.2	55.	58.5	52.4	60.0	54.9	56	51.4
1735	65	73	83.	65.	67.	75.6	68.	69.	64.8
17	88.0	56	56	49.	0	56.7	92.	).	. 8
17	50.3	66.7	65.	69.7	51.7	63.7	50.7	58.3	48.6
1799	53.5	53.3	50.	52.9	53.2	54.9	53.	52.1	51
	80	58.0	6	54	86.	60.0	86	69.	82.4
18	87			52	O		92.4	72	
	70.	69.6	68.6	61.	9.9	71.	.	5.	
	38	60.4	02.5	55.	91.	59.0	99.3	73.	,
		59.	58.7		90.	60.7	93.8	73.6	93.0
	85		56.9	54.5	86	58	87	73.8	66
1888	85.9	60.1	61.3	56.7	89.	60.0	3.	,	
1889	87.5	58.3	58.3	53.1	90.3	58.	92.4	2.4	89
	48	54		54.6	52.1	58.2	51.7	47.	50.4
189	87.	55.	58.	51.7	88.2		92.4	72.3	88.8
1892	85.4	61.2	57.6	55.2	87.5	58.	88.3	74.5	87.4
1898	83.6	61.5	61.9	58.0	87.1	59.5	90.7	75.0	89.
214	88.2	59.0	57.6	53.1	91.0	60.3	91.7	74.5	2.3
2298	61.8	61.	61.	62	62.5	59.	62.8	64.1	59.4
2401	83.8	58.4	54.9	52.1	86.6	56.7	88.	71.3	86.5
2412	48.3	55.1	51.7	55.6	46.9	55.6	45.8	47.9	
2423	86.	59.	56.		88.9	55.9	91.	72.	88

Unweighted (Cont.)

	38	51	69	104	177	201	203	206	209
TR	85.9	86. 1	75.5	83.3	86.0	87.5	88.0	54.6	89.4
01	58.0	56.8	64.0	59.0	54.3	60.4	59.4	55.1	9
02	58.5	55.6	60.1	60.4	55.2	56.9	57.4	55.3	58.5
03	50.7	51.0	60.6	53.8	48.6	. 53.8	52.9	55.0	52.5
020	86.7	87.5	76.2	86.8	89.6	86.8	90.8	54.6	91.5
044	57.8	55.1	62.2	00.3	56.3	58.1	58.6	57.1	56.0
049	91	92.4	82.6	86.9	93.1	89.9	92.3	54.2	92.3
5	69.9	71.7	72.2	72.4	70.8	73.1	71.1	54.2	72.0
6	91.9	90.2	80.3	84.6	90.8	86.7	90.8	52.1	88.7
38	100.0	90.4	82.2	84.6	89.6	83.8	89.5	56.0	88.8
5	00.4	100.0	79.9	85.5	90.3	86.2	88.7	52.8	89.5
69	82.2	79.9	100.0	75.0	78.3	78.5	75.9	58.9	77.5
104	84.6	85.5	75.0	100.0	85.4	83.4	84.5	51.4	88.1
177	89.6	90.3	78.3	85.4	100.0	86.8	90.8	53.2	91.5
201	83.8	86.2	78.5	83.4	86.8	109.0	88.7	61.3	87.4
203	89.5	88.7	75.9	84.5	90.8	85.7	100.0	54.7	89.3
206	56.0	52.8	58.9	51.4	53.2	61.3	54.7	:00.0	51.4
209	88.8	89.5	77.5	88.1	01.5	87.4	89.3	51.4	100.0
216	82.4	84.1	80.6	84.	82.6	88.3	85.2	57.0	87.4
223	90.4	100.0	79.9	85.5	90.3	86.2	88.7	52.8	89.5
226	88.9	88.9	79.7	86.1	88.8	91.7	92.2	55.3	91.5
263	91.2	91.0	78.5	86.9	93.1	85.5	90.8	52.1	91.6
307	82.2	81.9	82.5	75.7	81.8	81.3	81.0	58.9	81.7
319	93.3	92.4	83.9	84.0	91.6	88.2	89.4	55.3	93
323	77.9	79.9	74.1	76.4	76.2	78.5	78.0	52.5	78.2
337	89.6	90.3	78.3	85.4	100.0	86.8	90.8	53.2	91.
378	76.9	75.5	75.4	73.4	76.1	75.5	76.4	57.1	77.
383	91.2	91.0	79.2	87.6	91.0	86.9	89.4	52.1	99.2
395	93.8	90.6	83.9	87.0	90.5	88.4	90.4	54.8	92.6
424	90.4	99.3	82.6	85.5	88.9	87.6	88.7	54.9	89.5
440	83.1	84.8	81.3	84.3	83.3	84.8	84.5	54.9	86.7
467	85.2	84.7	76.9	82.6	83.2	84.7	83.1	52.5	85.2
479	83.1	85.5	77.8	82.8	86.1	99.3	88.0	62.7	86.7
483	88.2	89.7	79.2	84.8	86.8	88.3	88.0	56.3	88.8
489	88.9	88.9	76.2	86.8	88.1	84.0	88.7	52.5	88.
491	88.9	86.1	75.5	84.7	88.1	84.0	88.7	53.2	88.7
522	56.7	51.0	57.0	51.0	50.7	57.3	52.1	92.1	49.6
547	90.4	87.6	77.8	84.1	85.4	85.5	88.0	56.3	88.8
614	45.9	45.8	51.7	49.3	46.2	54.9	46.8	78.7	46.5
623	68.7	68.5	$\cdots$	08.5	66.2	68.5	67.9	53.6	68.8
642	86.6	84.0	31.0	81.1	84.5	79.7	84.4	56.4	84.4
643	88.9	88.2	81.1	86.1	89.5	86.1	89.4	53.2	88.7
876	76.5	80.7	75.7	75.2	76.4	78.6	77.5	59.9	73.3
917	87.5	86.9	78.5	84.8	88.9	86.2	89.4	51.4	90.9

Unweighted (Cont.)

	38	51	69	104	177	201	203	206	209
0	91	93	81.9		83.8		93.0		
927	88.1	88.2	75.5	86.1	87.4	82.6	87.9	51.8	87
959	88.8	90.2	76.8	83.9	87.3	84.6	87.1	55.7	88.0
999	86.6	89.5	77.5	83.9	89.4	85.3	86.4	53.6	88.7
1022	89.7	93.8	80.6	84.8	88.2	86.9	89	53.	88.8
175	54.5	55.2	65.7	58.0	54.2	58.0	56.	58.6	54.6
1240	91.1	93.1	80.4	87.5	92.3	88.2	90.1	54.6	90.1
1241	51.5	51.4	60.3	53.5	53.2	50.7	54.7	55.4	52.1
12	64.2	63.6	69.0	64.3	59.9	63.6	62.9	59.3	60.3
1245	90.4	93.1	81.3	82.8	86.1	84.8	87.3	53.5	86
1247	84.4	86.6	77.3	82.4	87.2	95.1	86.3	57.6	87.9
12	83.8	86.2	78.5	83.4	86.8	98.6	88.7	61.3	87.4
1249	83.8	84.9	76.8	82.7	85.5	97.8	87.5	61.8	86
1315	79.3	81.9	75.5	80.6	82.5	79.9	83.0	. 8	83
1319	95.5	91.5	82.9	83.7	89.3	85.8	88.5	56.5	90.6
1	91.	91.7	80.6	89.0	93.8	89.0	91.5	53.5	91.6
15	84.	85	77.8	84.	87.5	97.9	89.4	. 6	88
1505	44.9	44.1	49.3	43.4	43.1	51.0	45	80.3	41
15	56.3	53.5	53.2	54.2	53.2	59.9	56.8	78.6	54.3
1597	88	87	79	84.0	86.7	83.3	85.	48.9	88.0
1610	87	87	76.	81.	86.1	84.0	85.8	5.	34
611	51.9	52.1	55.9	51.4	43.7	57.6	51.8	78.0	50
1735	63.7	61.8	54.3	63.2	60.8	62.5	66.7	53.2	64.8
1738	91	90	77.5	86.0	96.5	87.4	92.	53.6	92.2
17	46.7	48.6	55	49.	48.3	48.5	51	46.8	51.4
	56.4	52.8	58.2	52.8	51.1	57.7	53.6	92.1	51
1827	83.0	34.0	72.0	84.0	84.6	79.2	81.5	49.6	84.5
1829	91.	88.9	79	85.4	86.7	86.8	88.7	56.7	90.
1845	68.9	68.	73.6	68.3	56.0	68.1	68.1	54.3	68
54	91.2	91.7	81.9	87.6	92.4	88.3	91.5	53.5	92.3
1874	89.0	88.9	81.	84.7	88.8	86.8	87.9	53.2	89.4
1876	83.8	86.2		83.4	86.	95.2	86.6	58.5	86.7
1888	89.6	89.5	83.8	84.6	88.7	87.4	88.6	55.7	89.4
1889	89.0	90.3	77.8	86.9	86.8	88.3	89.4	54.2	90.2
1890	53.0	50.3	51.4	54.5	49.3	56.6	52.9	78.6	51.8
	93.	88.3	81.9	34.8	91	85.5	88.7	53.5	90.9
1892	84.6	86.9	77.8	82.8	86.	97.9	88.	61.3	86.7
1898	87.0	87.9	80.6	85.7	85.6	85.0	86.2	55.5	87.7
2143	90.4	92.4	79.2	86.2	91.0	86.2	89.4	52.8	91.6
2298	56.6	60.7	62.5	58.6	57.6	59.3	63.4	50.0	60.8
	88.8	91.6	78.2	84.6	85.9	86.0	87.1	57.9	87
2412	45.9	45.8	51.7	47.9	44.8	53.5	46.1	03.7	45.1
2423	88.2	91.0	79.2	84.1	85.4	89.7	88.0	57.0	88.

Unweighted (Cont.)

	119	223	226	26	307	319	323	337	378
TR	85.4	86.1	88.1	85.1	79.0	86.	77.6	6.0	
01	62.6	56.8	60.9	56.1	69.	59.4	65.2	54.3	56.2
02	58.3	55.6	62.9	59.7	62.2	58.7	55.9	55.2	53.5
03	53.8	51.0	57.7	51.7	61.3	54.9	59.2	48.6	51.8
020	84.7	87.5	90.9	89.6	79.7	89.5	78.3	89.6	76.1
044	57.4	55.1	60.0	58.1	60.7	57.0	50.0	56.3	53.0
049	86.9	92.4	94.4	94.5	86.8	92.4	80.6	93.1	76.9
5	71.7	71.7	73.6	69.0	75.0	76.4	70.8	79.8	64.3
6	83.2	90.2	90.8	90.9	83.1	91.5	79.6	90.8	76.6
38	82.4	90.4	88.9	91.2	32.2	93.3	77.0	89.6	76.9
51	84.1	100.0	88.9	91.0	81.9	92.4	79.9	90.3	75.
69	80.6	79.9	79.7	78.5	82.5	83.9	74.1	78.3	75.
104	84.1	85.5	86.1	86.9	75.7	84.0	76.4	85.4	73.4
7	82.6	90.3	88.8	93.1	81.8	91.6	76.2	100.0	76.1
201	88.3	86.2	91.7	85.5	81.3	88.2	78.5	86.8	75.5
203	85.2	88.7	92.2	90.8	81.6	89.4	78.0	90.8	76.4
206	57.0	52.8	55.3	52.1	58.9	55.3	52.5	53.2	57.1
209	87.	89.5	91.5	91.6	81.7	93.0	78.2	91.5	77.3
216	100.0	84.1	88.2	84.	82	85	80.6	82.6	75.5
223	84.1	100.0	88.9	91.0	81.9	92.4	79.9	90.3	75.5
226	88.2	88.9	100.0	9.3	83.2	91.6	79.7	88.8	74.6
26	84	91.0	90.3	ic0.0	83.3	91.0	77.8	93.1	78.3
307	82.6	81.9	83.2	83.3	100.0	83.9	73.4	81.8	73.9
319	85.4	92.4	91.6	91.0	83.9	100.0	81.1	91.6	80.3
3	80.6	79.9	79.7	77.8	73.4	81.1	100.0	76.2	63.4
337	82.6	90.3	88.8	93.1	81.8	91.6	76.2	100.0	6.1
378	75.5	75.5	74.6	78.3	73.9	80.3	63.4	76.1	100.0
383	86.2	91.0	91.0	91.0	81.9	91.7	78.5	91.0	77.
385	$8 \%$	90.6	93.4	92.0	84.7	92.7	81.0	90.5	75.2
424	91.	90.3	91.7	90.3	85.4	91.	80.6	88.9	77.
440	96.6	84.8	87.5	84.8	83.	86.	79.	83.3	76.2
467	84.0	84.7	86.7	86.1	79.0	86.0	74.8	83.2	74.6
479	87.6	85.5	91.9	84.8	80.6	87.5	77.8	86.1	74.
483	87.5	89.7	92.4	88.3	83.3	88.2	32.6	86.8	71.3
489	84.7	88.9	88.8	88.2	81.1	88.2	78.3	88.1	73.2
491	82.6	86.1	36.7	88.2	77.6	88.8	74.	88.1	73.9
522	55.2	51.0	51.4	51.0	55.6	54.2	47.9	50.7	56.7
547	83.4	87.6	89.6	87.6	79.9	88.2	79.9	85.4	70.6
614	52.8	45.8	50.3	47.2	50.3	48.3	48.3	46.2	55.6
623	69.9	62.5	70.4	55.7	74.6	73.2	71.1	66.2	61.0
642	84.6	84.6	85.2	86.0	85.2	84.5	74.6	84.5	74.
643	56.8	88.2	90.2	89.6	83.9	88.9	77.6	89.5	76.
876	79.3	80.7	78.5	78.6	77.8	79.9	70.8	76.4	76
917	84.1	86.9	90.3	89.0	83.3	89.6	78.5	38.9	

Unweighted (Cont.)

		223	226	263	307	319	323	337	378
920	87.6		93	93					
927	84.0	88.2	87.4	87.5	80	87.4	76.9	87	72
959	83.9	90.2	90.1	88.	81.7	88.7	78.9	87.	74.5
析	81.8	89.5	86.6	86.7	78.	88.7	78.9	89.	76
1022	84.8	93.8	91.0	89.	82.6	88.	80.	88.2	72
175	58.0	55.2	57.0	54.5	62.7	57.	64.	54.	53.9
1240	86.1	93.1	91.0	92.4	83.2	91.6	81.1	92.3	76.1
1241	53.5	51.4	3.9	52.	57.4	53.2	61.0	53.2	47.9
12	64.3	63.6	3.4	50.8	68.3	52.	66.	59	58.9
1245	82.8	93.1	88.9	87.6	81.9	88.2	81.	86.	72.0
1247	84.5	86.6	89.4	85.9	82.3	88.7	74.5	87.2	77
1248	86.9	86.	91.7	35.5	81.	88.2	77.	86.8	75.5
1249	86.3	84.9	90.6	84.2	80.4	87.0	76.	85.5	73.9
1315	88.2	81.9	81.1	82.6	77.6	1.8	71.	82.5	76.8
1319	83.7	91.5	89.3	90.1	83.6	95.0	78.6	89.3	79
1424	86.2	91.7	91.0	93.8	84.0	91.7	78.5	93.8	76.
15	87.6	85	92.4	86.2	80.	87	76.4	87.5	76
1505	47.6	44.1	45.8	44.	48.6	44.	46	43.1	
15	57.9	53.5	55.3	55.6	56.0	53.9	51.8	53.2	60.7
	81.9	37.5	88.1	88.2	79.7	88.8	76.2	86.7	73.9
í6io	78.	87.5	86.0	85.4	80.	88.8	76.	86.0	75
16	55.6	52.1	53.5	52.1	58.7				57.7
17	67.4	61.8	67.8	65.3	69.9	64.	67.	60.8	57.7
1738	84.0	90.2	89.4	92.3	81.	90.8	77.5	96.5	76.6
17	51.	48.6	53.	47.9	54	52.4	65.7	48.3	
	57.7	52.8							
18	78.5	84.0	83.9	86.1	76.2	82.	72.7	84.6	72
18	86.1	88.9	89.5	89.6	81.	90.	81.	86.7	74.6
	69.	68.	70	66.0	74		70.7	66.	59.7
1854	86.2	91		93.8	86		7.		
1874	84.7	88.9	89.5	90.3	83.	89.	79.7	88.	72
1876	84.	86.2	88.9	84.8	81.	88.9	77.1	86.1	76.2
	88.8		90.		86.	90	78.	88.	78.0
1889	86.2	90.3	91.0	88.	81.	89.		86.8	74.
1890	53.8	50.3	52.1	51.7	52.8	50.3	48.6	49.	58.
181	84.1	88.3	90.3	92.4	83.3	93.8	78.5	91.0	76.2
	86.	86.	91	号	80.	88.	77.8	86.1	76
1898	84.3	87.9	92.	87.	84.2	88.5	2.0	85.6	76.
2143	84.8	92.4	88.2	90.3	80.6	93.1	78.5	91.0	79.
2298	64.1	60.7	63.2	58.6	63.9	60.4	65.3	57.6	
	83.	91	37.3	88.8	80.3	89.4	81.0	85.9	
2412	51.4	45.8	47.6	45.8	51.0	48.3	48.3	4.	
2423	86.2	91.0	89.6	86.9	82.6	90.3	80.6		

Unweighted (Cont.)

	383	385	424	440	467	479	483	489	491
TR	86.8	88.3	86.1	84.7	81.9	86.8	88.9	85.3	91.6
01	55.4	58.3	60.4	64.7	54.7	60.4	60.4	55.8	55.4
02	58.3	60.6	60.4	59.0	58.7	57.6	59.7	56.6	59.4
03	51.0	53.7	55.9	55.9	51.4	54.5	53.1	52.1	51.4
020	90.3	92.0	89.6	85.4	83.9	87.5	90.3	89.5	89.5
044	56.6	58.1	58.1	58.1	55.6	58.1	59.6	57.0	58.1
049	93.8	96.4	94.5	87.6	87.5	88.3	92.4	91.0	88.2
5	72.4	72.5	73.1	72.4	70.1	73.8	73.1	72.2	72.2
6	93.0	04.1	92.3	83.9	85.2	86.0	88.8	90.1	88.0
38	91.2	93.8	90.4	83.1	85.2	83.1	88.2	88.9	88.9
51	91.0	90.6	90.3	84.8	84.7	85.5	89.7	88.9	86.1
69	79.2	83.9	82.6	81.3	76.9	77.8	79.2	76.2	75.5
104	87.6	87.0	85.5	84.8	82.6	82.8	84.8	86.8	84.7
17.	91.0	00.5	88.9	83.3	83.2	86.1	86.8	88.1	88.1
201	86.9	88.4	87.6	84.8	84.7	99.3	88.3	84.0	84.9
203	89.4	90.4	88.7	84.5	83.1	88.9	88.0	$=0.7$	88.7
206	52.1	54.8	54.9	54.9	52.5	62.0	56.3	52.5	53.2
209	90.2	92.6	89.5	86.7	85.2	86.7	88.8	88.0	88.7
216	36.2	87.0	91.0	96.6	84.0	87.6	87.6	84.7	82.6
223	91.0	90.6	90.3	84.8	84.7	85.5	89.7	88.9	86.1
226	91.0	93.4	91.7	87.5	86.7	91.0	92.4	88.8	86.7
263	91.0	92.0	90.3	84.8	86.1	84.8	88.3	88.2	88.2
307	81.9	84.7	85.4	83.3	79.0	80.6	83.3	81.1	77.6
319	91.7	92.7	91.0	86.1	86.9	87.5	88.2	88.2	88.8
323	78.5	81.0	80.6	79.9	74.8	77.8	82.6	78.3	74.1
337	91.0	90.5	88.9	83.3	83.2	86.1	86.8	88.1	88.1
378	77.6	75.2	77.6	76.2	74.6	74.8	71.3	73.2	73.9
383	100.0	92.8	93.8	86.9	87.5	86.2	89.1	92.4	88.9
385	92.8	100.0	93.5	87.0	88.3	87.7	92. 5	89.8	87.5
424	93.8	93.5	100.0	91.7	88.9	86.9	89.7	90.3	85.4
440	86.9	87.0	91.7	100.0	81.9	84.1	86.9	85.4	83.3
467	87.5	88.3	88.9	81.9	in0.0	85.4	86.8	86.7	80.4
479	86.2	87.7	86.9	84.1	85.4	100.0	87.6	84.7	84.0
483	89.0	92.0	89.7	86.9	86.8	87.6	100.0	88.9	86.8
489	92.4	89.8	90.3	85.4	86.7	84.7	88.9	100.0	86.0
491	88.9	87.6	85.4	83.3	80.4	84.0	86.8	86.0	100.0
522	49.0	52.2	52.4	54.5	48.6	58.0	52.4	51.4	53.5
547	88.3	91.3	89.0	84.1	86.1	86.2	89.0	87.5	86.1
614	47.2	49.6	50.7	52.1	47.6	55.6	50.7	46.2	49.0
623	67.8	69.1	71.3	70.6	66.9	67.8	71.3	67.6	66.9
642	85.3	87.5	87.4	85.3	81.7	80.4	83.9	83.1	83.8
643	91.7	91.2	89.6	88.9	84.6	85.4	88.2	88.2	86.0
876	79.3	78.3	81.4	80.0	74.3	79.3	79.3	77.8	75.0
917	89.7	93.5	89.0	84.8	81.9	85.5	89.7	88.	89.6


	383	385	424	440	46	479	483	489	491
920	94.5	95.7	93.8	88.3	86.8	90.3	93.1	91.7	89.6
927	93.1	89.1	89.6	84.7	86.0	83.3	87.5	99.3	85.3
959	89.5	87.5	87.4	84.6	83.8	83.9	92.3	88.0	84.5
999	90.9	86.8	86.7	82.5	80.3	84.6	86.0	85.2	86.6
1022	90.3	92.8	91.0	85.5	85.4	86.2	93.1	88.2	85.4
1175	55.2	53.7	57.3	58.7	52.8	58.7	57.3	56.3	54.2
1240	94.4	92.7	92.4	86.8	85.3	87.5	90.3	92.3	89.5
1241	51.4	51.1	53.5	55.6	49.6	51.4	52.8	52.5	51.8
1243	62.2	ó1.8	64.3	65.7	59.2	64.3	63.6	64.8	62.7
1245	89.7	93.5	90.3	83.4	86.1	84.1	91.0	87.5	83.3
1247	88.0	87.4	86.6	83.8	85.1	94.4	85.9	84.4	85.1
1248	86.9	88.4	87.6	84.8	84.7	99.3	86.9	85.4	84.7
1249	85.6	87.7	86.3	84.2	83.3	98.6	86.3	84.8	85.5
1315	81.3	81.8	84.7	90.3	77.6	79.2	80.6	81.1	80.4
1319	90.8	93.3	90.1	84.4	85.8	85.1	89.4	88.6	37.1
1424	93.1	92.8	91.0	86.9	85.4	88.3	90.3	99.3	89.6
1503	87.6	89.1	88.3	85.5	85.4	98.6	87.6	86.1	85.4
1505	44.1	43.5	46.2	45.5	43.1	51.7	47.6	44.4	43.8
1522	56.3	52.6	55.6	56.3	52.5	60.0	56.3	53.9	55.3
1597	90.3	89.8	88.2	82.6	83.9	84.0	85.4	30.5	06.7
1610	98.2	87.6	87.5	79.2	83.9	84.7	86.1	85.3	85.3
1611	52.1	53.3	55.6	56.3	50.3	56.9	56.9	51.7	51.0
1735	63.2	$66.4$	66.7	63.4	60.8	63.2	67.4	64.3	63.6
1738	91.6	91.2	89.5	85.3	83.8	86.7	88.1	88.7	88.7
1739	47.2	49.6	50.7	53.5	48.3	40.3	52.1	48.3	48.3
1799	51.4	54.8	54.2	57.0	50.7	58.5	54.9	53.5	51.8
1827	84.7	85.4	83.3	80.6	79.0	79.9	84.0	84.6	84.6
1829	88.9	94.2	89.6	85.4	86.7	87.5	90.3	90.2	86.0
1845	68.1	69.4	71.6	70.2	67.9	68.8	70.9	68.8	67.9
1854	93.1	95.7	92.8	86.9	86.8	87.6	91.7	90.3	87.5
1874	88.9	94.2	89.6	85.4	83.2	86.1	91.7	87.4	88.8
1876	86.9	87.7	87.6	83.4	86.8	95.9	85.5	85.4	84.0
1888	93.0	92.6	97.9	89.5	89.4	87.4	88.8	90.1	85.3
1889	90.3	92.0	90.3	85.5	90.3	89.0	91.7	88.9	86.1
1890	52.4	49.3	51.7	53.1	49.3	57.3	51.7	50.3	52.1
1891	90.3	94.9	89.7	84.8	86.8	84.8	87.6	86.8	88.2
1892	87.6	87.7	88.3	84.1	85.4	98.6	86.2	86.1	84.0
1898	89.3	91.7	90.0	85.0	83.6	84.3	88.6	87.1	84.2
2143	91.7	90.6	89.7	85.5	84.0	85.5	90.3	91.0	91.0
2298	58.6	60.1	63.4	66.2	58.3	60.0	65.5	61.1	59.7
2401	88.1	88.2	87.4	83.2	85.9	86.7	88.1	87.3	85.2
2412	45.8	46.7	47.9	50.7	44.8	54.2	49.3	46.2	46.2
2423	90.3	90.6	91.0	85.5	86.8	90.3	90.3	88.2	86.1

Unweighted (Cont.)

	522	547	614	623	642	643	876	917	020
1rn	,	88		69.7	81.0	86.7	,	87.	
01	55	57.6	54.3	69.3	61.6	62.3	60	57	50
02	54.2	59.0	52.4	67.6	59.9	60.8	56:9	57.	59.7
03	53.2	52.4	57.7	60.3	56.0	54.9	55.2	53.1	53.1
20	51.4	90.3	49.7	69.7	86.6	88.8	79.9	92.4	93.1
044	57.5	59.6	54.1	70.9	59.7	60.7	57.4	58.8	61.0
049	51.7	91.0	48.6	70.6	87.4	92.4	80.0	93.1	97.9
5	53.1	72.4	49.3	94.4	71.3	72.2	64.8	73.8	74.5
6	51.1	88.1	47.9	69.5	86.5	90.1	76.9	93.7	95.8
38	56.7	90.4	45.9	68.7	86.6	88.9	76.5	87.5	91.2
51	51.0	87.6	45.8	68.5	84.6	88.2	80.7	86.9	93.1
69	57.0	77.8	51.7	73.9	81.0	81.1	75.7	78.5	81.9
104	51.0	84.1	$+9.3$	68.5	81.1	86.1	75.2	84.8	89.0
177	50.7	85.4	46.2	66.2	84.5	89.5	76.4	88.9	93.8
201	57.3	85.5	54.9	68.5	79.7	86.1	78.6	86.2	91.0
203	52.1	83.0	46.8	67.9	84.4	89.4	77.5	89	0
206	92.1	56.3	78.0	53.6	56.4	53.2	59.9	51.4	53.5
209	49.6	88.8	46.5	68.8	84.4	88.7	78.3	90.9	91.6
216	55.	83.	52.8	69.9	84.6	86.8	79.3	84.	87.6
223	51.0	87.6	45.8	68.5	84.6	88.2	80.7	85.9	93.1
6	51.4	89.6	50.3	70.4	85.2	90.2	78.5	90.3	93.8
263	51.	87.6	47.2	65.7	36.0	89.6	78.6	89.0	93.8
307	55.	79.	50.3	74.6	85.	83.9	77.8	83.3	84.7
319	54.2	88.2	48.3	73.2	84.5	88.9	79.9	89.6	91
319	47.9	79.9	48.3	71.1	74.6	77.6	70.8	78.5	81.3
337	50.7	85.4	46.2	66.2	84.5	89.5	76.4	88.9	93.8
378	56.	70.	55.6	61.0	74.5	76.1	76.2	74.1	76.2
383	49.0	88.3	47.2	67.8	85.	91.7	79.3	89.7	94.5
385	52.2	91.3	49.6	69.1	87.5	91.2	78.3	93.5	95.7
424	52.4	89.0	50.7	71.3	87.4	89.6	81.4	89.0	93.8
440	54.	84.	52	70.6	85.3	88.9	80.0	84.3	88.3
467	48.6	86.1	47.6	66.9	81.7	84.6	74.3	81.9	86.8
479	58.0	86.2	55.6	67.8	80.4	85.4	79.3	85.5	90.3
483	52.4	89.0	50.7	71.3	83.9	88.2	79.3	89.7	93.1
9	51.	87.5	46.2	67.6	33.1	88.2	77.8	88.2	91.7
491	53.5	86.1	49.0	66.9	83.8	86.	75.0	89.6	89.6
522	100.0	53.8	78.2	52.5	56.0	52.1	56.6	50.3	51.0
547	53.8	100.0	47.9	69.2	83.2	8 E .1	77.9	86.9	91.7
14	78.2	47.9	100.0	47.2	51.4	49.7	56.9	46.5	49.3
623	52.5	69.2	47.2	100.0	69.5	67.6	64.3	69.2	69.9
642	56.0	83.2	51.4	69.5	100.0	87.3	79.0	85.3	86.7
643	52.1	86.1	49.7	67.6	87.3	100.0	78.5	88.2	93.1
876	56.6	77.9	56.9	64.3	79.0	78.5	100.0	74.5	80.7
917	50.	86.9	46	69.2	85.3	88.2	74.5	100.0	93.8

Unweighted (Cont.)

	522	547	614	623	$64 ?$	643	876	917	20
920	51.0	91.7	49.3	69.9	86.7	93.1	80.7	93.8	100.0
927	51.4	86.8	$45.5{ }^{\text {- }}$	66.9	83.1	88.1	76.4	87.5	91.0
959	52.5	87.4	46.5	69.5	82.3	85.9	77.6	84.6	89.5
999	51.8	85.3	45.8	66.0	84.4	85.9	76.9	88.1	90.2
1022	51.0	90.3	48.6	69.9	84.6	88.9	80.7	88.3	04.5
1175	58.9	55.9	55.3	64.5	61.0	59.2	56.6	53.1	57.3
1240	52.8	89.6	49.7	67.6	86.6	91.6	80.6	91.0	97.2
1241	52.1	50.7	46.8	60.0	56.4	53.9	50.7	51.4	52.1
1243	61.0	60.8	56.3	03.1	67.4	64.8	62.2	60.8	63.6
1245	51.0	90.3	47.2	69.9	83.9	86.8	78.6	87.6	92.4
1247	54.3	83.1	51.8	66.4	80.7	86.5	77.5	85.2	88.7
1248	57.3	86.9	54.9	68.5	81.1	86.1	80.0	86.2	91.0
1249	58.4	87.1	55.8	67.2	79.6	84.8	78.4	86.3	89.9
1315	51.4	78.5	49.0	64.1	79.6	83.2	72.9	82.6	83.3
1319	56.1	90.1	47.9	71.9	83.5	87.9	80.1	87.2	92.2
1424	51.7	89.0	47.2	70.6	85.3	91.7	79.3	91.0	97.2
1503	56.6	87.6	55.6	67.8	81.8	86.8	79.3	86.9	91.7
1505	80.4	44.1	83.3	49.0	47.6	43.8	56.6	41.4	44.8
1522	80.7	55.6	73.8	49.3	57.9	54.6	59.2	52.8	54.9
1597	48.6	86.1	44.1	66.2	84.5	88.1	75.7	89.5	91.0
1610	51.4	85.4	46.2	67.6	84.5	85.3	76.4	84.7	88.2
1611	78.2	52.1	86.7	55.6	54.2	54.5	60.4	50.7	54.2
1735	52.8	66.0	49.7	71.8	69.0	67.1	64.6	64.6	66.0
1738	50.7	86.7	45.8	66.7	85.8	90.1	78.3	88.1	93.0
1739	44.4	48.6	46.2	60.6	53.5	50.3	48.6	49.3	49.3
1799	93.6	54.9	80.1	50.7	57.9	54.2	59.9	50.7	52.8
1827	50.7	81.3	51.0	64.8	83.1	83.9	76.4	83.3	85.4
1829	53.5	93.1	48.3	69.0	83.1	86.0	77.8	89.6	93.1
1845	54.0	70.9	47.9	99.3	71.2	67.4	64.5	69.5	70.2
1854	51.0	90.3	47.9	69.9	86.7	91.7	79.3	92.4	97.2
1874	52.1	87.5	49.0	71.1	85.9	87.4	76.4	96.5	94.4
1876	54.5	87.6	52.1	67.8	79.7	84.7	78.6	8 8. 2	89.7
1888	53.2	88.8	51.4	71.6	87.9	88.7	82.5	88.1	93.0
1889	51.7	94.5	47.9	69.2	34.6	87.5	79.3	88.3	93.1
1890	80.1	51.7	76.8	48.9	53.9	51.0	58.0	49.0	51.0
1891	52.4	89.7	47.9	67.1	85.3	88.9	76.6	89.0	91.7
1892	57.3	86.9	54.9	68.5	80.4	85.4	79.3	85.5	90.3
1898	51.4	85.0	50.4	71.7	85.5	85.6	77.1	89.3	89.3
2143	51.0	86.9	47.9	69.9	83.9	88.9	79.3	91.7	93.8
2298	48.3	61.4	46.5	61.5	60.8	61.8	57.2	61.4	62.8
2401	56.0	88.8	47.9	68.1	84.4	85.2	79.7	84.6	89.5
2412	84.5	46.5	93.8	47.2	50.7	48.3	59.7	43.8	46.5
2423	53.1	91.0	47.9	69.2	83.2	86.1	82.1	86.9	91.7

Unweighted (Cont.)

	927	959	999	10	1175	1240	1241	1243	1245
TF.	85.3	83.8	83.8	88.9	56			63.	
01	55.1	58.4	54.0	59	72.5	56.5	65.4	70	59
02	55.9	56.3	52.8	59.7	71.	58.0	65.2	66.9	59.0
03	51.4	51.1	48.2	52.4	76.6	52.8	67.1	73.8	52.4
20	88.8	85.9	87.3	88.9	56.3	90.2	54.6	62.7	86.9
44	56.3	56.0	56.7	61.8	73.	60.	67.	67.	59.6
049	90.3	88.8	88.1	93.8	56.6	95.1	52.8	61.5	91.7
5	71.5	71.3	70.5	71.7	61.5	72.2	59.2	60.1	71.7
6	89.4	86.5	87.2	90.2	54.6	94.4	51.8	63.1	90.9
38	88.1	88.8	86.6	89.7	54.5	91	51.5	64.2	90
51	88.2	90.2	89.5	93.8	55.2	93.1	51.4	63.6	93.1
69	75.5	76.8	77.5	80.6	65.7	80.4	60.3	59.0	81.3
104	86.	83.9	83.9	84.8	58.	87.	53.5	64.3	82.8
177	87.	87.3	89.4	88.2	54.2	92.3	53	59.9	86
201	82.6	84.6	85.3	86.9	58.0	88.2	50.7	63.6	84.8
3	87.9	87.1	86.4	89.4	56.4	90.1	54.7	62.9	87.3
206	51.8	55.7	53.6	53.5	58.6	54.	55.4	59.3	5
209	87.3	88.0	88.7	88.8	54.6	90	52	60.3	86.7
16	84.0	83.9	81.8	84.8	58.0	36.	53.5	64.3	82.8
223	88.2	90.2	89.5	93.8	55.	93.	51.4	63.6	93.1
226	87.	9.	86.6	91.	57	91	53	63.4	88
263	87.5	88.1	86.7	89.7	54.5	92.	52.	60	37.6
307	80.4	81.7	78.2	82.5	62.7	83.2	57.4	68.3	81.9
319	87.4	88.7	88.7	88.9	57.7	91.6	53.2	62.7	88.2
23	76.	78.9	78.9	80.6	04.	81	61.0	66.9	81.3
337	87.4	87.3	89.4	88.2	54.2	92.3	53.2	59.9	
8	72.5	74.5	76.6	72.7	53.9	76.	47.9	58.9	72.0
383	93.1	89.5	90.9	90.3	55.	04.	51.4	62.2	89.7
385	89.1	87.5	86.8	92.8	53.	92.	51	61.8	93.5
424	89.5	87.4	86.7	91.0	57.	92.4	53.5	64.3	
440	84.7	84.6	82.5	85.5	58.7	86.8	55.6	65.7	83
467	86.0	83.8	80.3	85.4	52.8	85.3	49.6	59.2	86
7	83.3	83.9	84.6	86.2	58.7	87.5	51.4	64.3	84.
483	87.5	92.3	86.0	93.1	57.3	90.3	52.8	63.6	91.0
489	99.3	88.0	85.2	88.2	56.3	92.3	52.5	64.8	87.5
1	85.	84.5	86.6	85.4	54.2	39.5	51.8	62.7	83.3
522	51.4	52.5	51.8	51.0	58.5	52.8	52.1	61.0	51.0
547	86.8	87.4	85.3	90.3	55.9	89.6	50.7	60.8	90.3
14	45.5	46.5	45.8	48.6	50.3	49.7	46.8	56.3	47.2
	66.9	69.5	66.0	69.9	64.5	67.6	60.0	63.1	69.9
42	83.1	82.3	84.4	84.6	61.0	86.6	56.4	67.4	83.9
643	88.1	85.9	85.9	88.9	59.2	91.6	53.9	64.8	86.8
76	76.4	77.6	76.9	80.7	56.6	80.6	50.7	62.2	78.6

Unweighted (Cont.)

	927	959	999	1022	1175	1240	124	1243	1245
920	91.0								
927	100.0	88.0	85	87.5	55.6	91.6	51.8	64	86
9	88.0	100.0	89.4	89.5	56.7	89.4	53.6	65.2	88.8
999	85.9	89.4	100.0	86.0	55.6	91.5	52.9	62.4	85.3
1022	87.	89	86.0	100.0	57.3	91.7	52.1	61.5	97.9
1175	55.6	56.7	55.6	57.3	100.0	57.7	70.	82.	55.9
1240	91.6	89.4	91.5	91.7	57.7	100.0	52.5	64.8	91.0
1241	51.8	53.6	52.9	52.	70.7	52.5	100.0	70.7	52.1
1243	64.1	65.2	62.4	61.5	82.3	64.8	70.7	100.0	62.2
1245	86.8	88.8	85.3	97.9	55.9	91.0	52.1	62.2	120.0
1247	83.7	85.7	85.0	85.9	55.7	87.2	49.6	61.4	33.8
1248	84.0	84.6	85.3	86.9	59.4	88.2	52.1	65.	84.6
1249	83.3	83.2	33.9	85.6	57.7	87.0	50.0	63.5	83.5
1315	80.4	79.	81.0	79.9	54.2	81.8	51.1	61.3	77.8
1319	87.9	88.5	86.3	91.5	57.6	92	50.4	63.	. 2
1424	89.6	89.5	88.8	91.7	58.0	95.8	52.8	63.6	89.7
1503	84.7	85.3	84.6	87.6	58.7	88.9	51.4	64.3	85.5
1505	45.	46.9	44.8	45.5	56.6	45.8	47.9	54.5	44
1522	53.9	56.4	55	54	57	55.3	49	56	5
1597	88.9	85.9	86.6	86.8	53.5	90.9	54.6	62.7	87.5
1610	84.6	83	88.0	84.7	57.	88.1	53.2	62.7	84.0
1611	51	53.	51	54.9	62.	54.9	50.4	59.2	53.5
1735	63.6	65.		66.9	68.	64.	67.	71.	64.6
8	88.0	88.7	88.7	89.5	54.6	91.5	54.3	61.7	87
1739	47.6	50.0	49.	50.7	70.4	49.7	88.7	67.6	50.7
1799	53	56	53.9	52.8	57.9	54.6	53.2	60.7	52.8
1827	84.	81	81.	85.4	60.	84.6	52.5	62.0	83.3
1829	89.5	88.0	85.9	90.3	57.0	916	51.1	63.4	91.0
1845	68.6	69.	66.2	70.2	65.5	67.9	60.9	64.0	7 .
1854	89.6	88.	87.4	93.	55.9	94.4	53.5	60.8	91.0
1874	86.7	85.2	85.9	90.3	54.2	91.6	51.8	61	89.6
1876	84.0	84.6	85.3	85.5	57.	88.	50.0	63.5	34.8
1888	89.4	86.5	85.8	90.9	59.6	91.5	54.3	65.2	90.
1889	88.9	90.9	87.4	93.1	55.9	91.0	49.3	62.2	91.
1890	50.0	53.2	51.8	51.7	58.9	52.1	50.0	58.2	50.3
1891	86.1	86.0	85.3	89.0	55.9	90.3	50	60	88.3
1892	84.7	85.3	86.0	86.2	59.4	88.9	52.1	65.7	85
1898	85.6	87.0	87.0	86.4	56.5	87.8	57.7	66.7	87
	70.3	86.7	88.8	89.0	55.9	93.8	52.1	62.2	88.3
2298	60.4	52.9	62.2	62.8	64.3	61.8	77.5	65.7	61.4
2401	86.6	90.1	91.5	89.5	58.9	90.1	52.9	66.7	88.8
2412	45.5	47.9	45.8	47.2	59.9	48.3	49.6	59.2	4.8
	87	89	88		57	90	49.3	64.	

Unweighted (Cont.)

	1247	1248	1249	1315	19	1424	3	1505	22
TR	85.1		87.0		86	89.6	S6.	45.	
01	56.6	61.2	59.4	57.2	59.6	59.7	60.4	54.7	53.7
02	54.6	58.3	56	53.	61.	59	59.	50.	52.5
03	51.4	55.2	53.3	48.6	53.2	52.	54.	56.	52.9
20	85.8	88.2	87.7	79.7	87.1	90.3	88.9	44.	.
044	54.	58.8	57.7	54.8	61.	60.3	59.6	56.6	55.6
049	88.0	89.0	87.8	81.3	91.5	05.2	89.	45.	55.6
5	71.1	74.5	73.4	67.4	73.8	75.2	73.8	47.6	48.6
6	86.4	86.7	85.4	78.9	90.7	93.	87.	44.	53.6
38	84.4	83.8	83.8	79.3	95.5	91.	84.6	44.	56.3
51	86.5	86.2	84.9	81.	91.	91.	85.	44.	53.5
69	77.3	78.5	76.8	75.5	82.9	80.6	77	49.	53
04	82.4	83.4	82.7	80.6	83.7	89.	84.	43.	54.2
177	87.2	86.8	85.5	82.5	89.	93.8	87.	43.	53.2
201	95	98.6	97.8	79.9	85.8	89.	97	51.0	59.9
3	86.3	88.7	87.5	83.0	88.5	91	89.4	45.1	56.8
6	57.6	61.3	61.8	51.8	56.5	53.	60.6	80.3	78.6
209	87.	87.4	86.9	83.8	90.6	91.	88.	41.3	54.3
216	84.5	86.9	86.3	88.2	83	86.	87.	47.6	57.0
23	86.5	86.2	84.9	81.9	91.	91	85	44.1	53.5
6	89.4	91.7	90.6	81.1	89.3	91.0	92.4	45.3	55.3
263	85.	85.5	84.	82.6	90.1	93.8	86.	44.	55.6
307	82.3	81.3	30	77.6	83.6	34.	80.	48.6	56.0
19	88.7	88.2	87.0	81.8	95.0	91.	87	44.4	53.9
323	74.5	77.1	76.	71.3	78.6	78.5	76.	46.5	51.8
	87.2	86.8	85.	82.5	89.	93.	87.	43.	53.2
378	77.1	75	73.9	76.8	79	76	76.	50	60.
83	88.0	86.9	85.6	81.3	90.8	93.1	87.		55.3
385	87.4	88.4	87.7	81.8	93.3	92.	89.	43.5	52.0
424	86.6	87.6	86.	84.7	90.1	91.	88.3	46.2	55.6
40	83.8	84.8	84.	90.3	84.	86.9	85.5	45	56.3
467	85.1	84.7	83.3	77.6	85.8	85.4	85.4	43	52.
479	94.4	99.3	98.6	79.2	85.1	88.3	98.6	51.7	60.6
483	85.	86.9	86.3	80.6	89.4	90.3	87.6	47.6	56.3
89	84.4	85.4	84.8	81.	88.6	90.3	86.1	44.	53.
491	85.1	84.7	85.5	80.4	87.1	89.6	85.4	43.8	55.
22	54.3	57.3	58.4	51.4	56.1	51.7	56.6	80.4	80.7
	83.1	86.9	87	78.5	90.1	89.0	87.6	44.1	55.6
614	51.8	54.9	55.8	49.0	47.9	47.2	55.6	83.3	73.8
623	66.4	68.5	67.2	64.1	71.9	70.0	67.8	49.0	49.3
642	80.7	81.1	79.6	79.6	83.5	35.3	81.8	47.6	57.9
643	86.5	86	84.8	83.2	87.9	91.7	86.3	43.8	54.6
876	77.5	80.0	78.4	72.9	80.1	79.3	79.3	56.6	59.2
917	85.2	86.2	86.3	82.6	87.2	91.0	86.9		

Unweighted (Cont.)

	1247	1248	1249	1315	1319	1424	1503	1505	1522
920	88.7	91.							
927	83.	84.0	83.3	80.4	87.9	89.6	84.7	45.1	53
959	85.7	84.6	83.2	79.5	38.5	89.5	85.3	46.9	56.4
999	85.0	85.3	83.9	81.0	86.3	88.8	84.6	44.8	55.7
22	85.9	86.9	85.6	79.9	91.5	91.7	87.6	45.5	54.9
1175	55.7	59.4	57.7	54.2	57.6	58.0	58.7	56.6	57.9
1240	87.2	88.2	87.9	81.8	92.1	95.8	88.9	45.8	55.3
41	49.6	52.1	50.0	51.1	50.4	52.8	51.4	47.9	49.6
1243	61.4	65.0	63.5	61.3	63.3	63.6	64.3	54.5	56.4
1245	83.8	84.8	83.5	77.8	92.2	89.7	85.5	44.1	53.5
1247	100.0	95.1	94.1	78.7	84.8	88.0	94.4	47.2	57.9
1248	95.1	100.0	99.3	79.9	85.8	89.0	99.3	51.0	59.9
1249	94.1	99.3	100.0	79.7	84.4	87.8	98.6	50.4	58.1
1315	78.7	79.9	79.7	100.0	80.0	83.3	80.6	43.8	53.2
1319	84.8	85.	84.4	80.0	100.0	92.2	86.5	45	57.2
1424	88.0	89.0	87.8	83.3	92.2	100.0	89.7	44.1	54.2
1503	94.4	99.3	98.6	80.6	86.5	89.7	100.0	50.3	60.6
1505	47.2	51	50.4	43.8	45.4	44.1	50.3	100.0	82.4
1522	57.9	59.9	58	53.2	57	54.	60.6	82.4	100.0
1597	83.0	84.7	83.3	79.7	88.6	89.6	85.4	39.6	50.4
1610	83.0	85.4	84.1	77.6	87.1	86.1	84.7	45.1	55.3
1611	53.9	56.	55.8	53.1	54.3	53.5	55.6	86.1	75.9
1735	60.3	63.9	62.3	61.	65.	64.6	64.6	48.6	51.1
1738	87.9	87.4	86.1	81.0	90.6	93.0	88.1	43.4	55.0
1739	46.1	50.0	47.8	45.1	48.6	48.6	49.3	41.0	41.1
1799	54.7	57.7	58.8	55.3	56.1	53.5	57.0	81.0	79.1
1827	81.6	80.6	79.7	74.8	83.6	84.0	81.3	48.6	56.7
1829	84.4	88.2	87.7	80.4	92.	90.3	88.9	44.4	56.7
1845	65.9	69.5	68.1	63.6	71.5	70.9	68.8	49.6	50.7
54	87.3	88.3	87.1	80.0	90.9	94.5	89.0	44.8	54.9
1874	84.4	86.8	87.0	81.	90.0	-	87.5	44.4	54.6
1876	93.0	96.	96.4	79.2	86.5	88.3	95.9	48.3	57.0
1888	86.4	88.1	86.9	83.1	90.6	90.9	88.8	46.9	56.4
1889	88.7	89.7	88.5	78.5	90.1	90.3	90.3	44.8	57.0
18	56.4	58.	56.2	50.0	53.2	50.3	58.7	83.9	94.3
1891	85.9	85.5	86.3	81.9	92.2	91.7	86.2	42.1	52.8
1892	94.4	99.3	98.6	79.2	86.5	88.3	98.6	51.0	59.9
1898	83.9	85.0	85.1	79.3	85.4	86.4	85.0	47.1	55.5
214	85.2	86.2	85.6	82.6	93.6	93.8	86.9	43.4	53.5
2298	54.9	60.7	59.	61.8	58.9	61.4	60.0	40.7	44.4
2401	86.4	87.4	86.1	78.9	88.5	88.1	86.7	46.9	58.6
2412	50.4	53.5	54.3	47.6	47.9	47.2	52.8	88.2	77
2423	88.7	91.0	89.9	78.5	89.4	89.0	90	45.5	

Unweighted (Cont.)

	1597	1610	1611	1735	1738	1739	1799	1827	1829
TR	83.9	81.8	55.2	65.7	88.0	50.3	53.5	80.4	87.4
01	57.2	58.0	57.2	73.2	56.2	66.7	53.3	58.0	59.4
02	60.1	58.0	55.9	83.2	56.3	65.7	50.4	62.9	60.1
03	52.8	53.5	58.5	65.5	49.6	69.7	52.9	54.2	52.8
020	87.4	87.4	52.4	67.1	90.9	51.7	53.2	86.7	90.2
044	58.5	58.5	60.0	75.6	56.7	63.7	54.9	60.0	59.3
049	89.6	87.5	54.9	68.1	92.3	50.7	53.5	86.1	92.4
5	72.2	72.9	56.3	69.4	70.6	58.3	52.1	69.4	72.2
6	91.5	86.6	51.4	64.8	90.8	48.6	51.4	82.4	90.1
38	? 9.1	87.4	51.9	63.7	91.0	46.7	56.4	83.0	91.1
51	87.5	87.5	52.1	61.8	90.2	48.6	52.8	84.0	88.9
69	79.0	76.9	55.9	64.3	77.5	55.2	58.2	72.0	79.0
104	84.0	81.3	51.4	63.2	86.0	49.3	52.8	84.0	85.4
177	86.7	86.0	49.7	60.8	96.5	48.3	51.1	84.6	86.7
201	83.3	84.0	57.6	62.5	87.4	48.6	57.7	79.2	86.8
203	85.1	85.8	51.8	66.7	92.1	51.1	53.6	81.6	88.7
206	48.9	55.3	78.0	53.2	53.6	46.8	92.1	49.6	56.7
209	88.0	84.5	50.7	64.8	92.2	51.4	51.4	84.5	90.1
216	81.9	78.5	55.6	67.4	84.6	51.4	57.7	78.5	86.9
223	87.5	87.5	52.1	61.8	90.2	48.6	52.8	84.0	88.7
226	88.1	86.0	53.5	67.8	89.4	53.8	53.2	83.9	89.5
263	88.2	85.4	52.1	65.3	92.3	47.9	52.8	86.1	89.6
307	79.7	80.4	58.7	69.9	81.7	54.5	58.2	76.2	81.1
319	88.8	88.8	53.8	64.3	90.8	52.4	54.9	82.5	90.2
323	76.2	76.9	54.5	67.1	77.5	65.7	50.4	72.7	81.1
337	86.7	86.0	49.7	60.8	96.5	48.3	51.1	84.6	86.7
378	73.9	75.4	57.7	57.7	76.6	41.5	60.0	72.5	74.6
383	90.3	88.2	52.1	63.2	91.6	47.2	51.4	84.7	88.9
385	89.8	87.6	53.3	66.4	91.2	49.6	54.8	85.4	94.2
424	88.2	87.5	55.6	66.7	89.5	50.7	54.2	83.3	89.6
440	82.6	79.2	56.3	69.4	85.3	53.5	57.0	80.6	85.4
467	83.9	83.9	50.3	60.8	83.8	48.3	50.7	79.0	86.7
479	84.0	84.7	56.9	03.2	56.7	49.3	58.5	79.9	87.5
483	85.4	86.1	56.9	67.4	88.1	52.1	54.9	84.0	90.3
489	89.5	85.3	51.7	64.3	88.7	48.3	53.5	84.6	90.2
491	86.7	85.3	51.0	63.6	88.7	48.3	51.8	84.6	86.0
522	48.5	51.4	78.2	52.8	50.7	44.4	93.6	50.7	53.5
547	86.1	85.4	52.1	66.0	86.7	48.6	54.9	81.3	93.1
614	44.1	46.2	86.7	49.7	45.8	46.2	80.1	51.0	48.3
623	66.2	67.6	55.6	71.8	66.7	60.6	50.7	64.8	69.0
642	84.5	84.5	54.2	69.0	85.8	53.5	57.9	83.1	83.1
643	83.1	85.3	54.5	67.1	90.1	50.3	54.2	83.9	86.0
876	75.7	76.4	60.4	64.6	78.3	48.6	59.9	76.4	77.8
917	89.6	84.7	50.7	64.6	88.1	49.3	50.7	83.3	89.6

Unweighted (Cont.)

	1597	1610	1611	1735	1738	1739	1799	1827	1829
920	91.0	88.2	54.2	66.9	93.0	49.3	52.8	85.4	93.1
927	88.9	84.6	51.0	63.6	88.0	47.6	53.2	84.6	89.5
959	85.9	83.8	53.5	65.5	88.7	50.0	56.4	81.7	88.0
999	86.6	88.0	51.4	59.9	88.7	49.3	53.9	81.7	85.9
1022	86.8	84.7	54.9	66.0	89.5	50.7	52.8	85.4	90.3
1175	53.5	57.0	62.0	68.3	54.6	79.4	57.9	60.6	57.0
1240	90.9	88.1	54.9	64.3	91.5	49.7	54.6	84.6	91.6
1241	54.5	53.2	50.4	67.4	54.3	88.7	53.2	52.5	51.1
1243	62.7	62.7	59.2	71.1	61.7	67.6	60.0	62.0	63.4
1245	87.5	84.0	53.5	64.6	87.4	50.7	52.8	83.3	91.0
1247	83.0	83.0	53.9	60.3	87.9	46.1	54.7	81.6	84.4
1248	84.7	85.4	56.3	63.9	87.4	50.9	57.7	80.6	88.2
1249	83.3	84.1	55.8	62.3	86.1	47.8	58.8	79.7	87.7
1315	79.7	77.6	53.1	61.5	81.0	45.1	55.3	74.8	80.4
1319	88.6	87.1	54.3	65.0	97.6	48.6	56.1	83.6	92.1
1424	89.6	86.1	53.5	64.6	93.0	48.6	53.5	84.0	90.3
1503	85.4	84.7	55.6	64.6	88.1	49.3	57.0	81.3	88.9
1505	39.6	45.1	86.1	48.6	43.4	41.0	81.0	48.6	44.4
1522	50.4	55.3	75.9	51.1	55.0	41.1	79.1	56.7	56.0
1597	100.0	83.9	47.6	64.3	87.3	50.3	50.4	81.1	87.4
1610	83.9	100.0	51.7	60.8	87.3	52.4	53.2	80.4	86.0
1611	47.6	51.7	100.0	53.8	50.0	47.6	81.6	53.8	52.4
1735	64.3	60.8	53.8	100.0	62.7	68.5	51.1	66.4	67.8
1738	87.3	87.3	50.0	62.7	100.0	50.7	51.4	85.2	86.6
1739	50.3	52.4	47.6	68.5	50.7	100.0	44.0	49.7	50.3
1799	50.4	53.2	81.6	51.1	51.4	44.0	100.7	49.6	55.3
1827	81.1	80.4	53.8	66.4	35.2	49.7	49.6	100.7	82.5
1829	87.4	86.0	52.4	67.8	86.6	50.3	55.3	82.5	100.0
1845	67.9	68.6	55.0	72.9	66.4	60.7	51.8	66.4	70.7
1854	90.3	86.8	54.2	67.4	91.6	51.4	52.8	85.4	91.7
1874	88.1	84.6	53.8	64.3	88.0	50.3	52.5	83.9	90.2
1876	84.7	86.8	54.9	61.1	86.7	47.9	54.9	79.2	88.2
1888	88.0	88.0	55.6	66.9	89.4	51.4	55.0	83.8	89.4
1889	87.5	86.8	52.1	66.0	88.1	48.6	53.5	84.0	93.8
1890	46.5	51.4	76.8	51.4	51.1	43.0	78.7	54.2	53.5
1891	87.5	84.7	51.4	63.2	90.2	49.3	53.5	82.6	89.6
1892	85.4	86.1	56.3	63.2	86.7	50.0	57.7	79.9	88.9
1898	87.8	85.6	55.4	67.6	86.2	55.0	54.3	81.3	87.1
2143	89.6	87.5	52.8	61.8	90.9	49.3	52.8	84.0	89.6
2298	61.1	60.4	50.7	68.8	59.4	81.9	49.3	59.0	63.9
2401	87.3	87.3	53.5	63.4	37.2	50.0	57.9	81.7	90.8
2412	42.7	45.5	88.8	50.3	45.1	45.5	85.1	49.7	46.9
2423	86.8	88.9	53.5	64.6	86.7	48.6	54.9	81.3	93.1

Unweighted (Cont.)

	1845	1854	1874	1876	1888	1889	90	1891	92
TR	70.0	88.2	87.4	85.4	85.9	87.5	48.6	87.5	85.4
01	69.6	60.4	59.4	59.0	60.1	58.3	54.0	55.4	61.2
02	68.6	62.5	58.7	56.9	61.3	58.3	54.2	58.3	57.6
03	61.2	55.2	53.5	54.5	56.7	53.1	54.6	51.7	55.2
020	70.9	91.7	90.2	86.8	89.4	90.3	52.1	88.2	87.5
044	71.2	59.6	00.7	58.8	60.0	58.8	58.2	56.6	58.1
049	70.9	99.3	93.8	87.6	93.7	92.4	51.7	92.4	88.3
5	95.0	73.1	73.6	73.8	74.1	72.4	47.6	70.3	74.5
6	69.8	94.4	93.0	86.7	91.5	89.5	50.4	88.8	87.4
38	68.9	91.2	89.0	83.0	89.6	69.0	53.0	93.4	84.6
51	68.1	91.7	88.9	86.2	89.5	90.3	50.3	88.3	86.9
69	73.6	81.9	81.1	77.1	83.8	77.8	51.4	81.9	77.8
104	68.8	87.6	84.7	83.4	84.6	86.9	54.5	84.8	82.8
177	66.0	92.4	88.8	86.1	88.7	86.8	49.3	91.0	86.1
201	68.1	88.3	86.8	95.2	87.4	88.3	56.6	85.5	97.9
203	68.1	91.5	87.9	86.6	88.6	89.4	52.9	88.7	88.7
206	54.3	53.5	53.2	58.5	55.7	54.2	78.6	53.5	61.3
209	68.3	92.3	89.4	86.7	89.4	90.2	51.8	90.9	86.7
216	69.5	86.2	84.7	84.1	88.8	86.2	53.8	84.1	86.2
223	68.1	91.7	88.9	86.2	39.5	90.3	50.3	88.3	86.9
226	70.0	95.1	89.5	88.9	90.8	91.0	52.1	90.3	91.0
263	66.0	93.8	90.3	84.8	90.2	88.3	51.7	92.4	84.8
307	74.3	86.1	83.9	81.3	86.6	31.3	52.8	83.3	80.6
319	72.3	91.7	89.5	88.9	90.8	89.6	50.3	93.8	83.9
323	70.7	79.9	79.7	77.1	78.2	79.9	48.6	78.5	77.8
337	65.0	92.4	88.8	86.1	88.7	86.8	49.3	91.0	86.1
378		76.2	72.5	76.2	78.0	74.8	58.9	76.2	76.2
383	68.1	93.1	88.9	86.9	93.0	90.3	52.4	00.3	87.6
385	69.4	95.7	94.2	87.7	92.6	92.0	49.3	94.9	87.7
424	71.6		89.6	87.6	97.9	90.3	51.7	89.7	88.3
440	70.2	86.9	85.4	83.4	89.5	85.5	53.1	84.8	84.1
467	67.9	86.8	83.2	86.8	89.4	90.3	49.3	86.8	85.4
79	68.8	87.6	80.1	95.9	87.4	89.7	57.3	84.8	98.6
483	70.9	91.7	91.7	85.5	88.8	91.7	51.7	87.6	86.2
489	68.8	90.3	87.4	85.4	90.1	88.9	50.3	86.8	86.1
491	67.9	87.5	88.8	84.0	85.3	86.1	52.1	88.2	84.0
522	54.0	51.0	52.1	54.5	53.2	51.7	80.1	52.4	57.3
547	70.9	90.3	87.5	87.6	88.8	94.5	51.7	89.7	86.9
614	47.9	47.9	49.0	52.1	51.4	47.9	76.8	47.9	54.9
623	99.3	69.9	71.1	67.8	71.6	69.2	48.9	67.1	08.5
642	71.2	86.7	85.9	79.7	87.9	84.6	53.9	85.3	80.4
643	67.4	91.7	87.4	84.7	88.7	87.5	51.0	88.9	85.4
876	64.5	79.3	76.4	78.6	82.5	79.3	58.0	76.6	79.3
917	69.5	92.4	96.5	86.2	88.1	88.3	49.0	89.0	85.5

Unweighted (Cont.)

				1876	1888	1889	1890	1891	1892
920	70.2	97.2		8					
7	68.6	89.6	86.7	84.0	89.	88.9	50.0	86.	84.
	69.	88.	85.2	84.6	86.5	90.9	53.	86.	85.
9	66.2	87.	85.9	85.3	85.8	87.	51.	85.	86
1022	70.2	93.1	90.3	85.5	90.	93.	51.	89.	86.2
175	65.5	55.9	54.2	57.3	59.6	55.9	58.9	55.9	
1240	67.9	94.4	91.6	88.2	91.	91.	52.	90.3	9
	60.9	53.5	1.8	50.0	54.3	49.	50.	50.7	52.1
	64.0	60.8	61.3	63.6	65.	62.	58.	60.	
45	70.2	91.0	89.6	84.8	90.2	91.	50.3	88.3	85
47	65.9	87.3	84.4	93.0	86.	88.	56.4	85.9	94.4
1248	69.	88.3	86.8	96.6	88.	89.	58.	85.5	
1249	68	8 ?	87	96.	86.	88.	56.2	86.3	98.6
1315	63.6	80.6	81.1	79.2	83.1	78.	50.0	81.9	79.2
19	71.5	90.8	90.0	86.5	90.6	90.1	53.2	92.2	86.5
1424	70	94	92.4	88.	90	90.	50.	91.7	88
1503	68	89	87.5	5.	88	9	58	86.	
1505	49.6	44.8	44.4	48.3	46.	44	83.9	42	51.0
22	50.7	54.9	54.6	57.0	56.4	57.0	94.	52.8	59.9
	67.	90.	88.	84.7	88.0	87.5	46.	87.5	5
1610	68.	86.	84.	86.	88	86.8	51.	84.	
11	55.0	54.2	53.8	54.9	55.6	52.1	76.8	51.	56.3
1735	72.9	67.4	64.3	61.	60.9	66.	51.	63.2	63.2
1738	66.4	91.6	88.9	86.	80.4	88.	51	0.	86.7
1739	60.	51	50.	47.	51.4	48	43	49.3	50
	51.8	52.8	52.5	54.9	\%.	53.5	78.7		57
1827	66.4	85.4	83.9	79.2	83.	84.0	54.2	82.6	
1829	70.7	91.7	90.2	88.2	89.4	93.8	53.	30.6	88.9
	100.	70.	71	68.8	72	7	50.0	67.4	69.5
185	70.2	190.0	93.1	86.					
1874	71.4	93.1	100.0	86.1	89	88.	50.7	89.6	86.1
1876	68.8	86.9	86.1	100.0	88.	90.3	55	86.2	7.2
	72.	93.0		88.1	100.	90.2		89.5	88.8
1889	70.9	91.	88.9	90.3	90.	100.0	54.5	88.3	89
1890	50.0	51.0	50.7	55.2	52.	54.5	100.0	49.0	58.0
1891	67.4	91.7	89.6	86.2	89.5	88.3	49.0	100.0	84.8
	69.	87.6	86.	97.	88.	89.7	58.0	84.8	100.0
1898	71.3	91.4	89.2	86.	9.	86.	,	87.	8.7
2143	69.5	91.0	93.1	86.9	89.5	88.3	49.7	89.0	86.9
2298	62.4	62.1	61.1	58.6	63.6	61.4	43.4	58.6	60.7
2401	69.8	88.1	85.2	87.4	87.2	93.7	56.0	87.4	88.1
	47		46	0.7	48	46.	78	46.5	53.5
2423	70.9	90.3	87.5	G1.0	90.9	95.2	54.5	86.9	

Unweighted (Cont.)

	1898	2143	2298	2401	2412	2423
TR	83.6	88.2	61.8	83.8	48.3	86.1
01	61.5	59.0	61.9	58.4	55.1	59.7
02	61.9	57.6	61.1	54.9	51.7	56.9
03	58.0	53.1	62.2	52.1	55.6	53.1
020	87.1	91.0	62.5	86.6	46.9	88.9
044	59.5	50.3	59.6	56.7	55.6	55.9
049	90.7	91.7	62.8	88.8	45.8	91.0
5	75.0	74.5	64.1	71.3	47.9	72.4
6	89.1	92.3	59.4	86.5	45.1	88.8
38	87.0	90.4	56.6	88.8	45.9	88.2
51	87.9	92.4	60.7	91.6	45.8	91.0
69	80.6	79.2	62.5	78.2	51.7	79.2
104	85.7	86.2	58.6	84.6	47.9	84.1
177	85.6	91.0	57.6	85.9	44.8	85.4
201	85.0	86.2	59.3	86.0	53.5	89.7
203	86.2	89.4	63.4	87.1	46.1	88.0
206	55.5	52.8	50.0	57.9	83.7	57.0
209	87.7	91.6	60.8	87.9	45.1	88.8
216	84.3	84.8	64.1	83.9	51.4	86.2
223	87.9	92.4	60.7	91.6	45.8	91.0
226	92.1	88.2	63.2	87.3	47.6	89.6
263	87.1	90.3	58.6	88.8	45.8	86.9
307	84.2	80.6	63.9	80.3	51.0	82.6
319	88.5	93.1	60.4	89.4	48.3	90.3
323	82.0	78.5	65.3	81.0	48.3	80.6
337	85.6	91.0	57.6	85.9	44.8	85.4
378	76.8	79.0	53.1	78.0	54.2	75.5
383	89.3	91.7	58.6	88.1	45.8	90.3
385	91.7	90.6	60.1	88.2	46.7	90.6
424	90.0	89.7	63.4	87.4	47.9	91.0
440	85.0	85.5	66.2	83.2	50.7	85.5
467	83.6	84.0	58.3	85.9	44.8	86.8
479	84.3	85.5	60.0	86.7	54.2	90.3
483	88.6	90.3	65.5	88.1	49.3	90.3
489	87.1	91.0	61.1	87.3	46.2	88.2
491	84.2	91.0	59.7	85.2	46.2	86.1
522	51.4	51.0	48.3	56.0	84.5	53.1
547	85.0	86.9	61.4	88.8	46.5	91.0
614	50.4	47.9	46.5	47.9	93.8	47.9
623	71.7	09.9	61.5	68.:	47.2	69.2
642	85.5	83.9	60.8	84.4	50.7	83.2
643	85.6	88.9	61.8	85.2	48.3	86.1
876	77.1	79.3	57.2	79.7	59.7	82.1
917	89.3	91.7	61.4	84.6	43.8	86.9


	1898	2143	2298	2401	2412	2423
920	89.3	93.8	62.8	89.5	46.5	91.7
9227	85.6	90.3	60.4	86.6	45.5	87.5
959	87.0	86.7	62.9	90.1	47.9	89.5
999	87.0	88.8	62.2	91.5	45.8	88.8
1022	86.4	89.0	62.8	89.5	47.2	91.7
1175	56.5	55.9	64.3	58.9	59.9	57.3
1240	87.8	93.8	61.8	90.1	48.3	90.3
1241	57.7	52.1	77.5	52.9	49.6	49.3
1243	66.7	62.2	65.7	66.7	59.2	64.3
1245	87.1	88.3	61.4	88.8	45.8	91.7
1247	83.9	85.2	54.9	86.4	50.4	88.7
1248	85.0	86.2	60.7	87.4	53.5	91.0
1249	85.1	85.6	59.0	86.1	54.3	89.9
1315	79.3	82.6	61.8	78.9	47.6	78.5
1319	85.4	93.6	58.9	88.5	47.9	89.4
1424	86.4	93.8	61.4	88.1	47.2	89.0
1503	85.0	86.9	60.0	86.7	52.8	90.3
1505	47.1	43.4	40.7	46.9	88.2	45.5
1522	55.5	53.5	44.4	58.6	77.3	57.0
1597	87.8	89.6	61.1	87.3	42.7	86.8
1610	85.6	87.5	00.4	87.3	45.5	88.9
1611	55.4	52.8	50.7	53.5	88.8	53.5
1735	67.5	61.8	68.8	63.4	50.3	64.6
1738	86.2	90.9	59.4	87.2	45.1	86.7
1739	55.0	49.3	81.9	50.0	45.5	48.6
1799	54.3	52.8	49.3	57.9	85.1	54.9
1827	81.3	84.0	59.0	81.7	49.7	81.3
1829	87.1	89.6	63.9	90.8	46.9	93.1
1845	71.3	69.5	62.4	69.8	47.9	79.9
1854	91.4	91.0	02.1	88.1	45.1	90.3
1874	89.2	93.1	61.1	85.2	46.2	87.5
1876	86.4	86.9	58.6	87.4	50.7	91.0
1888	89.1	89.5	63.6	87.2	48.5	90.9
1889	86.4	88.3	61.4	93.0	46.5	95.2
1890	52.2	49.7	43.4	56.0	78.9	54.5
1891	87.9	89.0	58.6	87.4	46.5	86.9
1892	85.7	86.9	60.7	88.1	53.5	91.7
1898	100.0	86.4	65.9	87.3	48.2	86.4
2143	86.4	100.0	61.4	86.7	46.5	87.6
2298	65.0	61.4	100.0	60.8	45.8	61.4
2401	87.0	86.7	60.8	100.0	49.3	95.1
2412	43.2	46.5	45.8	49.3	100.0	47.9
2423	85.4	87.6	61.4	95.1	47.9	100.0

UNWEIGHTED COEFFICIENTS

		049		1240	385	1424	42	226	1888
920	100.0	97	97.2	97	9	97	93.8	. 8	
049	97.9	100.0	99.3	95.1	96.4	95.2	94.5	94.4	93.7
1854	97.	99.3	100.0	94.	95.7	94.	93.8	95.	93.0
1240	97	95.	94.4	100.0	92.7	95.8	92.	91.	91.5
385	95.7	96.4	95.7	92.7	100.0	92.6	93.5	93.4	92.6
1424	97.2	95.2	94.5	95.8	92.8	100.0	91.0	91.0	90.9
424	93.8	94.5	93.8	92.4	93.5	01.0	100.0	91.7	97.9
225	93.8	94.4	95.	91.	93	91.0	91.7	100.0	90.8
1888	93.0	93.7	93.0	91.5	92.6	90.9	97.9	90.8	100.0
319	91.7	92.4	91.7	91.6	92.7	91.7	91.0	91.6	90.8
3	94.5	03.8	93.1	94.4	92.8	93.	93.8	91.0	93.0
19	92.2	91.5	90.8	92.	93.	92.	90.	89.3	90.6
1889	93.	92.	91.	91.0	92.	90.	90	91.0	90.2
1022	94.5	93.8	93.1	91.7	92.8	91.7	91.0	91.0	90.9
483	93.1	92.4	91.7	90.3	92.0	90.3	89.7	92.4	88.8
6	95.8	95	94.	94.	94	93.0	92	90.8	91.5
03	91	89	89	88		89.7	88.3	92	8
1829	93.1	92.4	91.7	91.6	94.2	90.3	89.6	89.5	89.4
2423	91.7	91.0	90.3	90.3	90.6	89.0	91.0	89.6	90.9
21	93.8	91.	91.0	93.8	90.6	93.8	89.7	88.2	89.5
1248	91.	89	88.	88.2	88.	89	87.6	91.7	88.1
020	93.1	92.4	91.7	90.2	92.0	90.3	89.6	9.9	89.4
1892	90.3	88.3	87.6	88.9	87.7	88.3	88.3	91.0	88.8
1874	94	93.8	93.1	91.6	94	92.4	89.6	89.5	89.4
209	91.	92.3	92.3	90.	92	1	89.	91.5	89.4
223	93.1	92.4	91.7	93.	90.6	91.7	90.3	88.9	89.5
51	93.1	92.4	91.7	93.1	-n. 6	91.7	90.3	88.9	89.5
263	93.8	94.5	93.8	92.4	92	93.8	90.3	90.	90.2
203	93.0	92.3	91.5	90.		91.	88	92	88.6
1738	93.0	92.3	91.6	91.5	91.	93.0	89	89.4	89.4
201	91.0	89.0	88.3	88.2	88.4	89.	87.6	91.7	87.4
643	93.	92.4	91.7	91.6	91.2	91.	89.6	90.2	88.7
479	90.	88.3	87.6	87		88.	86.		87.4
38	9	91	91.2	91.1	93.8	91.	90	88.9	89.6
2401	89.5	88.8	88.1	90.1	88.2	88.1	87.	87.3	87.2
1891	91.7	92.4	91.7	90.3	94.9	91.7	89.7	90.3	89.5
1245	92.4	91.7	91.0	91.0	93.5	89.7	90.3	88.9	90.2
1898	89.	90.7	91.4	87.8	1.7	86.4	O.0	92.1	8.1
917	93.8	93.1	92.4	91.0	93.5	91.0	89.0	90.3	88.1
1249	89.9	87.8	87.1	87.0	87.7	87.8	86.3	90.6	86.9
489	91.7	91.0	90.3	92.3	89.8	90.3	90.3	88.8	90.1
337	93.8	93.1	92.4	92.3	90.5	93.8	88.9	88.8	88.7
177	93.8	93.1	92.4	92.3	90.5	93.8	88.9	88.8	88.7
547	91.7	91.0	90.3	89.6	91.3	89.0	89.0	89.6	88.8

Unweighted Coeficients (Cont.)

	920	049	1854	1240	385	1424	424	226	1888
1876	89.7	87.6	86.9	88.2	87.7	88.3	87.6	88.9	88.1
959	89.5	88.8	88.1	89.4	87.5	89.5	87.4	90.1	86.5
927	91.0	90.3	89.6	91.6	89.1	89.6	89.6	87.4	89.4
440	88.3	87.6	86.9	86.8	87.0	86.9	91.7	87.5	89.5
1247	88.7	88.0	87.3	87.2	87.4	88.0	86.6	89.4	86.4
$T R$	91.0	88.9	88.2	89.5	88.3	89.6	86.1	88.1	85.9
210	87.6	86.9	86.2	86.1	87.0	86.2	91.0	88.2	88.8
999	90.2	88.1	87.4	91.5	86.8	88.8	86.7	86.6	85.8
1597	91.0	89.6	90.3	90.9	89.8	89.6	88.2	88.1	88.0
491	89.6	88.2	87.5	89.5	87.6	89.6	85.4	86.7	85.3
1610	88.2	87.5	86.8	88.1	07.6	86.1	87.5	86.0	88.0
642	86.7	87.4	86.7	86.6	87.5	85.3	87.4	85.2	87.9
104	89.0	86.9	87.6	87.5	87.0	89.0	85.5	86.1	84.6
467	86.8	87.5	86.8	85.3	88.3	85.4	88.9	86.7	89.4
307	84.7	86.8	86.1	83.2	84.7	84.0	85.4	83.2	86.6
1827	85.4	86.1	85.4	84.6	85.4	84.0	83.3	83.9	83.8
69	81.9	82.6	81.9	80.4	83.9	80.6	82.6	79.7	83.8
1315	83.3	81.3	80.6	81.8	81.8	83.3	84.7	81.1	83.1
876	80.7	80.0	79.3	80.6	78.3	79.3	81.4	78.5	82.5
323	81.3	80.6	79.9	81.1	81.0	78.5	80.6	79.7	78.2
378	76.2	76.9	76.2	76.1	75.2	76.2	77.6	74.6	78.0
5	74.5	73.8	73.1	72.2	72.5	75.2	73.1	73.6	74.1
1845	70.2	70.9	70.2	67.9	69.4	70.9	71.6	70.0	72.7
623	69.9	70.6	69.9	67.6	69.1	70.6	71.3	70.4	71.6
1735	66.0	68.1	67.4	64.3	66.4	64.6	66.7	67.8	66.9
1243	63.6	61.5	60.8	64.8	61.8	63.6	64.3	53.4	65.2
2298	62.8	62.8	62.1	61.8	60.1	61.4	63.4	63.2	63.6
01	59.0	59.7	60.4	56.5	58.3	59.7	60.4	60.9	60.1
044	61.0	60.3	59.6	60.7	58.1	00.3	58.1	60.0	60.0
02	59.7	61.8	62.5	58.0	60.6	59.0	60.4	62.9	61.3
1175	57.3	56.6	55.9	57.7	53.7	58.0	57.3	57.0	59.6
206	53.5	54.2	53.5	54.6	54.8	53.5	54.9	55.3	55.7
1522	54.9	55.6	54.9	55.3	52.6	54.2	55.6	55.3	50.4
1799	52.8	53.5	52.8	54.6	54.8	53.5	54.2	53.2	55.0
1611	54.2	54.9	54.2	54.9	53.3	53.5	55.0	53.5	55.6
522	51.0	51.7	51.0	52.8	52.2	51.7	52.4	51.4	53.2
03	53.1	54.5	55.2	52.8	53.7	52.4	55.9	57.7	56.7
1890	51.0	51.7	51.0	52.1	49.3	50.3	51.7	52.1	52.5
1241	52.1	52.8	53.5	52.5	51.1	52.8	53.5	53.9	54.3
614	49.3	48.6	47.9	49.7	49.6	47.2	50.7	50.3	51.4
2412	46.5	45.8	45.1	48.3	46.7	47.2	47.9	47.6	48.6
1505	44.8	45.5	44.8	45.8	43.5	44.1	46.2	45.8	46.9
1739	49.3	50.7	51.4	49.7	49.6	48.6	50.7	53.8	51.4

Taxonomy
Unweighted Coeficients (Cont.)

	319	3	1319	18	1022	48	6	1503	8
920	91	94	92.2			93	9.8	91.7	
049	92.4	93.8	91.5	92.4	93.8	92.4	95.1	89.7	92
1854	91.7	93.1	90.8	91.7	93.1	91.7	94.4	89.0	91.7
1240	91.6	94.4	92.1	91.0	91.7	90.3	94.4	88.9	91.6
385	92.7	92.8	93.3	92.0	92.8	92.0	94.1	89.1	94.2
1424	91.7	93.1	92.2	90.3	91.7	90.3	93.0	89.7	90.3
424	91.0	93.8	90.1	90.3	91.0	89.7	92.3	88.3	89.6
226	91.6	91.0	89.3	91.0	91.0	92.4	90.8	92.4	89.5
1888	90.8	93.0	90.6	99.2	90.9	88.8	91.5	88.8	89.4
319	100.0	91.7	95.0	89.5	88.9	88.2	91.5	87.5	90.2
383	91.7	100.0	90.8	90.3	90.3	89.0	93.0	87.6	88.9
1319	95.0	9.8	0.0	90.1	91.5	89.4	90.7	86.5	92.1
1889	89.6	90.3	90.1	100.0	93.1	91.7	89.5	90.3	93.8
1022	88.9	90.3	91.5	93.1	100.0	93.1	90.2	87.6	90.3
483	88	89.0	89.4	91.7	93.1	$10 n .0$	88.8	87.6	90.3
6	91.5	93.0	90.7	89.5	90.2	88.8	100.0	87.4	90.1
1503	87.5	87.6	86.5	90.3	87.6	87.6	87.4	100.7	88.9
18	90.	88.9	92.1	93.8	90.3	90.3	90.1	88.9	100.0
2423	90.3	90.3	89.4	95.2	91.7	90.3	88.8	90.3	93
2143	93.1	91.7	93.6	88.3	89.0	90.3	92.3	86.9	89.6
1248	88.2	86.9	85.8	89.7	86.9	86.9	86.7	99.3	88.2
020	89	90.	87.	90.	88.	90.	90.8	88.9	90.2
18	88	87.6	86.5	89.7	86.	86.2	87.4	98.6	88.9
1874	89.5	38.9	90.0	88.9	90.	91.7	93.0	87.5	90.2
209	93.0	90.2	90.6	90.2	88.8	88.8	88.7	88.1	90.1
223	92.4	91.0	91.5	90.3	93.8	89.7	90.2	85.5	88.9
51	92	91.	91.5	90.3	93.8	89.7	90.	85.5	88.9
263	91.0	91.0	93.1	88.3	89.7	88.	90.9	86.2	89.6
203	89.4	89.4	88.5	89.4	89.4	88.0	90.8	89.4	88.7
1738	90.8	91.6	90.6	88.1	89.5	88.1	90.8	88.1	8¢. 6
201	88.2	86.9	85.8	88.3	86.9	88.3	86.7	97.9	86.8
643	88.9	91.7	87.9	87.5	88.9	88.2	90.1	86.8	86.0
479	87.5	86.2	85.1	89.0	86.2	87.6	86.0	98.6	87.5
38	93.3	91.2	95.5	89.0	89.7	88.2	91.9	84.6	91.1
2401	89.4	88.1	88.5	93.0	89.5	88.1	86.5	86.7	90.8
1891	93.8	90.3	92.2	88.3	89.0	87.6	88.8	86.2	89.6
1245	88.2	89.7	92.2	91.7	97.9	91.0	90.9	85.5	91.0
1898	88.5	89.3	85.4	86.4	86.4	88.6	89.1	85.0	87.1
917	89.6	89.7	87.2	88.3	88.3	89.7	93.7	86.9	89.6
1249	87.0	85.6	84.4	88.5	85.6	86.3	85.4	98.6	87.7
489	88.2	92.4	88.6	88.9	88.2	88.9	90.1	86.1	90.2
337	91.6	91.0	89.3	86.8	88.2	86.8	90.8	87.5	86.7
177	91.6	91.0	89.3	86.8	88.2	86.8	90.8	87.5	86.7
547	88.2	88.3	90.1	94.5	90.3	39.0	88.1	87.6	93.1

Taxonomy
Unweighted Coeficients (Cont.)

	319	383		188	102	48	6	1503	1829
1876	88.9	86.9		90.3		8.5	86.7		
959	88.7	89.5	88.5	90.9	89.5	92.3	86.5	85.3	88
927	87.4	93.1	87.9	88.9	87.5	87.5	89.4	84.7	89.5
440	86.1	86.9	84.4	85.5	85.5	85.9	83.9	85.5	85.4
1247	88.7	88.0	84.8	88.7	85.9	85.9	86.4	94	84
TR	86.7	86.8	36.5	87.5	88.9	88.9	86.	86.8	87.4
216	85.4	86.2	83.7	86.2	84.8	87.6	83.2	87.6	86.1
999	88.7	90.9	86.3	87.4	86.0	86.0	87.2	84.6	85.9
1597	88.8	90.3	88.6	87.5	86.8	85.	91.	85.	87.4
491	88.8	88.9	87.1	86.1	85.4	86.	88.	85.	86.0
1610	88.8	88.2	87.1	86.8	84.7	86.1	86.	84.7	86.0
642	34.5	85.3	83.5	84.6	84.6	83.9	86.5	81.8	83.1
104	84.0	87.6	83.7	86.9	84.8	84.8	84.6	84.	85.4
467	86.0	37.5	85.8	90.	35.4	86.	85	85	86.7
307	83.9	81.9	83.0	81.3	82.6	83.3	83.1	80.6	81.1
1827	82.5	84.7	83.6	84.0	85.4	84.0	82.4	81.3	82.5
69	83	79.2	82.9	77.8	80.6	79	80	77.8	79.7
1315	81.8	81.3	80.0	78	79	80	78	80.6	80
876	79.9	79.3	80.1	79.3	80.7	79.3	76.9	79.3	77
323	81.1	78.5	78.6	79.9	87.6	82.6	79.6	76.4	81.1
378	80	77.6	7	74.8	72.7	71	75.	76.	4.6
5	76.	72	73.8	72	71.7	73	74.1	73.	7
1845	72.3	68.1	71.5	70.9	73.2	70.9	69.8	68.8	73
623	73.2	67.8	71.9	69.2	69.9	71.3	69.5	67.8	09.0
1735	64.3	63.	55.0	66.9	66.0	67.4	64.2	- 5	E. 3
1243	- 2.7	62.2	63.3	6́2.	61	63.6	63	64.3	63.4
2298	60.4	58.6	58.9	61.4	62.8	65.5	59.4	00.9	53.9
01	59	55.4	59.6	58.3	59.7	60.4	59.	60.4	59.4
044	57	56.6	61.7	58.8	61.8	59.6	59.	59.6	59.3
02	58.7	58.3	61.4	58.3	59.7	59.7	59.2	59.0	00.1
1175	57.7	55.2	57.6	55.9	57.3	57.3	54.0	58.7	57.0
206	55.3	52.1	56.5	54.2	53.5	56.3	52.1	60.6	56.7
1522	53.9	56.3	57.2	57.0	54.9	56.3	53.6	60.6	56.0
1799	54.9	51.4	56.1	53.5	52.8	54.9	51.4	57.0	55.3
1611	53.8	52.1	54.3	52.1	54.9	56.9	51.4	55.6	52.4
522	54.2	49.0	56.1	51.7	51.0	52.4	51.1	56.6	53.5
03	54.9	51.0	53.2	53.1	52.4	53.1	54.6	54.5	52.8
1890	50.3	52.4	53.2	54.5	51.7	51.7	50.4	58.7	53.5
1241	53.2	51.4	50.4	49.3	52.1	52.8	51.8	51.4	51.1
614	48.3	47.2	47.9	47.9	48.6	50.7	47.9	55.6	48.3
2412	48.3	45.8	47.9	46.5	47.2	49.3	45.1	52.8	46.9
1505	44.4	44.1	45.4	44.8	45.5	47.6	44.1	50.?	44
739	52.4	47.2	8.6	48.	50.	2	48.	9	50.3

Unweighted Coeficients (Cont.)

	2423	2143	1248	020	1892	1874	209	223	51
920	91.7	93.8	91.0	93.1	90.3	94.4	91.6	93.1	93.1
049	91.0	91.7	89.0	92.4	88.3	93.8	92.3	92.4	92.4
1854	90.3	91.0	88.3	91.7	87.6	93.1	92.3	91.7	91.7
1240	90.3	93.8	88.2	90.2	88.9	91.6	90.1	93.1	93.1
385	90.6	93.6	88.4	92.7	87.7	94.2	92.6	90.6	90.6
1424	89.0	93.8	89.0	90.3	88.3	92.4	91.6	91.7	91.7
424	91.0	89.7	87.6	89.6	88.3	89.6	89.5	90.3	90.3
226	89.6	88.2	91.7	90.9	91.0	89.5	91.5	88.9	88.9
1888	90.9	89.5	88.1	89.4	88.8	84.4	89.4	89.5	89.5
319	90.3	93.1	88.2	89.5	88.9	89.5	93.0	92.4	92.4
383	90.3	91.7	86.9	90.3	87.6	88.9	90.2	91.0	91.0
1319	89.4	93.6	85.8	87.1	86.5	90.0	90.6	91.5	91.5
1889	95.2	88.3	89.7	90.3	89.7	88.9	90.2	90.3	90.3
1022	91.7	89.0	86.9	88.9	86.2	90.3	88.8	93.8	93.8
483	90.3	90.3	86.9	90.3	86.2	91.7	88.8	89.7	89.7
6	88.8	92.3	86.7	90.8	87.4	93.0	88.7	90.2	90.2
1503	90.3	85.9	99.3	88.9	98.6	87.5	88.1	85.5	85.5
1829	93.1	89.6	88.2	90.2	88.9	90.2	90.1	88.9	88.9
2423	100.0	87.6	91.0	88.9	91.7	87.5	88.8	31.0	91.0
2143	87.6	100.0	86.2	91.0	86.9	93.1	91.6	92.4	92.4
1248	91.0	86.2	100.0	88.2	99.3	86.8	87.4	86.2	86.2
020	88.9	91.0	88.2	106.0	87.5	97.2	91.5	87.5	87.5
1892	91.7	86.9	99.3	87.5	100.0	86.1	86.7	86.9	86.9
1874	87.5	93.1	86.8	90.2	86.1	100.0	89.4	88.9	88.9
209	88.8	91.6	87.4	91.5	86.7	89.4	100.0	89.5	89.5
223	91.0	92.4	86.2	87.5	86.9	88.9	85.5	100.0	190.0
51	91.0	92.4	86.2	87.5	36.9	88.9	89.5	100.0	100.0
263	86.9	90.3	85.5	89.6	84.8	90.3	91.6	91.0	91.0
203	88.0	89.4	88.7	90.8	88.0	87.9	89.3	88.7	88.7
1738	86.7	90.9	87.4	90.9	86.7	88.0	92.2	90.2	90.2
201	89.7	86.2	98.6	86.8	97.9	36.8	87.4	86.2	86.2
643	86.1	88.9	86.1	88.8	85.4	87.4	88.7	88.2	88.2
479	90.3	85.5	99.3	87.5	98.6	86.1	86.7	85.5	85.5
38	88.2	90.4	83.8	86.7	84.6	89.0	88.8	90.4	90.4
2401	95.1	86.7	87.4	86.6	88.1	85.2	87.9	91.6	91.6
1891	86.9	89.0	85.5	88.2	84.8	89.6	90.9	98.3	88.3
1245	91.0	88.3	84.8	86.8	85.5	89.6	86.7	93.1	93.1
1898	86.4	86.4	85.0	87.1	85.7	89.2	87.7	37.9	87.9
917	86.9	91.7	86.2	92.4	85.5	96.5	90.9	86.9	86.9
1249	89.9	85.6	99.3	87.7	98.6	87.7	86.9	84.9	84.9
489	88.2	91.0	85.4	89.5	86.1	87.4	88.0	88.9	88.9
337	85.4	91.0	86.8	89.6	86.1	88.8	91.5	90.3	90.3
177	85.4	91.0	86.8	89.6	86.1	88.8	91.5	90.3	90.3
547	91.0	86.9	86.9	90.3	86.9	87.5	88.8	87.6	87.6

Taxunomy
Unweighted Coeficients (Cont.)

	2423	2143	1248	020	1892	74	209	223	51
1876	91.0	86.9	96.6	86.8	97.2	86	86.7	86.2	86
959	89.5	86.7	84.6	85.9	85.3	85.2	88.0	90.2	90
927	87.5	90.3	84.0	88.8	84.7	86.7	87.3	88.2	88.2
440	85.5	85.5	84.8	85.4	84.1	85.4	86.7	84.8	84.8
1247	88.7	85.2	95.1	85.8	94.4	84	87.9	86.6	86
TR	86	88.2	86.1	88.1	85.4	87	89.4	86.1	86
16	86	84.8	86.9	84.7	86.2	84.7	-97.4	84.1	84
9	88.8	88.8	85.3	87.3	86.	85	88.7	89.5	8
1597	86.8	89.6	84.7	87.4	85.4	88.	88.0	87.5	87.5
491	86.1	91.0	84.7	89.5	84.0	88.	88.7	86.1	86
1610	88.9	87.5	85.4	87.4	86.1	84.	84.5	87.5	87.5
642	83.2	83.9	81	86.	80.4	85.	84.4	84.6	84.6
104	84.1	86.2	83.4	86.8	82.8	84.7	88	85.5	85.5
467	86.8	84.0	84.7	83.9	85.4	83.2	85.2	84.7	84.7
307	82.6	80.6	81.3	79.7	80.6	83.9	81.7	81.9	81.9
1827	81.3	84.0	80.6	86.7	79.9	83.9	84.5	84.0	84.7
69	79.2	79.2	78.5	76.2	77.8	81.1	77.5	79.9	79.9
1315	78.5	82.6	79.9	79.7	79.2	81.1	83.8	81.9	81.9
876	82.1	79.3	80.0	79.9	79.3	76.4	78.3	80.7	30.7
323	80.6	78.5	77.1	78.3	77.8	79.7	78.2	79.9	79.9
378	75.5	79.0	75.5	76.1	76.2	72.5	77.3	75.5	75.5
5	72.4	74.5	74.5	75.7	74.5	73.6	72.0	71.7	71.7
1845	70.9	69.5	69.5	70.9	69.5	71.4	68.3	68.1	68.1
623	69.2	69.9	68.5	69.7	68.5	71.1	68.8	68.5	68.5
1735	64.6	61.8	63.9	07.1	63.2	64.3	64.8	61.8	61.3
1243	04.3	62.2	65.0	62.7	65.7	61.3	60.3	б 3.6	63.6
2298	61.4	61.4	60.7	02.5	60.7	61.1	60.8	60.7	50.7
01	59.7	59.0	61.2	57.2	51.2	59.4	56.9	56.8	56.8
044	55.9	60.3	58.8	60.9	58.1	60.7	56.0	55.1	55.1
02	シ6.9	57.6	58.3	59.4	57.6	58.7	58.5	55.0	55.6
1175	57.3	55.9	59.4	56.3	59.4	54.2	54.0	55.2	55.2
206	57.0	52.8	61.3	54.6	61.3	53.2	51.4	52.8	52.8
1522	57.0	53.5	59.9	56.0	59.9	54.6	54.3	53.5	53.5
1799	54.9	52.8	57.7	53.2	57.7	52.5	51.4	52.8	52.8
1611	53.5	52.8	56.3	52.4	56.3	53.8	50.7	52.1	52.1
522	53.1	51.0	57.3	51.4	57.3	52.1	49.6	51.0	51.0
03	53.1	53.1	55.?	53.5	55.2	53.5	52.5	51.0	51.0
1890	54.5	49.7	58.0	52.1	58.0	50.7	51.8	50.3	50.3
1241	49.3	52.1	52.1	54.6	52.1	51.8	52.1	51.4	51.4
614	47.9	47.9	54.9	49.7	54.9	49.0	46.5	45.8	45.8
2412	47.9	46.5	53.5	46.9	53.5	46.2	45.1	45.8	45.8
1505	45.5	43.4	51.0	44.4	51.0	44.4	41.3	44.1	44.1
1739	48.6	49.3	50.0	51.7	50.0	50.3	51.4	48.6	48.6

Unweighted Coeficients (Cont.)

	263	203	1738	201	643	479	38	2401	1891
920	93.8	93.0	93.0	91.0	93.1	90.3	91.2	89.5	91.7
049	94.5	92.3	92.3	89.0	92.4	88.3	91.9	88.8	92.4
1854	93.8	91.5	91.6	88.3	91.7	87.6	91.2	88.1	91.7
1240	92.4	90.1	91.5	88.2	91.6	87.5	91.1	90.1	90.3
385	92.0	90.4	91.2	88.4	91.2	87.7	93.8	88.2	94.9
i424	93.8	91.5	93.0	89.0	91.7	88.3	91.2	88	91.7
424	90.3	88.7	89.5	87.6	89.6	86.9	90.4	87.4	89.7
226	90.3	92.2	89.4	91.7	90.2	91.0	88.9	87.3	90.3
1888	90.2	88.6	89.4	87.4	88.7	87.4	89.6	87.2	89.5
319	91.0	89.4	90.8	88.2	88.9	87.5	93.3	89.4	93.8
383	91.0	89.4	91.0	86.9	91.7	86.2	91.2	88.1	90.3
1319	90.1	38.5	90.6	85.8	87.9	85.1	05.5	88.5	92.2
1889	88.3	89.4	88.1	88.3	87.5	89.9	89.0	93.9	82.3
1022	89.7	89.4	89.5	86.9	88.9	86.2	89.7	89.5	89.0
483	88.3	88.0	88.1	88.3	88.2	87.6	88.2	88.1	87.6
6	90.9	90.8	90.8	86.7	90.1	86.0	91.9	86.5	88.8
1503	36.2	89.4	88.1	97.9	86.8	98.6	84.6	86.7	86.2
1829	89.6	88.	86.6	86.8	86.0	87.5	91.1	90.8	89.6
2423	86.9	38.0	86.7	89.7	86.1	90.3	88.2	95.1	86.9
2143	90.3	89.4	90.9	86.2	88.9	85.5	90.4	86.7	89.0
1248	85.5	88.7	87.4	98.6	86.1	99.3	83.8	87.4	85.5
020	89.6	90.8	90.9	86.8	88.8	87.5	86.7	86.6	88.2
1892	84.8	88.9	86.7	97.9	85.4	98.6	84.6	88.1	84.8
1874	90.3	87.9	88.7	86.8	87.4	86.1	89.0	85.2	89.6
209	91.6	89.3	92.2	87.4	88.7	86.7	88.3	87.9	90.9
223	91.0	88.7	90.2	86.2	88.2	85.5	90.4	91.6	88.3
51	91.0	88.7	90.2	86.2	88.2	85.5	90.4	91.6	88.3
263	100.0	90.8	92.3	85.5	89.6	84.8	91.2	88.8	92.4
203	90.8	100.0	92.1	88.7	89.4	88.7	89.5	87.1	88.7
1738	92.3	92.1	100.0	87.4	97.1	86.7	91.0	87.2	90.2
201	85.5	88.7	87.4	100.0	86.1	99.3	83.8	86.0	85.5
643	89.6	89.4	90.1	86.1	100.0	85.4	88.9	85.2	88.9
479	84.8	88.0	86.7	99.3	85.4	100.0	83.1	86.7	84.8
38	91.2	89.5	91.0	83.8	88.9	83.1	100.0	88.8	93.4
2401	88.8	87.1	87.2	86.0	85.2	56.7	88.8	100.0	87.4
1891	92.4	88.7	90.2	85.5	88.9	84.8	93.4	87.4	100.0
1245	87.6	87.3	87.4	84.8	36.8	84.1	90.4	88.8	88.3
1898	87.1	86.2	86.2	85.0	85.6	84.3	87.0	87.0	87.9
917	89.0	89.4	88.1	86.2	88.2	85.5	87.5	84.6	89.0
1249	84.2	87.5	86.1	97.8	84.8	98.6	83.8	36.1	86.3
489	88.2	88.7	88.7	84.0	88.2	84.7	88.9	87.3	86.8
337	93.1	30.8	96.5	86.8	89.5	86.1	89.6	85.9	91.0
177	93.1	00.8	96.5	86.8	89.5	86.1	89.6	85.9	91.0
547	87.6	88.0	86.7	85.5	86.1	36.2	90.4	88.8	89.7

## Unweighted Coeficients (Cont.)

	263	203	1738	201	643	479	38	2401	1891
1876	84.8	86.6	86.7	95.2	84.7	9.9	83.8	87.4	86
5	88	87	88.7	84.6	85.9	83.9	88.8	9.	86
927	87.5	87.9	88.0	82.6	88.	83.	88	86.6	8
440	84.8	84.5	85.3	84.8	88.9	84.	83.1	83.2	84.8
1247	85.9	86.3	87.9	95.1	86.5	94.4	84.4	86.4	85.9
TR	86.1	88.0	88.0	87.5	86.7	86.8	85.9	83.8	87.5
216	84	85.2	84.6	88.3	86.8	87	82	83.9	84.1
999	86.7	86.4	88.7	85.3	85.9	84.	86.6	91.5	85.
1597	88.2	85.1	87.3	83.3	88.1	84.0	88.1	87.3	87.5
491	88.2	88.7	88.7	84.0	86.0	84.0	88.9	85.2	88.2
106	85.4	85.8	87.3	84.0	85.3	84.7	87.4	87.3	84.7
642	86.0	84.4	85.8	79.7	87.3	80.4	86.6	84.4	85.3
104	86.9	64.5	86.0	83.4	86.1	82.8	84.6	84.6	84.8
467	86.1	83.1	83.8	84.7	84.6	85.4	85.2	85.9	86.8
307	83.3	81.6	81.7	81.3	83.9	80.6	82.2	80.3	83.3
1827	86.1	81.6	85.2	79.2	83.9	79.9	83.9	81.7	82.6
69	78.5	75.9	77.5	78.5	81.1	77.8	82.2	78.2	81.9
1315	82.6	83.0	81.0	79.9	83.2	79.2	79.3	78.9	81.9
876	78.6	77.5	78.3	78.6	78.5	79.3	76.5	79.7	76.6
323	77.8	78.0	77.5	78.5	77.6	77.8	77	81.0	78
378	78.3	76.4	76.6	75.5	76.1	74.8	76.9	78.	76
5	69.0	71.1	70.6	73.1	72.2	73.8	69.9	71.3	$7 \bigcirc$.
1845	66.0	68.1	66.4	68.1	67.4	68.8	68.9	69.8	67.
623	65.7	67.9	66.7	68.5	67.6	67.8	68.7	68.1	6
1735	65.3	66.7	62.7	62.5	67,1	63.2	63.7	63.4	6
1243	60.8	62.9	61.7	63.6	64.8	64.	64.2	66.7	60
2298	58.6	63.4	59.4	59.3	61.8	69.0	56.6	60.8	58.6
01	50.1	59.4	56.2	60.4	62.3	60.4	58.0	58.4	
044	58.1	58.6	56.7	58	60.7	58.	57.8	50.7	
02	59.7	57.4	56.3	56.9	60.8	57.6	58.5	54.9	
1175	54.5	56.4	54.6	58.0	59.2	58.7	54.5	58.9	. 9
206	52.1	54.7	53.6	61.3	53.2	62.0	56.0	57.9	53.5
1522	55.6	56.8	55.0	59.9	54.6	60.6	56.3	58.6	52.8
1799	52.8	53.6	51.4	57.7	54.2	58.5	56.4	57.9	53.5
1611	52.1	51.8	50.0	57.6	54.5	56.9	51.9	53.5	51.4
522	51.0	52.1	50.7	57.3	52.1	58.0	56.7	56.0	52.4
03	51.7	52.9	49.6	53.8	54.9	54.5	50.7	52.1	51.7
1890	51.7	52.9	51.1	56.6	51.0	57.3	53.0	56.0	49.0
1241	52.1	54.7	54.3	50.7	53.9	51.4	51.5	52.9	50.7
614	47.2	46.8	45.8	54.9	49.7	55.6	45.9	47.9	47.9
2412	45.8	46.1	45.1	53.5	48.3	54.2	45.9	49.3	46.5
1505	44.1	45.1	43.4	51.0	43.8	51.7	44.9	46.9	,
1739	47.9	51.1	50.7	48.6	50.3	49.3	46.7	50.0	49.

Taxonomy
Unweighted Coeficients (Cont.)

	1245	1898	917	1249	489	337	77	547	1876
	92					93.8			89.7
	31.7	90.7	93.	87.8	91.0	93.1	93.1	91.0	6
1854	91.0	91.4	92.4	87.1	90.3	.	92.4	0.3	9
1240	91.0	87.8	91.0	87.0	92.3	92.	92.3		
385	93.5	91.7	93.5	87.7	89.8	. 5	9.	. 3	87.7
424	89.7	86.4	91.0	87.8	0.3	93.8	3.8	89.0	. 3
424	90.3	90.0	89.0	86.3	90.	88.9			
226	88.9	92.1	90.3	90.6	88.8	88.8	88.8	9.6	
888	90.2	89.	88.	86.9	0.	8.7	8.	88.8	88.1
	88.2	88.5	89.6	87.0	88.2	91.6	91.6	88.	88.9
183	89.	89.3	89.7	85.6	92.4	91.0	91.0	88.3	86.9
19	92.2	85.4	87.	34. 4	88.6	89.3	89.	90.1	
9	91.7	86.4	88.3	88.5	88.	86.	86.8	94.5	90
1022	97	86.4	88.3	85.6	88.	88	88.	90.3	85.5
483	91	88.6	89.7	80.	88.	86.8	86	89.0	85.5
	90.9	89.1	93.	85.	90.	90.8	9		
03	85.5	85.0	86.9	98.6	96	87	87.	37.6	95.9
29	91.0	87.	89.6	87.7	90.2	86.7	6.	3.	8.2
2423	91.0	6.4	86.9	89.9	88.2	85.4	85.4	91.0	0
43	88.3	86.4	91.7	85.6	1.	1.	1	6.9	
12	84.8	85.0	86.2	99.3	85	86.8	6.	86.9	8
020	86.8	87.	92.4	87.7	89.	89.6	1	3	86.8
1892	85.5	85.7	85.5	98.6	86.	86.1	86.1	86.9	97.2
1874	89.6	89.2	96.5	87.0	7.	8.8	88.8		
29	86.7	87.7	90.9	86.9	88.0	1.5	91.5	88.8	
223	93.	87.9	86.9	84.9	88.9	00.3	90.3	7.6	. 2
51	93.	87.9	86.9	84.9	88.9	90.3	90.3	87.6	
263	87.6	87.1	69.0	84.2	88.2	93.1	3.		
203	87.3	86.2	89.4	87.5	88.7	9	90	88.9	
88	7.4	86.2	88.1	86.1	88.	6.5	6	86.7	86.7
	84.8	85.0	86.2	97.8	84.0	86.8	86.8	85.5	95.2
643	86.8	85.6	88.2	34.8	88.2	89.5	89.5		
479	84.1	84.3	85.5	8.6	84.7	86.1	86.1	6.	
38		87.0	87.5	83.8	88.9	39.6	9.6	99.4	83.8
2401	88	87	84.6	86.1	87.3	85.9	5	88.8	7.
1891	88.3	87.9	89.0	86.	86.8	1	1		
1245	100.0	87.1	87.6	83.5	87.5	86.	86.1	90.3	
1898	87.1	100.0	89.3	85.1	87.1	85.6	5.6	85.	6.
917	87.6	89.3	100.0	86.3	88.2	88.9	88.9	86.9	
1249	83.5	85.1	86.3	100.0	84.8	85.5	88		
489	87.5	87.1	88.2	84.8	in0.0	38.	88.	87.5	
337	86.1	85.6	88.9	85.5	88.1	100.0	100.	85	
177	86	85.6	88.9	85.5	88.1	100.0	100.0	85.	
547	90.	5.0	86	7	87	85	85	100.0	

Taxonomy

Unweighted Coeficients (Cont.)

	1245	1898	917	1249	489	337	177	547	1876
87	84.8	86				86.	86.	87.	
959	88.8	87.0	84.6	83	88.0	87.	87.	87.	84
927	86.8	85.6	87.5	83.	99.	87.4	87.	86.	
440	83.4	85.0	84.8	84.2	85.4	83.3	83.	84.	83
1247	83.8	83.9	85.2	4.	84.	87.	87.	83.	93
TR	86.8	83.6	87.5	87.	5.	86.	86.	88.	
216	82.8	84.3	84.	86.3	84.7	82.6	82.6	83.	
9	85.3	87.0	88.	83.9	85.	89.	89.	85.	85
1597	87.5	87.8	89.6	83.3	89.	86.	86	86.	84.
491	83.3	84.2	89.0	85.5	86.	88.	88.	86	84
1610	84.0	85.6	84.7	84.1	85.3	86.0	86.0	85.4	86.8
642	83.9	85.5	85.	79.6	83.1	84.5	84.5	83.2	79.7
4	82.8	85.7	84.8	82.	86.8	35.4	85.	84	83.4
67	86.	83.6	81.	83.3	86.	33	83	86	86.8
307	81.9	84.2	83.3	80.4	81.	81.8	81.8	79.9	81
1827	83.3	81.3	83.3	79.7	84.6	84.6	84.6	81.3	79.2
69	81.	80.6	78.5	76.8	76	78.	78	77.8	77.1
1315	77.	79.3	82	79.	31	82.	82	78.5	79.2
6	78.6	77.1	74.5	78.	77.	76.	76.	77.9	,
23	81.3	82.0	78.5	76.	78.	76.	76.	79.9	77
8	72	76.8		7	73.	76	76.	70.6	76.2
5	71.	75.0	73.	73	72.	79	77.	72.4	
1845	70.2	71.3	69.5	68.	68.8	66.0	бó.	70.9	68.8
623	69.9	71.7	69.2	67.	67.6	66.	66.	69.2	67.8
1735	64.6	67.6	64.		64	60.	50	66	
1243	62	66.7	60.8	63	64	59.	59	60	63
2298	61.4	65.0	61.4	59.	61.	57.	57	61.4	58.6
01	59	61.5	57.6	59.	55.8	54.	54.	57.	
044	59	59.	58.8			56.	56	59	8.8
02	59	61.9	57.6	56.5	6.6	55.	55	59	56
1175	55.9	56.5	53.1	57.7	56.3	54.2	54.	55.	
06	53.5	55.5	51.4	61.8	52.5	53.2	53.	56	58.5
	53.	55.	52.	58		53			\%
1799	52.8	54.3	50.7	58.8	53.5	51.1	51.	54.9	54.9
1611	53.5	55.4	50.7	55.8	51.7	49.7	49.7	52.1	54.9
522	51.0	51.4	50.	58.	51.4	50.7	50.7	53.8	54.
3	52	58.	53	5	2.	48.	48.	52.	.
1890	50.3	52.2	49.0	56.2	50.3	49.3	49.	51.7	55.2
1241	52.1	57.7	51.4	50.0	52.5	53.2	53.2	50.7	50.0
614	47.2	50.4	46.5	55.8	46.2	46.2	46.2	47.9	52.1
	45.8	48.	43	54	46	44	44	46	50.7
1505	44.1	47.1	41.4	50.4	44.4	43.1	43.1	44.1	48.3
739	50.7	55.0	49.3	47.8	48.3	48.3	48.3	48.6	47.

Taxonomy
Unweighted Coeficients (Cont.)

	959	927	440	1247	TR	216	999	1597	491
920	89.5	91.0	88.3	88.7	91.0	87.6	90.2	91.0	89.6
049	88.8	90.3	87.6	88.0	88.9	86.9	88.1	89.6	88.2
1854	88.1	89.6	86.9	87.3	88.2	86.2	87.4	90.3	87.5
1240	89.4	91.6	86.8	87.2	89.5	86.1	91.5	90.9	89.5
385	87.5	89.1	87.0	87.4	88.3	87.0	86.8	89.8	87.6
1424	89.5	89.5	86.9	88.0	89.6	86.2	88.8	89.6	89.6
424	87.4	89.6	91.7	86.6	86.1	91.0	86.7	88.2	85.4
226	90.1	87.4	87.5	89.4	88.1	88.2	86.5	88.1	86.7
1888	86.5	89.4	89.5	86.4	85.9	88.8	85.8	88.0	85.3
319	88.7	87.4	86.1	88.7	86.7	85.4	88.7	88.8	88.8
383	89.5	93.1	86.9	88.0	86.8	86.2	90.9	99.3	88.9
1319	88.5	87.9	84.4	84.8	86.5	83.7	86.3	88.6	87.1
1889	90.9	88.9	85.5	88.7	87.5	86.2	87.4	87.5	86.1
1022	89.5	87.5	85.5	85.9	88.9	84.8	86.0	86.8	85.4
483	92.3	87.5	86.9	85.9	88.9	87.6	86.0	85.4	86.8
6	86.5	89.4	83.9	86.1	86.6	83.2	87.2	91.5	88.0
1503	85.3	84.7	85.5	94.4	36.8	87.6	84.6	85.4	85.4
1829	88.0	89.5	85.4	84.4	87.4	36.1	85.9	87.4	86.0
2423	89.5	87.5	85.5	88.7	86.1	86.2	88.8	86.8	86.1
2143	86.7	90.3	85.5	85.2	88.2	84.8	88.8	89.6	91.0
1248	84.6	84.0	84.8	95.1	86.1	86.9	85.3	84.7	84.7
020	85.9	88.8	85.4	85.8	88.1	84.7	87.3	87.4	89.5
1892	85.3	84.7	84.1	94.4	85.4	86.2	86.0	85.4	84.7
1874	85.2	$80^{6} .7$	85.4	84.4	87.4	84.7	85.9	88.1	88.8
209	88.0	87.3	86.7	87.9	89.4	87.4	88.7	88.0	88.7
223	90.2	88.2	84.8	86.6	86.1	84.1	89.5	87.5	86.1
51	90.2	88.2	84.8	86.6	86.1	84.1	89.5	87.5	86.1
263	88.1	87.5	84.8	85.9	86.1	84.1	86.7	88.2	88.2
203	87.1	87.9	84.5	86.3	88.0	85.2	86.4	85.1	88.7
1738	88.7	88.0	35.3	87.9	38.0	84.6	83.7	87.3	88.7
201	84.6	82.6	84.8	95.1	87.5	88.3	85.3	83.3	84.0
643	85.9	88.1	88.9	86.5	86.7	86.8	85.9	88.1	86.0
479	83.9	83.3	34.1	94.4	86.8	87.6	84.6	84.0	84.0
38	88.8	88.1	83.1	84.4	85.9	32.4	86.6	88.1	38.9
2401	90.1	86.6	33.2	86.4	¢ 3.8	83.9	91.5	67.3	85.2
1891	86.0	86.1	84.8	85.9	87.5	84.1	85.3	87.5	88.2
1245	88.8	86.8	83.4	83.8	86.8	82.8	65.3	07.5	83.3
1898	87.0	85.6	85.0	83.9	83.6	84.3	87.0	87.8	84.2
917	84.6	87.5	84.8	85.2	87.5	84.1	88.1	89.6	89.6
1249	83.2	83.3	84.2	94.1	87.0	86.3	83.9	83.3	85.5
489	88.0	99.3	85.4	84.4	85.3	84.7	85.2	89.5	86.0
337	87.3	87.4	83.3	87.2	86.0	82.6	89.4	86.7	88.1
177	87.3	87.4	83.3	87.2	86.0	82.6	89.4	86.7	88.1
547	87.4	86.8	84.1	83.1	88.9	83.4	85.3	86.1	86.1

Taxonomy
Unweighted Coeficients (Cont.)

		927	440	1247	TR	216	999	1597	49
876	84.6								
959	100.0	88.0	84.6	85.7	83.8	83.9	89	85.9	84.
927	88.0	100.0	84.7	83.7	85.3	84.0	85.9	88.9	85.3
\%	84.6	84.7	100.0	83.8	84.7	96.6	82.	82.6	33.3
1247	5	83.	83.8	100.0	85.	34	85	83	85.1
TR	83.8	85.3	84.7	85.1	100.0	85.4	83.8	83.9	91.6
216	83.9	84.0	96.6	84.5	85.4	:00.0	81.8	81.	82.6
999	89.	85	2.	5.	83.8	81.8	100.0	86.6	86.6
1597	85.	88.9	82.6	33.	83.	81.9	86.6	00.0	86.7
491	84.5	85.3	83.3	85.	91.	82.6	85.	86.7	108.0
1610	83.8	84.6	79.2	83.	81.8	78.	88.	83.9	85.3
642	82.3	83.	85	80.	81.	84.	84	84.5	83.8
104	83.	86	84	82	83.	84.	83	84	. 7
467	83.8	86.0	81.	85.	81.9	84.	80.	83.	80.4
307	81.7	80.4	83.	82.	79.0	82.6	78.2	79.	77.6
827	81.	84.6	80	81.6	80	78.	81.7		84.6
69	76.	75.	81	77	75	80.6	77.5	79	
1315	79.6	80.4	90.3	78.7	83.2	88.2	81.0	79.7	80.4
876	77.	76.4	80.0	77	75.	79.	76.	75.	75.9
323	78.9	76.	79.	74.	77	80.	78	76	74.1
378	74.5	72.5	76.	77.1	70.	75.	76.	73.	73.9
5	71.3	71.5	72.4	1.	73.6	71.7	79.	72.2	72.2
1845	69.	68.6	79	65.	70.0	69.	66.	67.	67.9
623	69	66.	70	66.	69	69	66	66	66.9
1735	65.5	63.6	69.	60.3	65.7	67.	59.9	64	63.6
1243	05.2	64.1	65.7	61.4	53.	64.3	62.	52.7	62.7
2298	62.9	60.4	66.		51.	64.1		51	59.7
01	58			6					
044	56.0	56.3	58.1	4.	60.7	57.	56.	58.5	5
02	56.3	55.9	59.9	54.6	58.	58.3	52.8	60.1	59.4
1175	56.7	55.6	58.		56	58.0			54.2
206	55	51.	54.	57	54.			48.9	53.2
1522	56.4	53.9	56.	57.9	53.2	57.0	55.	50.4	55.3
1799	56.4	53.2	57.0	54.7	53.5	57.7	53.9	50.4	5:.8
1611		51.	56		55	55.	51.4	47.6	51.0
522	52	51	54.	54.	54.	55.	51.8	48.	5
03	51.1	51.4	55.9	51.4	52.1	53.8	48.2	52.8	51.4
1890	53.2	50.0	53.1	56.4	48.6	53.8	51.8	46.5	52.1
1241	53.	51	55.6	49.6	51.	53.	52.	54.6	51.8
14	46.5	45	52.1	51.8	51.7	52.8	45.8	4.1	49.0
2412	47.9	45.5	50.7	50.4	48.3	51.4	45.8	42.7	46.2
1505	46.9	45.1	45.5	47.2	45.8	47.6	44.8	39.6	43.8
1739	50.0	47.6	53.	46.	50	51.	49	50	


	1610	642	104	46	307	1827	69	1315	376
920	88.2	86.7	89.0	86.8	84.7	85.4	81.9	83.3	80.7
049	87.5	87.4	86.9	87.5	86.8	86.1	82.6	81.3	80.0
1854	86.8	86.7	87.6	86.8	86.1	85.4	81.9	80.6	79.3
1240	88.1	86.6	87.5	85.3	83.2	84.6	80.4	81.8	80.6
385	87.6	87.5	87.0	88.3	84.7	85.4	83.9	81.8	78.3
1424	86.1	85	89.0	85.4	84.0	84.0	80.6	83.3	79.3
424	87.5	87.4	85.5	88.9	85.4	83.3	82.6	84.7	81.4
226	86.0	85.2	86.	86.7	83.2	83.9	79.7	81.1	78.5
1888	88.0	87.9	84.6	89.4	86.6	83.8	83.8	83.1	82.5
19	88.8	84.5	84.0	86.0	83.9	82.5	83.9	81.8	79.9
383	88.2	85.3	87.6	87.5	81.9	84.7	79.2	81.3	79.3
1317	87.	83.5	83.7	85.8	83.6	83.6	82.9	80.0	80.1
1880	86.	84.6	86.9	30.3	81.3	84.0	77.8	78.5	79.3
1022	84.7	84.6	84.8	85.4	82.6	85.4	80.6	79.9	80.7
483	86.1	83.9	84.8	86.8	83.3	84.0	79.2	80.6	79.3
6	86.	86.5	84.6	85.2	83.1	82.	80.3	78.9	76.9
503	84.7	81.8	84.1	85.4	80.6	81.3	77.8	80.6	79.3
1829	86.0	83.	85.4	86.7	81.1	32.5	79.0	80.4	17.8
2423	88.9	83.2	84.1	86.8	82.6	81.3	79.2	78.5	82.1
2143	87.5	83.9	86.2	84.0	80.6	84.0	79.2	82.6	79.3
1248	85.4	81.1	83.4	84.7	81.3	80.6	78.5	79.9	80.0
020	87	86.6	86.8	83.9	79.7	86.7	76.2	79.7	79.9
1892	86	80.4	82.8	85.4	80.6	79.9	77.8	79.2	79.3
1874	84.6		84.7			83.9	81.1	81.1	76.4
209	84.5	84.4	88.1	85.2	81.7	84.5	77.5	83.8	78.3
223	87.5	84.6	85.5	34.7	81.9	84.0	79.9	81.9	80.7
51	87.5	84.6	85.5	84.7	81.9	84.0	79.9	¢1.9	¢0.1
263	85.4	86.0	86.9	86.1	83.3	OU. 1	78.5	82.5	78.6
203	85.8	84.4	84.5	83.1	81.6	81.6	75.9	83.1	77.5
1738	87.3	85.8	86.0	33.8	81.7	85.2	77.5	81.0	78.3
201	84.0	79.7	83.4	84.7	81.3	79.2	78.5	79.9	78.6
643	85.3	87.3	86.1	34.6	83.9	83.9	81.1	83.2	78.5
479	84.7	80.4	82.8	85.4	80.6	79.9	77.8	79.2	79.3
38	87.4	86.6	84.6	85.2	82.2	83.0	82.2	79.3	76.5
2401	87.3	84.4	84.6	85.9	80.3	81.7	78.2	78.9	79.7
1891	84.7	85.3	84.8	86.8	83.3	82.6	81.9	81.9	76.6
1245	84.0	83.9	82.8	86.1	81.9	83.3	81.3	77.8	78.6
1898	85.6	85.5	85.7	83.6	84.2	81.3	80.6	79.3	77.1
917	84.7	85.3	84.8	81.9	83.3	83.3	78.5	82.6	74.5
1249	84.1	79.6	82.7	83.3	30.4	79.7	76.8	79.7	73.4
489	85.3	83.1	86.8	86.7	81.1	84.6	76.2	81.1	77.8
337	86.0	84.5	85.4	83.2	81.8	84.6	78.3	82.5	76.4
177	86.0	84.5	85.4	33.2	81.8	84.6	78.3	82.5	76.4
547	85.4	83.2	84.1	86.1	79.9	81.3	77.8	78.5	77.9

Unweighted Coeficients (Cont.)

	1610	642	104	467	307	1827	69	1315	876
876			8.						
959	83.8	82.3	83.9	33.8	81.7	81.7	76.8	79.	77.6
927	84.6	83.1	86.1	86.0	80.4	84.6	75.5	80.	76
40	79.	85.3	84.8	81.9	83.3	80.6	81.3	90.3	80.0
1247	83	80.7	82.4	85.	82.3	81.6	77.	78	77.5
TR	81	81.0	83.	1.9	9.	80.	5	83.	75
216	78.5	84.6	84.1	84.0	82.6	78.5	80.5	88.	79
999	88.0	84.4	83.9	80.3	78.	81.7	77.	81.	76.9
97	83	84.5	84.0	83.	79	81.	79	79.	75.7
491	85.3	83.8	84.7	80.	7.6	84.6	75	80	75.0
1610	100.0	84.5	81.3	83.9	80.4	80.4	76.9	77	76.4
42	84.5	100.0	81.1	81.7	85.2	83.1	81.0	79.6	79.0
104	81.3	81.1	100.9	82.6	5.	84.	75.	80.6	75.2
467	83.	81.	82.6	100.0	79.0		76.9	77.	74.3
307	80.	85.2	75.7	79.0	100.0	76.2	82.	77.6	77.8
1827	80.4	83.1	84.0	79.0	76.2	100.0	72.0	74.	76.4
69	76	81.0	75.	76.	82.5	7	100.0	75	75.7
1315	77	79	80	77	77.6	74.8	75.5	100.	72.9
876	76	79.0	75.2	74.3	77.8	76	75.7	72.9	100
323	76.9	74.6	76.4	74.8	73.4	72.	74.	71.3	70.8
378	5	74	73.	74	73.9	72.	75	70	76.2
5	72.9	7	72.4	70.1	75.0	69	72.2	67.	64.8
1845	68.6	71.2	68.8	67.9	74.	66.	73.	63.	64.5
623	67.6	69.5	68.5	66.9	74.	64.8	73.	64.	64
	¢0.	69.0	63.2	60.8	69.	66.	64.	61.	64.6
1243	62	67	64	59	68.	62		61	62
2298	60	E	58.6	58.3	63.	59.	62.	61.	
01	58.	ธ́1.6	59.0	54.7	69.	58.	64.0	57.2	60.
044	58.	59.7	60.3	55.6	60.	60.	52.	54.8	
02	58.	59	¢0	58.7		62		5	
1175	57.0	61.0	58.0	5.2 .8	62.7	60.6	05	54.2	,
206	55.	56.4	51.4	52.5	58.9	49.6	58.9	51.8	9.9
22	55.3	57.9	54.2	52.5	56.0	56.7	53.2	53.	59.2
	53.	57.	52.	50.					
1611	51.7	54.2	51.4	5.	58.7	53.8	55.	53	50.
522	51.4	56.0	51.0	48.6	55.6	50.7	57.0	51.4	56.6
03	53.5	56.0	53.8	51.4	61.3	54.	60.6	48.6	5.2
1890	51.	53	54	49.	52.8	.	51.4	50.0	5 .
1241	53.2	56.4	53.5	49.6	57.4	52.5	60.3	51.1	50.7
614	46.2	51.4	49.3	47.6	50.3	51.0	51.7	49.0	56.9
12	45.5	50.7	47.9	44.8	51.0	49.7	51.7	47.6	59.7
	45.1	47.6	43.4	43.1	48.6	48.6	49.3	43.8	56.6
739	52	53.	49.3	48.3	54.5	49.7	55	45.1	48.6

Taxonomy
Unweighted Coeficients (Cont.)

	323	378	5	1845	623	1735	1243	2298	
920		76			69.9		63.6	62.8	
49	80.6	76.9	73.8	70.9	70.6	68.	61.5	62.8	59.7
1854	79.9	76.2	73.1	70.2	69.9	67.4	60.8	62.1	60.4
1240	81.1	76.	72.2	67.9	67.6	64.	64.8	61.8	56.5
385	81	75.	72	69.	69	66.	61.	60.	58.3
1424	78.5	76.2	75.2	70.9	70.6	64.6	63.6	61.4	59.7
24	80.6	77.6	73.1	71.6	71.3	66.7	64.3	63.4	60.4
226	79.7	74.6	73.6	70.	70.	67.8	63.4	63.	60.9
888	78.2	78.0	74.	72.7	71.	66.	65.	63.	00.1
319	81.1	80.3	76.4	72.3	73.2	64.3	62.7	60.4	59.4
383	78.5	77.6	72.4	68.1	67.8	63.2	52.2	58.6	55.4
1319	78.6	79	73.8	71.	71.	65.0	63.	58.	59.6
1889	79.9	74	72.4	70.	69.	б6.	62.2	61.	. 3
1022	80.6	72.7	71.7	70.2	69.9	66.0	61.5	62.8	59.7
483	82.6	71.3	73.	70.9	71.	57.4	63.6	65.	60.4
6	79	76	74	69	69	64.8	63	59.4	59.1
03	76	76.2	73.8	68.8	67.	64.6	64.3	60.0	60.4
1829	81.1	74.6	72.2	70.7	69.0	67.8	63.4	63.9	59.4
2423	80.6	75.5	72.4	70.9	69.	64.6	64.3	61.4	. 7
	78.5	79	74	69.	69.	61.8	62.	61	59.0
1248	77.1	75.5	74.5	69.	68.	63.9	65.0	60.7	61.2
020	78.3	76.1	75.7	70.9	09.7	67.	62.7	62.5	57.2
1892	77.8	70.2	74.5	69.	08.5	63.	65.7	60.7	.
18	79	7	73.6	71.	1.	64	61	61	59.4
209	78.2	77.3	72.0	68.3	68.8	64.8	60.3	60.8	56
223	79.9	75.5	71.7	68.	68.5	61.8	63.6	60.7	56.8
51	79.9	75.5	71.7	68.	68.	61.8	63.6	60.	56.8
263	77.8	78	59.	56.	65.	65	60	58.6	56
203	78.0	76.4	71.	68.	67.	66.7	62.9	63.4	59
1738	77.5	76.6	70.6	66.4	66.7	62.7	61.7	59.	56.2
201	78.5			68.	68.	62.	53.6		60.4
43	77.6	76	72	67	57.	67.	04.8	61.8	
479	77.8	74.8	73.8	68.8	67.8	63.	64.3	60.0	60.4
38	77.0	76.9	69.9	68.9	68.7	63.7	64.2	56.6	58.0
2401	81.0	78.0	71.3	69.	68	63.	66.7	60.8	58
1891	78.5	76.2	70.	67.4	67.	63.	60.	58.6	55
1245	81.3	72.0	71.7	70.2	59.9	64.6	62.2	61.4	59.7
1898	82.0	76.8	75.0	71.3	71.7	67.6	66.7	65.0	61.5
917	78.5	74.	73	69.5	69.2	64.6	¢. 8	61.	
1249	76.1	73.9	73.4	68.1	67.2	62.3	63.5	59.0	59.4
489	78.3	73.2	72.2	68.8	67.6	64.3	64.8	61.1	55.8
337	76.2	76.1	70.8	66.0	66.2	60.8	59.9	57.6	54.3
177	76.2	76.1	70.8	66.0	66.2	60.8		57.6	
547	79.9	70	72.4	70.9	69.2				57.6

Taxonomy
Unweighted Coeficients (Cont.)

	323	378	5	1845	623	1735	1243	2298	01
1876	77.1	76.2	73.8	68.8	67.8	61.1	63.6	58.6	59
959	78.9	74.5	71.3	69.1	69.5	65.5	65.2	62.9	58.4
927	76.9	72.5	71.5	68.6	66.9	63.6	64.1	60.4	55.1
440	79.9	76.2	72.4	70.2	70.6	69.4	65.7	66.2	64.7
1247	74.5	77.1	71.1	65.9	66.4	60.3	61.4	54.9	56.6
TR	77.6	70.4	73.6	70.0	69.7	65.7	63.4	61.8	57.6
216	80.6	75.5	71.7	69.5	69.9	67.4	54.3	54.	62.6
999	78.9	76.6	70.6	66.2	66.0	59.9	62.4	52.2	54.0
1597	76.2	73.9	72.2	67.9	15.2	64.3	62.7	61.1	57.2
491	74.1	73.9	72.2	67.9	66.9	63.6	62.7	59.7	55.4
1610	76.9	75.4	72.9	60.0	67.6	60.8	62.7	60.4	58.0
642	74.6	74.5	71.3	71.2	69.5	69.0	67.4	60.8	61.6
104	76.4	73.4	72.4	68.8	68.5	63.2	64.3	58.6	59.0
467	74.8	74.6	70.1	67.9	66.9	60.8	59.2	58.3	54.7
307	73.4	73.9	75.0	74.3	74.6	69.9	68.3	63.9	69.1
1827	72.7	72.5	69.4	65.4	64.8	66.4	62.0	59.0	58.0
69	74.1	75.4	72.2	73.6	73.9	64.3	69.0	62.5	64.0
1315	71.3	76.8	67.4	63.6	64.1	б́1.5	61.3	61.8	57.2
876	70.8	76.2	64.8	64.5	64.3	64.6	62.2	57.2	60.4
323	100.0	63.4	70.8	70.7	71	67.1	66.9	65.3	65.2
378	63.4	100.0	64.3	59.7	61.0	57.7	58.9	53.1	56.2
5	70.8	64.3	100.0	95.0	94.4	69.4	60.1	54.1	66.9
1845	73.7	59.7	95.1	100.0	99.3	72.9	64.0	62.4	69.6
623	71.	61.0	94.4	99.	100.0	71.8	63.1	61.5	69.3
1735	67.1	57.7	69.4	72.9	71.8	100.0	71.1	68.8	73.2
1243	66.9	58.9	60.1	$00^{4.0}$	63.1	71.1	100.0	65.7	73.1
2298	65.3	53.1	64.1	62.4	61.5	68.8	65.7	100.0	61.9
01	65.2	56.2	66.9	69.6	69.3	73.2	73.1	51.9	100.7
044	60.0	53.0	67.6	71.2	70.9	75.6	ó7. 2	59.6	68.7
02	55.9	53.5	65.3	68.6	67.6	83.2	66.9	61.1	69.6
1175	64.1	53.9	51.5	65.5	64.5	68.3	82.3	04.3	72.5
206	52.5	57.1	54.2	54.3	53.6	53.2	59.3	50.0	55.1
1522	51.8	60.7	48.6	50.7	49.3	51.1	56.4	44.4	53.7
1799	50.4	60.0	52.1	51.8	$55^{\text {c. }} 7$	51.1	60.0	49.3	53.3
1511	54.5	57.7	56.3	55.0	55.6	53.8	59.2	50.7	57.2
522	47.9	56.7	53.1	54.0	52.5	52.8	61.0	48.3	55.5
03	59.2	51.8	58.0	61.2	60.3	65.5	73.8	62.2	81.8
1890	48.6	58.9	47.6	50.0	48.9	51.4	58.2	43.4	54.0
1241	61.0	47.9	59.2	60.9	60.0	67.4	70.7	77.5	65.4
614	48.3	55.6	49.3	47.9	47.2	49.7	56.3	46.5	54.3
2412	48.3	54.2	47.9	47.9	47.2	50.3	59.2	45.8	55.1
1505	46.5	50.3	47.6	49.6	49.0	48.6	54.5	40.7	54.7
1739	65.	50.		6	60	68	5		

Taxonomy
Unweighted Coeficients (Cont.)

	044	02	1175	206	1522	1799	1611	522	03
920	61.0	59.7	57.3	53.5	54.9	52.8	54.2	51.0	53.1
049	60.3	61.8	56.6	54.2	55.6	53.5	54.9	51.7	54.5
1854	59.6	62.5	55.9	53.5	54.9	52.8	54.2	51.0	55.2
1240	60.7	53.0	57.7	54.6	55.3	54.6	54.9	52.8	52.8
385	58.1	60.6	53.7	54.8	52.6	54.8	53.3	52.2	53.7
1424	60.3	59.0	58.0	53.5	54.2	53.5	53.5	51.7	52.4
424	58.1	60.4	57.3	54.9	55.6	54.2	55.6	52.4	55.9
226	60.0	62.9	57.7	55.3	55.3	53.2	53.5	51.4	57.7
io388	60.0	61.3	59.6	55.7	56.4	55.0	55.6	53.2	56.7
319	57.0	58.7	57.7	55.3	53.9	54.9	53.8	54.2	54.9
383	56.6	58.3	55.2	52.1	56.3	51.4	52.1	49.0	51.0
1319	61.7	61.4	57.6	56.5	57.2	56.1	54.3	56.1	53.2
1889	58.8	58.3	55.9	54.2	57.0	53.5	52.1	51.7	53.1
1022	61.8	59.7	57.3	53.5	54.9	52.8	54.9	51.1	52.4
483	59.6	59.7	57.3	56.3	56.3	54.9	56.9	52.4	53.1
6	59.3	59.2	54.6	52.1	53.6	51.4	51.4	51.1	54.6
1503	59.6	59.0	58.7	60.6	60.6	57.0	55.6	56.6	54.5
1829	59.3	60.1	57.1	56.7	56.0	55.3	52.4	53.5	52.8
2423	55.9	56.9	57.3	57.0	57.0	54.9	53.5	53.1	53.1
2143	60.3	57.6	55.9	52.8	53.5	52.8	52.8	51.0	53.1
1248	58.8	58.3	59.4	61.3	59.9	57.7	56.3	57.3	55.2
020	60.0	59.4	56.3	54.6	56.0	53.2	52.4	51.4	53.5
1892	58.1	57.6	59.4	61.3	59.9	57.7	56.3	57.3	55.2
$1 £ 74$	60.7	58.7	54.2	53.2	54.6	52.5	53.8	52.1	53.5
209	56.0	58.5	54.6	51.4	54.3	51.4	50.7	49.6	52.5
223	55.1	55.6	55.2	52.8	53.5	52.8	52.1	51.0	51.0
51	55.1	55.6	55.2	52.8	53.5	52.8	52.1	51.0	51.0
263	58.1	59.7	54.5	52.1	55.6	52.8	52.1	51.9	51.7
203	58.6	57.4	56.4	54.7	56.8	53.6	51.8	52.1	52.9
1738	56.7	56.3	54.0	53.6	55.7	51.4	50.7	50.7	49.6
201	58.1	56.9	58.0	61.3	59.9	57.7	57.6	57.3	53.8
643	60.7	60.8	59.2	53.2	54.6	54.2	54.5	52.1	54.9
479	58.1	57.6	58.7	62.0	60.6	58.5	56.9	58.0	54.5
38	57.8	58.5	54.5	56.0	56.3	56.4	51.9	56.7	50.7
2401	56.7	54.9	58.9	57.9	58.6	57.9	53.5	56.7	52.1
1891	56.6	58.3	55.9	53.5	52.8	53.5	51.4	52.4	51.7
1245	59.6	59.0	55.9	53.5	53.5	52.8	53.5	51.0	52.4
1898	59.5	61.9	56.5	55.5	55.5	54.3	55.4	51.4	58.0
917	58.8	57.6	53.1	51.4	52.8	50.7	50.7	50.3	53.1
1249	57.7	56.5	57.7	51.8	58.1	58.8	55.8	58.4	53.3
489	57.0	56.6	56.3	52.5	53.9	53.5	51.7	51.4	52.1
337	55.3	55.2	54.2	53.2	53.2	51.1	49.7	50.7	48.6
177	56.3	55.2	54.2	53.2	53.2	51.1	49.7	50.7	18.5
547	59.6	59.0	55.9	56.3	55.6	54.9	52.1	53.8	4

Unweighted Coeficients (Cont.)

	044	02	1175	206	1522	1799	1611	522	03
1876	58.8	56.9	57.3	58.5	57.0	54.9	54.9	54.5	54
959	56.0	56.3	56.7	55.7	56.4	56.4	53.5	52.5	51.1
927	56.3	55.9	55.6	51.8	53.9	53.2	51.0	51.4	51.4
440	58.1	59.0	58.7	54.9	56.3	57.0	56.3	54.5	55.9
1247	54.1	54.6	55.7	57.6	57.9	54.7	53.9	54.3	51.4
TR	60.7	58.7	56.3	54.6	53.2	53.5	55.2	54.2	52.1
216	57.4	58.3	58.0	57.0	57.0	57.7	55.6	55.2	53.8
999	56.7	52.8	55.6	53.6	55.7	53.9	51.4	51.8	48.2
7597	58.5	60.1	53.5	48.9	50.4	50.4	47.6	48.6	52.8
491	58.1	50.4	54.2	53.2	55.3	51.8	51.0	53.5	51.4
1610	58.5	58.0	57.0	55.3	55.3	53.2	51.7	51.4	53.5
642	59.7	59.9	61.0	56.4	57.9	57.9	54.2	56.0	56.0
104	60.3	60.4	58.0	51.4	54.2	52.8	51.4	51.0	53.8
467	55.6	58.7	52.8	52.5	52.5	50.7	50.3	48.6	51.4
307	60.7	62.2	62.7	58.9	56.0	58.2	58.7	55.6	61.3
1827	60.0	62.9	60.6	49.6	56.7	49.6	53.8	50.7	54.2
69	62.2	60.1	55.7	58.9	53.2	58.2	55.9	57.0	60.6
1315	54.8	53.1	54.2	51.8	53.2	55.3	53.1	51.4	48.6
876	57.4	56.9	56.6	59.9	59.2	59.9	60.4	56.6	55.2
323	60.0	55.9	64.1	52.5	51.8	50.4	54.5	47.9	59.2
378	53.0	53.5	53.9	57.1	60.7	60.0	57.7	56.7	51.8
5	67.6	65.3	61.5	54.2	48.6	52.1	56.3	53.1	58.0
1845	71.2	68.6	05.5	54.3	50.7	51.8	55.0	54.0	61.2
623	70.9	67.6	64.5	53.6	49.3	50.7	5.5 .6	52.5	60.3
1735	75.6	83.2	68.3	53.2	51.1	51.1	53.8	52.8	65.5
1243	67.2	66.9	82.3	59.3	56.4	60.0	59.2	61.0	73.8
2298	59.6	61.1	64.3	50.0	44.4	49.3	50.7	48.3	62.2
01	68.7	69.6	72.5	55.1	53.7	53.3	57.2	55.5	81.8
044	100.0	79.4	73.1	57.1	55.6	54.9	60.0	57.5	66.4
02	79.4	100.0	71.1	55.3	52.5	50.4	55.9	54.2	59.0
1175	73.1	71.1	100.0	58.6	57.9	57.9	62.0	58.9	76.6
206	57.1	55.3	58.6	100.0	78.6	92.1	78.0	92.1	55.7
1522	55.6	52.5	57.9	78.6	100.0	79.1	75.9	80.7	52.9
1799	54.9	50.4	57.9	92.1	79.1	100.0	31.6	93.6	52.9
1611	60.0	55.9	52.0	78.0	75.9	81.6	100.0	78.2	58.5
522	57.5	54.2	58.9	92.1	80.7	73.6	78.2	100.0	53.2
03	66.4	69.0	76.6	55.0	52.9	52.9	58.5	53.2	100.7
1890	58.2	54.2	58.9	78.6	94.3	78.7	76.8	80.1	54.6
1241	67.2	65.2	70.7	55.4	49.6	53.2	50.4	52.1	67.1
614	54.1	52.4	56.3	78.0	73.8	80.1	86.7	78.2	57.7
2412	55.6	51.7	59.9	83.7	77.3	85.1	88.8	84.5	55.6
1505	56.6	50.7	56.6	80.3	82.4	81.0	86.1	80.4	56.6
1739	63.7	65.7	70.4	46.8	41.1	44.0	47.6	44.4	69.7

Taxonomy

Unweighted Coeficients (Cont.)

	1890	1241	614	24	1505	1739
920	51.0	52.1	49.3	46.5	44.8	49.3
049	51.7	52.8	48.6	45.8	45.5	50.7
1854	51.0	53.5	47.9	45.1	44.8	51.4
1240	52.1	52.5	49.7	48.3	45.8	49.7
385	49.3	51.1	49.6	46.7	43.5	49.6
1424	50.3	52.8	47.2	47.2	44.1	48.6
424	51.7	53.5	50.7	47.9	46.2	50.7
226	52.1	53.9	50.3	47.6	45.8	53.8
1888	52.5	54.3	51.4	48.6	46.9	51.4
19	50.3	53.2	48.3	48.3	44.4	52.4
383	52.4	51.4	47.2	45.8	44	47.2
1319	53.2	50.4	47.9	47.9	45.4	48.6
1889	54.5	49.3	47.9	46.5	44	48.6
1022	51.7	52.1	48.6	47.2	45.5	50.7
483	51.7	52.8	50.7	49.3	47.6	52.1
6	50.4	51.8	47.9	45.1	44.1	48.6
1503	58.7	51.4	55.6	52.8	50.3	49.3
1829	53.5	51.1	48.3	46.9	44.4	50.3
2423	54.5	49.3	47.9	47.9	45.5	48.6
2143	49.7	52.1	47.9	46.5	43.4	49.3
1248	58.0	52.1	54.9	53.5	51.0	50.0
220	52.1	54.6	49.7	46.9	44.4	51.7
1892	58.0	52.1	54.9	53.5	51.0	50.0
1874	50.7	51.8	49.0	46.2	44.4	50.3
209	51.8	52.1	46.5	45.1	41.3	51.4
223	50.3	51.4	45.8	45.8	44.1	48.6
51	50.3	51.4	45.8	45.8	44.	48.6
263	51.7	52.1	47.2	45.8	44.1	47.9
203	52.9	54.7	46.8	46.1	45.1	51.1
1738	51.1	54.3	45.8	45.1	43.4	50.7
201	56.6	50.7	54.9	53.5	51.0	48.6
643	51.0	53.9	49.7	48.3	43.8	50.3
479	57.3	51.4	55.6	54.2	51.7	49.3
38	53.0	51.5	45.9	45.9	44.9	46.7
2401	56.0	52.9	47.9	49.3	46.9	50.0
1891	49.0	50.7	47.9	46.5	42.1	49.3
1245	50.3	52.1	47.2	45.8	44.	50.7
1898	52.2	57.7	50.4	48.2	47.1	55.0
917	49.0	51.4	46.5	43.8	41.4	49.3
1249	56.2	50.0	55.8	54.3	50.4	47.8
489	50.3	52.5	46.2	46.2	44.4	48.3
337	49.3	53.2	46.2	44.8	43.1	48.3
177	49.3	53.2	46.2	44.8	43.1	48.3
547	51.7	50.7	47.9	46.5	44.1	48.6

Taxonomy
Unweighted Coeficients (Cont.)

	1890	1241	614	2412	1505	1739
1876	55.2	50.0	52.1	50.7	48.3	47.9
959	53.2	53.6	46.5	47.9	46.9	50.0
927	50.0	51.8	45.5	45.5	45.1	47.6
440	53.1	55.6	52.1	50.7	45.5	53.5
1247	56.4	49.6	51.8	50.4	47.2	46.1
TR	48.6	51.1	51.7	48.3	45.8	50.3
216	53.8	53.5	52.8	51.4	47.6	51.4
999	51.8	52.9	45.8	45.8	44.8	49.3
1597	46.5	54.6	44.1	42.7	39.6	50.3
491	52.1	51.8	49.0	46.2	43.8	48.3
1610	51.4	53.2	46.2	45.5	45.1	52.4
642	53.9	56.4	51.4	50.7	47.6	53.5
104	54.5	53.5	49.3	47.9	43.4	49.3
467	49.3	49.6	47.6	44.8	43.1	48.3
307	52.8	57.4	50.3	51.0	48.6	54.5
1827	54.2	52.5	51.0	49.7	48.6	49.7
69	51.4	60.3	51.7	51.7	49.3	55.2
1315	50.0	51.1	49.0	47.6	43.8	45.1
876	58.0	50.7	56.9	59.7	56.6	48.6
323	48.6	61.0	48.3	48.3	46.5	65.7
378	58.9	47.9	55.6	54.2	50.3	41.5
5	47.6	59.2	49.3	47.9	47.6	58.3
1845	50.0	00.9	47.9	47.9	49.6	60.7
623	48.9	60.0	47.2	47.2	49.0	60.6
1735	51.4	67.4	+9.7	50.3	48.6	68.5
1243	58.2	70.7	56.3	59.2	54.5	67.6
2298	43.4	77.5	46.5	45.8	40.7	81.9
01	54.0	65.4	54.3	55.1	54.7	¢\%. 7
044	58.2	67.2	54.1	55.6	56.6	ن3. 7
02	54.2	65.2	52.4	51.7	50.7	65.7
1175	58.9	79.7	56.3	59.9	56.6	70.4
206	78.6	55.4	78.0	83.7	80.3	46.8
1522	94.3	49.6	73.8	77.3	82.4	41.1
1799	78.7	53.2	80.1	85.1	81.0	44.0
1611	76.8	50.4	86.7	88.8	86.1	47.6
522	80.1	52.1	78.2	84.5	30.4	44.4
03	54.6	67.1	57.7	55.6	56.6	69.7
1890	100.0	50.0	76.8	78.9	83.9	43.0
1241	50.0	100.0	46.8	49.6	47.9	88.7
614	76.8	46.8	100.0	93.8	83.3	46.2
2412	78.9	49.6	93.8	100.0	88.2	45.5
1505	83.9	47.9	83.3	88.2	100.0	41.0
1739	43.0	38.7	46.2	45.5	41.0	100.0

## SELECTED BIBLIOGRAPHY

## Greek Texts

Aland, Kurt., et ai. The Greek New Testament. 3rd ed. Stuttgart: United Bible Societies, 1975.

Bover, Joseph M. Novi Testamenti Biblia Graeca et Latine. Jth ed. Madriu. Uunseju Superior de Investigaciones Cientificas Patronats "R. Lulio"---Instituto "Fr. Suarez," 1943.
 and Foreign Bible Society, 1953.

Merk, Augustinus. Novum Testamentum Graece er Latine. 9tin ed. Rome: Pontifical 3iblical Institute, 1964.

Nestle, Erwin, and fland, Kurt. Novum Testamentum Graece. 25th i. Stuttgart: iürttembergische Bibelanstalt, 1963.

Novum Testamentum cum parallelis S. Scripturae locis vetere capituiorum notatione canonibus Eusebii. Acceciunt Eres appendices. Oxford: Clarendon, 1889.

Souter, Alexander. Novum Testamentum Graece. Rev. ed. Oxford: Clarendon Press, 1947.

Tasker, R. V. G. The Greek Sew Testament. Oxford: University Press, 1964.

Tischendorf, Constantinus. Ncvum Testamentum Graece. Editio cctava critica major. Vol. 3: Drolegomena. Edited by C. R. Gregory. Leipzig: Hinrichs, 1894.

Vogels, Henr. J. Novum Testamentum Graece et Latine. 4th ed. Freiburg: Herder, 1955.

Von Soden, Hermann $F$. Die Schriften des Neuen Testaments in inrer ältesten erreichbaren Textgestaic. f vols. Teil l: Abteilung 1-3. Berlin: Alexancier Duncker, 1902-10; Teil 2: Text mit Apparat. Göttingen: Vandenioeck \& Ruprecht, 1913.

Westcott, Brooke Foss, and Hort, Fenton Join inthony. The New Testament in the Originai Greek. Vol. I: Text; vol. 2: Introduction and Appendix. And ed. New York and London: Macmillan, 1896.

## Bibliographic Tools

Duplacy, Jean. "Bulletin de critique textuelle du Nouveau Testament, I." Recherches de Science Religicuse 50 (1962): 242-63, 564--98; 51 (1963): 432-63.
. "Bulletin de critique textuelle du Nouveau Testament, II." Recherches de Science Religieuse 53 (1965): 257-84; 54 (1966): 426-76.
. "sulletin de critique textuelle du Nouveau Testament, III." Biblica 49 (1968): 515-51; 51 (1970): 84-129.
. "Bulletin de critique textuelle du Nouveau Testament, IV." Biblica 52 (1971): 79-113; 53 (1972): 245-78.

Metzger, Bruce $M$. Annotated Biblicgraphy of the Textual Criticism of the New Testament. Studies and Documents. Vol. 16. Edited by Ślva Lake and Carsten idpeg. Copenhagen: Ejnar Munksgaard, 1955.

Richards, w. L. "Textual Criticism on the Greek Text of the Catholic Epistles: A Bibliography." Andrews University Seminary Etudies 12 (1974): 103-11.
$\qquad$ . "The Present Status of Text Critical Studies in the Catholic Epistles." Andrews University Seminary Studies 13 (i975), 261-72.
. "The New Testament Greek Manuscripts of the Catholic Epistles." Andrews University Seminary Studies 14 (1976), 301-11.

## Reference Tools

Aland, Kurt. Kurzgefasste Liste der griechischen Handschriften des Neuen Testaments. Arbeiten zur neutestamentichen Textiorschung. Band 1. Berlin: Walter de Gruyter, 1963.

Clark, Kerneth W. A Descriptive Catalogue of Greek New Testament Manuscripts in America. Chicago: University of Chicago Press, 2937.

Kraft, Benedikt. Die Zeichen für die wichtigeren Handschriften des griechischen Veuen Testaments. Freiburg: Herder, 1955.

## On Methodology

## A. Dissertations

McReynolds, Paul R. "The Claremont Profile Method and the Grouping of Byzantine New Testament Manuscripts." Ph.D. dissertation. Claremont Graduate School, 1963.

Wisse, Frederik. "The Claremont Profile Method for the Classification of the Byzanti"e New Testament Manuscripts: A Study in Method." Ph.D. dissertation. Claremont Graduate School, 1968.

## B. Essays

Baird, J. Arthur. "Content-Analysis and the Computer: A Case-Study in the Application of the Scientific Method to Biblical Research." Journal of Biblical Literature 95 (1976): 255-76.

Brower, James K. "A Method for Computerized Classification of New Testament Manuscripts." Unpublished paper. Andrews University, 1979.

Colwell, Ernest Cadman. "Genealogical Mathod: Its Achievements and Limitations." Journal of Biblical Literature 66 (1947): 109-33. . "Method in Locating a Newly Discovered Yanuscript." Studies in Methodology in Textual Criticism of the Sew Testament, ?p. 2644. New Testament Tools and Studies. Voi. 9. Editer by Bruce M. Metzger. Leiden: E. J. Brill, 1969.
$\qquad$ . "Method in Establishing Relationships between Text-Types of New Testament Manuscripts." Studies in Mechodology in Testual Criticism of the New Testament, pp. jóó2. New Testament Tools and Studies. Vol. 9. Edited by 3ruce M. Metzger. Leiden: E. J. Erill, 1969.

Ellison, John Nilliam. "The Use of Electronic Computers in the Study of the Greek Vew Testament." Ph.D. dissertation. Harvard University, 1957.

Epp, Eldion Jay. "The Claremont Profile-Method for Grouping New Testament Miniscule Manuscripts." Studies in the History and Text of the New Testament, ?p. 27-37. Studies and Documents. Vol. 29. Edited by Boyd L. Daniels and M. Jack Sugas. Salt Lake City: University of Utan Press, 1967.

Fisher, Bonifatius. "The Use of Computers in Now Testament Studies with Special Reference to Textual Criticism." Journal of Theological Studies 21 (1970): 297-308.

Griffith, John G. "Numerical Taxonomy and Some Primary Manuscripts of the Gospels." Journal of Theological Studies 20 (1969): 389406.

Ott, W. "Computer Applications in Textual Criticism." The Computer and Literary Studies, pp. 199-223. Edited by A. J. Aitken, et al. Edinburgh: University Press, 1973.

Richards, W. L. "A Critique of a New Testament Text-Critical Method-ology--The Claremont Profile Iethod." Journal of Biblical Literature 96 (1971): 555-66.
A. Books

Aland, Kurt. Studien zur Überlieferung des neuen Testaments und seines Textes. Arbeiten zur neutestamentlichen Textforschung. Vol. 2. Berlin: Walter de Gruyter, 1967.
, ed. Materialien zur neutesiamentlichen Handschriftenkunde, I. Arbeiten zur neutestamentlichen Textforschung. Vol. 3. Berlin: Walter de Gruyter, 1969.

Von Dobschütz, Ernst. Eberhard Nestle's Einführung in das griechische Neue Testament. 4 tin ed. Göttingen: Vandennoeck \& Ruprecht, 1923.

Duplacy, Jean. Où en est la critique textuelle du Vouveau Testament? Paris: Gabalda, 1959.

Finegan, Jack. Encountering New Testament Manuscripts: A Norking Introduction to Textual Criticism. Grand Rapids: Eerdmans, 1974.

Greenlee, J. Harold. Introduction to New Testament Iextual Criticism. Grand Rapicis: Eerimans, 1964.

Gregory, Caspar René. Canon and Text of the New Testament. Edinburgh: T. \& T. Clark, 1907.
. Textkritik des Veuen Testaments. 3 vols. Leipzig: Hinrichs, iỵû-1909.

Kenyon, Frederic George. Handbook to the Textual Criticism of the New Testament. 2nd ed. London: MacMillan, i912.
. Recent Developments in Iextual Criticism. Oxford: University Press, 1933.

- The Text of the Greek Bible: A Student's Handbook. Ind ed. London: MacMillan, 1949.

Lagrange, :.$-J$. Introduction à l'étude du Vouveau Testament: Deuxième partie: Critique textuelle. II. La critique rationneile.
Paris: Gabalda, 1935.
Lake, Kirsopp. The Text of the New Testament. oth ed. Revised by Silva New. London: Rivingtons, 1928.

Lake, Silva. Family II and Codex Alexandrinus. Studies and Documents. Vol. 5. Edited by Kirsopp and Silva Lake. London: Christophers, 1937.

Martir, J. P. P. Introduction à la critique textuelle du Nouveau Testament: Particthéorique. Paris: Gabalda, c. 1883. Partie pratique. 5 vols. Paris: Gabalda, c. i883-86.

Metzger, Bruce M. Chapters in the History of New Testament Textual Criticism. New Testament Tools and Studies. Vol. 4. Grand Rapids: Eerdmans, 1963.

- The Text of the New Testament. Its Transmission, Corruption, and Restoration. 2nd ed. New York and Oxford: Oxford University Press, 1968.
. A Textual Commentary on the Greek New Testament. New York: United Bible Societies, 1971.

Milligan, William, and Roberts, Alexander. The Words of the New Testament as Altered by Transmission and Ascertained by Modern Criticism. Edinburgh: T. \& T. Clark, 1873.

Nestle, Eberhard. Introduction to the Textual Criticism of the Greek New Iestament. Translated by ivilliam Edie. London: Nilliams $\&$ Norgate, 1901.

Pott, August. Der Text des Neuen Testaments nach seiner geschichtlichen Entwicklung. 2nd ed. Leipzig: Hinrichs, 1919.

Robertson, Archi: ald Thomas. An Introduction to the Textual Criticisn of the New Tastament. 2nd ed. Nashville: Sunday School Board of the Southern Baptist Convenition, 1928.

Scrivener, F. H. A. A Plain Introduction to the Criticism of the New Testament. 2 vols. ith ed. Edited by Edward Miller. London: George Beil and Sons, 1894.

Souter, Alexander. The Text and Canon of the New Testament. Revised by C. s. r. Williams. Naperville: Alec R. Allenson, i.954.

Taylor, Vincent. The Text of the Net Testament: A Short Introduction. New York: St. Martin's, 1961.

Tregelles, Samuel Prideaux. Introduction to the Textual Criticism of the New Testament. in Introduction to the Critical Study and Knowledge of the Holy Scriptures. 13th ad. Edited by I. H. Horne. London: Longnan, Brown, Green, and Longmans, 1872.

Twilley, L. D. The Origin and Transmission of the New Testament. Grand Rapids: Eerdmans, 1957.

Vaganay, Lzo. An Introduction to the Textual Criticism of the New Testament. Translated by B. V. Miller. London: Sands, 1937.

Vogels, Heinrich Joseph. Handbuch der Textkritik das Veuen Testaments. 2nd ed. Bonn: Hanstein, 1955.

Warfield, Benjanin B. An Introduction to the Textual Cricicism of the New Testament. London: úxioru liniversity, 1886.

## B. Articles

Bousset, Wilhelm. "Neues Testament: Textkritik." Theologische Rundschau 17 (1914): 143-54, 187-206.

Colwell, E. C. "The Origin of Texttypes of the New Testament Manuscripts." Early Christian Origins. Edited by Allen P. Wikgren. Chicago: Quadrangle Books, 1961.

Colwell, E. C., Sparks, I. A., Wisse, F., and McReynolds, P. "The International Greek New Tastament Project: A Status Report." Journal of Biblical Literature 37 (1968): 187-97.

Hoskier, H. C. "Von Soden's Text of the New Testament." Journal of Theological Studies 15 (1914): 307-26.

Kümmel, Nerner Georg. "Textkritik und Textgeschichte des Neuen Testaments 1914-1937." Theoiogische Rundschau, オ.F. 10 (1935): 20621, 292-227; 11 (1939): 34-107.

Metzger, Bruce M. "Recent Spanish Contriburions to the Textual Criticism of the N.T." Journal of Biblical Iiterature 56 (1947): 401-24.

Text-Criticism of the Cathoiic Epistles
A. Dissertations and Studies

Blakely, Nayne A. 'Yanuscript Relationships as Indicated by the Epistles of Jude and II Peter." 2 vols. Ph.D. dissertation. Emory University, 1964.

Carder, Muriel M. "An Enquiry into the Textual Transmission of the Catholic Epistles." Th.D. dissertation. Victoria University, 1968.

Kubo, Sakae. "A Comparative Study of $p^{72}$ and the Codex Vaticanus." Ph.D. dissertation. Eniversity of Chicago, 196́. . $p^{72}$ and the Codex Vaticanus. Studies and Documents. Vol. 27. Edited by Jacob Geerlings. Salt Lake City: Üniversity of Utah Press, 1965.

Kümel, Werner Georg. The New Testament: The History of the Investigation of Its Problems. Translated oy $S$. McLean Giimour and Howard C. 太̈ee. Nashville and New York: dbingdon Press, 1972.

Richards, iv. L. "The Textuai Relationships of the Greek Manuscripes of the Johannine Epistles: Establishment and Classificatio: of the Manuscript Groupings." Ph.D. dissertation. Northwestern University, 1974.

- The Classification of the Greek Manuscripts of the Johannine Epistles. Society of Biblical Literature Dissertation Series. Vol. 35. Edited by H. C. Kee and D. A. Knight. Missoula, Montana: Scholar's Press, 1977.

Woiss, Bernhard. Die Katholischen Briefe. Leipzig: J. C. Hinrichs'sche Buchhandlung, 1892.

## B. Articles

Aland, Kurt. "Bemerkungen zu den gegenwärtigen Möglichkeiten textkritischer Arbeit aus inlass einer Untersuchung zum Cäsarea-Text der Katholischen Briefe." Vew Testament Studies 17 (1970): 1-9.

Carder, Muriel M. "A Caesarean Text in the Catholic Epistles?" New Testament Studies 16 (1970): 252-70.

Duplacy, Jean. "Le texte occidental des Épitres Catholiques." Vew Testament Studies 16 (1970): 397-99.

Gallagher, J. Tin. "A Study of von Soden's H-Text in the Catholic Epistles." Andrews University Seminary Studies 8 (1970): 97119.

Klostermann, E. "Zum Texte des Jakobusioriefes." Verium Dei Yanet in Aeternum. Edited by W . Foerster. Witten: Luther Verlag, 1953.

Relevant Commentaries on the Greek Text of James
Dibelius, Martin. James: A Comentary on the Epistic of Jomes. Revised by $H$. Greeven. Translated by A. A. Nilliams. Edited by H. Koester. Hermeneia. Philadelphia: Fortress Press, 1976. Based on Der Brief des jakobus. llth rev. ed. Kritisch-e:. 2getische: Kommentar über das Neue Testament. Götingen: Vandennoeck is Ruprecht, 1964.

Mayor, Joseph B. The Epistle of St. James: The Greek Text with Introduction, Notes, Corments. London: Maciillan, 1913; reprint, Grand Rapids: Zondervan, 1954.

Ropes, James H. A Critical and Exegerical Commentary on the Epistle of St. James. International Criticai Commentary. Vol. +0. Edinburgh: T. $\dot{\text { I }}$ T. Clark, 1916.

Other Relevant Norks

## A. Books

Baikie, James. Egyptian Papyri and Papyrus Hunting. London: Religious Tract Society, 1925.

Bruce, Frederick Fyvie. Are the New Testament Documents Reliable? 3rd ed. Chicago: Inter-Varsity Christian Fellowhsip, 1950. . The Books and the Parchments. London: Pickering \& Inglis, 1950.

Clark, Kenneth W. Eight American Praxapostoloi. Chicago: University Press, 1941.

Colwell, Ernest Cadman. What Is the Best New Testament? Chicago: University Press, 1952.

EIliott, J. K. The Greek Tex= Gethe Epistles to Timothy and Iitus. Studies and Documents. Vol. 36. Edited by Jiccb Geerlings. Salt Lake City: University of Utan Press, 1963.

Greenlee, J. Harold. Nine Uncial Palimpsests of the Greek New Testament. Studies and Documents. Vol. 39. Edited by Jacob Geerlings. Salt Lake City: University of Litan Press, 1968.

Gregory, Caspar René. Die griechischen Handschriften des Neuen Testaments. Leipzig: Hinrichs, i908.

Hatch, W. H. F. The Principal Uncial Yanuscriots of the New Testament. Chicago: University of Chicago Press, 1939.

- Facsimiles and Descriptions of Miniscule Manuscrip:s of the New Testament. Cambridge: Harvard University, 1951.

Herklots, H. G. G. How Our Bible Came to Us. New York: Oxford University Press, 1954.

Hutton, E.A. An Atlas of Textual Criticism. Cambridge: University Press, 1911.

Jacquier, Ernest. Le Vouveau Testament dans l'église chrétienne. II. Le texte du Vouveau Testament. Paris: Gabaida, 1913.

Kenyon, Frederic George. The Story of the Bible, iondon: John Murray, 1936.
. Our Bible and the Ancient Manuscripts. Jth ed. Revised by A. W. Adams. New York: Harper, 1958.

Milligan, George. The New Testament Documents. London: Macirillan, 1913.

Moulton, James H. From Egyptian Rubbish Heaps. London: C. H. Kelly, 1916.

Nida, Eugene A. God's Word in Man's Language. New York: Harper, 1952.
Parvis, Merrill M., and Wikgren, dllen P. New Testament Manuscript. Studies. Chicago: University of Chicago, 1950.

Price, Ira Maurice, The Ancestry of Our English Bible. 3rd rev. ed. New York: Harper \& Bros., 1956.

Scrivener, F. H. Six Lectures on the Text of the New Testament and the Ancient Manuscripts. Cambridge: University Press, 1875.

Sitterly, Charles F. Praxis in Manuscripts of the Greek Testament. 4th ed. New York: Eaton \& L:ains, 1898.

Thompson, Edward Paunde. An Introduction to Greek and Latin Palaeography. Oxford: Clarenrion Press, 1912.
B. Articles

Aland, Kurt. "The Significance of the Papyri for New Testament Research." The Bible in Yodern Scholarship. Edited by J. Philip Hyatt. Nashville and New York: Abingdon Press, 1965.

Clark, Kenneth W. "The Manuscripts of the Greek New Testament." New Testament Yanuscript Studies. Edited by Merrill M. Parvis and Allen P. Wikgren. Chicago: University of Cnicago Press, 1950.

Filson, Floyd V. "More Bodmer Papyri." Biblical Archaeologist 25 (196?): 50-57.

Kilpatrick, George Dunbar. "The Transmission of the New Testament and Its Reliability." The Bible Translator 9 (1958): 12フ-36.

King, Marchant A. "Notes on the Bodmer Manuscript." Bibliotheca Sacra 121 (1964): ji-57.

Metzger, Bruce $\therefore$. "Recently Puolisined Greek Paprri of the New Testament." Biblical Archaeologist 10 (1947): 26-44.

Roberts, Colin H. "The Christian Book and the Creek Papyri." Journal of Theological Studies 50 (1949): 155-ó8. . "The Codex." Proceedings of the Sritish Academv 40 (1954): 169-204.


[^0]:    critic who tates into account all of the recent deveiopments in trxtual criticism should recoznize the existence of only three Eext-types, riz., the Egyptian, 3 zantine, and $D$ tents. See his "Semerkungen zu den gegenwärtigen : 0 gifichieiten textkritischer Arbeit aus dnlass einer Untersuchung zum Cäsarea- Iext der kathoiischen Briefe," sTS i7 (i970):3.

    ## 1"Significance of the Papyri," ?. 341.

    2
    Ibid., p. 344.
    3
    ${ }^{3}$ Lagrange, Kubo, Gallagher, and Richards (see footnotes above for the biblió,raphical references) have all pointed out serious flaws in von Soden's classification of the Greek manuscripts of the Cathoiic Epistles.

[^1]:    Text-critical methodology is an oncoing process. The efenct to ciassify manuscripts nay be tracad to tine besinning oi modera =extiai
    $l_{\text {For }}$ a lengthy eriticis. of won Soden's wor't, see H. C. Moskier, "Von Soden's Text of the Ne: Eeseament," ithS ly (i913-14): 307-26.
    ${ }^{2}$ CE. Richarus, Elassitization, P. 14.
    3 Kurzgefascte iiste, ?F. 37-202.
    KKenneth W. Clark, Eight American Pramapostoloi (Chicaso: University of Chicagc Press, i9ii), pp. צitioj.
    ${ }^{5}$ Kubo kindy lent me 9 of his personai unpublished collations.
    ${ }^{6}$ K. Lake and $S$. Vew, Six Collations of New Testanent Ianuscripes (Cambridge: Harvard Liniversisy Press, 1932), pp. 160-62.

    7E. H. Scrivener, An Exact Transcript of the Codez Auriensis (Cambridge: Deighton, 2ell and Cc., 1859), pp. 453-57.

[^2]:    ${ }^{1}$ Richards, "A Critique of a Ners Testament Text-Critical Metiod-ology--The Claremont Proizle Method," JBL 96 (1977): 556.
    ${ }^{2}$ Both YcReynolds and Wisse recognized that this point Uf departure was not ideal. Nisse indicates this when he wrices, "How could one be certain chat an alleged group supported a variant readina befure existence of the group had been proven, and ail the memocrs of the group had been taken into account? So alternative presented itself apart Erom using tentative group definition borrowed from the students of manuscript sroups in the past" ("The Claremont profile Vethod," pp. 76-77).

[^3]:    ${ }^{1}$ Classificarion, p. 197.
    ${ }^{2 " T}$ Textual Relationsinips in Jude," p. 279.
    ${ }^{3}$ Classification, pp. 156, 157, 196-48.

